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Summary. Theorem on the representation of cyclically ordered groups was proved by S. 
Swierczkowski (by using a result of L. Rieger). In the present note sufficient conditions are found 
for such a representation to be determined uniquely up to isomorphism. 
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1. INTRODUCTION 

Cyclically ordered groups were investigated by L. Rieger [3], S. Swierczkowski 
[4], A. I. Zabarina [5], [6], A. I. Zabarina and G. G. Pestov [7], S. Cernak and the 
first author [2]. For the basic notions, cf. also L. Fuchs [1]. 

By applying a result of Rieger [3], Swierczkowski [5] proved a theorem on the 
representation of a cyclically ordered group. (For a thorough formulation cf. 
Definition 2.4 and Theorem 5 below.) A natural question arises whether this repre­
sentation is unique up to isomorphism. 

Let G be a cyclically ordered group and let <p: G -> Kt ® Lbe a representation 
in the sense of [4]. Here Kt is a subgroup of the cyclically ordered group K from 
Example 2.2 below and Lis a linearly ordered group. We denote by <pt the natural 
homomorphism of G onto Kx which is induced by the representation <p. Similarly, 
let <p2 be the natural homomorphism of G onto L which is induced by the representa­
tion <p. 

Let \//: G -> K[ ® 11 be another such representation. In the present paper it will 
be proved that, with regard to the above question, the situation concerning the first 
subdirect factor (i.e., the subgroup of K) essentially differs from the situation con­
cerning the second subdirect factor (the linearly ordered group). Namely, it will 
be shown that 

(i) there exists an isomorphism it ofKt onto K[ such that the diagram 
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is commutative; 
(ii) the linearly ordered groups Land LI need not be isomorphic in general. 
In fact, there exists a cyclically ordered group G having the representations 

xl/n:G-+Kn®Ln (n = 1,2,3,...) 

such that, whenever m and n are distinct positive integers, then Lm fails to be iso­
morphic to Ln. 

Let G0 be the linearly ordered kernel of G (cf. Section 3 below). It will be proved 
that 

(iii) if G0 is divisible and if for each geG there is a positive integer n with 
ng G G0, then there exists an isomorphism i2 of Lonto LI such that the diagram 

is commutative. 
Section 2 contains the basic definitions; also, Swierczkowski's theorem is recalled 

here. Two characterizations of G0 are given in Section 3 and Section 4. The above 
assertion (i) is proved in Section 5. The proofs of the assertions (ii) and (iii) are 
presented in Section 6. 

2. PRELIMINARIES 

Let G be a group. The group operation will be denoted additively, the commuta-
tivity of this operation will not be assumed. 

Suppose that a ternary relation [x, y, z] is defined on G such that the following 
conditions are satisfied for each x, y, z,a,be G: 

I. If [x, y, z] holds, then x, y and z are distinct; if x, y and z are distinct, then 
either [x, y, z] or [z, y, x~\. 

II. [x, y, z] implies [y, z, x\. 
III. [x, y, z] and [y, u, z] imply [x, u, z]. 
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IV. [x, y, z] implies [a + x + b, a + y + b, a + z + b]. 
Then G is said to be a cyclically ordered group. The ternary relation under con­

sideration is called the cyclic order on G. 
If if is a subgroup of G, then H is considered as cyclically ordered by the cyclic 

order reduced to H. 
The notion of isomorphism for cyclically ordered groups is defined in a natural 

way. Let G and G' be cyclically ordered groups and let / be a mapping of G into G' 
such that the following conditions are satisfied: 

(i) / i s a homomorphism with respect to the group operation; 
(ii) if x, y and z are elements of G such that [x, y, z] is valid in G and if the elements 

f(x),f(y) and/(z) are distinct, then [/(*), /(y) , /(z)] is valid in G'. 
Under these suppositions/is said to be a homomorphism of G into G'. 

2.1. Example . Let Lbe a linearly ordered group. For distinct elements x, y and z 
of L we pout [x, y, z] if 

(l) x < y < z or z < x < y or y < z < x 

is valid. Then L turns out to be a cyclically ordered group. The cyclic order defined 
in this way is said to be induced by the linear order. Each linearly ordered group 
will be considered as cyclically ordered by the induced cyclic order. 

2.2. Example . Let K be the set of all real numbers x with 0 _ x < 1; the opera­
tion + on K is defined to be the addition mod 1. For distinct elements x, y and z 
of K we put [x, y, z] if the relation (l) is valid. Then K is a cyclically ordered group. 

2.3. Example . Let Lbe as in 2.1 and let K be as in 2.2. Let Kt be a subgroup 
of K. Let Kt x Lbe the direct product of the groups Kx and L. For distinct elements 
u = (a, x), v = (b, y) and w = (c, z) of Kt x L we put [u, v, w] if some of the 
following conditions is satisfied: 

(i) [a, b, c\; 
(ii) a = b + c and x < y; 

(iii) b = c =# a and y < z; 
(iv) c = a + b and z < x; 
(v) a = b = c and [x, y, z ] . 

The group Kt x L with this ternary relation is a cyclically ordered group; it will 
be denoted by K± (g) L. 

For M = Kt x L we denote by M(Kt) the set of all elements a eKt having the 
property that there exists x e L with (a, x) e M. The set M(L) is defined analogously. 

2.4. Definition. Let G be a cyclically ordered group. Let Kt ® Lbe as in 2.3. 
A mapping <p of G into Kt ® Lis said to be a representation of G if the following 
conditions are satisfied: 
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(i) cp is an isomorphism of G into Kx ® L; 
(ii) cp(G) (Kx) = K! and <p(G) (L) = L. 

Let G, Kl5 La/id 9 be as in 2.4. Lef g e G and cp(a) = (a, x). Then we put <Pi(g) = -', 

<P2(g) = *• 
The following result is due to Swierczkowski [4]. 

2.5. Theorem. Each cyclically ordered group possesses a representation. 
From 2.5 we obtain by a routine calculation: 

2.6. Lemma. Let a and b be elements of a cyclically ordered group such that 
[0, a, b~\ is valid. Then [0, — b, —a] holds. 

3. LINEARLY ORDERED SUBGROUPS OF A CYCLICALLY ORDERED GROUP 

If G is a cyclically ordered group, then by the expression "G is linearly ordered" 
we always mean the fact that there exists a linear order ^ on G such that (G; g ) 
is a linearly ordered group and that the given cyclic order on G is induced by this 
linear order. 

The relation of cyclic order on G will often be denoted by [ ] . 

3.1. Lemma. Let (G; ^ ) be a linearly ordered group and let [ ] be the corre­
sponding induced cyclic order on G. Then the linear order on G can be uniquely 
reconstructed from the cyclically ordered group (G; [ ] ) . 

Proof. In view of the definition of the induced cyclic order (cf. Example 2.1) 
we have 

x > 0<t>[ — x, 0, x] . 

3.2. Corollary. Let (G; + , ^ t ) and (G; + , ?g2) be linearly ordered groups. 
Let [ ] x and [ ] 2 be the corresponding induced cyclic orders. If [ ] t coincides with 
[ ] 2 , then ^ x coincides with g 2 . 

Example 2.1 and Lemma 3.1 show that the notion of cyclically ordered group is 
a generalization of the notion of linearly ordered group. Moreover, the class of all 
linearly ordered groups as a subclass of all cyclically ordered groups can be deter­
mined by using merely the properties of the corresponding cyclic orders; namely, the 
following assertion is valid: 

3.3. Lemma. Let G be a cyclically ordered group. Then the following conditions 
are equivalent: 

(i) G is linearly ordered. 
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(ii) Each nonzero subgroup of G is infinite and for each g e G and each positive 
integer n the relation 

[ -g , 0 ,# ] =>[-g,0,ng] 

is valid. 

Proof. The implication (i) => (ii) is obvious. Assume that (ii) holds. By way of 
contradiction, suppose that G fails to be linearly ordered. According to 2.5, there 
exists a representation 

<p: G ->Ki ® L 

of the cyclically ordered group G. Then without loss of generality we can suppose 
that G _= Kx x Land that <p is the identity on G. Because G is not linearly ordered, 
there exists g e G, g = (a, x) such that a =f= 0. 

First we shall verify that na 4= 0 for each positive integer n. In fact, suppose that 
there exists a positive integer n with 

(1) na = 0 ; 

let n be the least positive integer with the property mentioned. Clearly n = 2 and 
there exists a positive integer m < n such that a = m/n, and the positive integers m 
and w are relatively prime. 

Since the subgroup of G generated by the element g is infinite, the relation (l) 
yields x -# 0. There exists an integer fc such that kg = (l/n, kx) and fcx < 0. Then 
— kg = (l — l/n, — kx). According to the definition of the cyclic order in Kt ® L 
we have 

[0, fcg, -fcg] , 

hence [ — kg, 0, kg]. Therefore in view of (ii), the relation 

(2) [-kg,0,nkg] 

holds. According to (1) we have nkg = (0, nkx). Since nkx < 0, we obtain 
[0, -kg, nkg]. Thus {nkg, 0, — kg], contradicting (2). 

Let b be the inverse element of a in Kl9 hence b = 1 — a. Since a =t=i, one of the 
elements a or & is contained in the open interval of reals with the endpoints 0 and \. 
Without loss of generality we can assume that 0 < a < \. Then \ < b < 1, whence 
[0, g, —g] and thus [—g, 0, g]. In view of (ii) the relation 

(3) [ -£ , 0, ng] 

is valid for each positive integer n. Because 0 < a < b, there is a positive integer t 
such that 
(4) ta < b and (t + l) a ^ b . 

(In the relations (4) the addition and the multiplication is in the field of reals, not 
in Kt.) If (t + 1) a = b, then in KA we would have (t + 2) a = 0, which contradicts 
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the result proved above. Hence (t + 1) a > b. From the first inequality in (4) we 
obtain 

(t + 1) a < 1 . 

Thus 0 < b < (t + 1) a < 1, whence 

[0,(b, - x ) , ( (*+ l )a , C + i ) * ) ] , 

and thus [0, - g , (fc + 1) g]. Therefore [(fc + 1) g, 0, - # ] , contradicting the rela­
tion (3). 

3.4. Corollary. Let G be a cyclically ordered group. Let Gx be a subgroup of G. 
Then Gx is linearly ordered if and only if it fulfils the condition (ii) of 3.3. 

Let G be a cyclically ordered group and let cp: G -> Kt ® Lbe its representation. 
We denote by G0(<p) the set of all g e G having the property that there exists xg e L 
with cp(g) = (0, xg). Then G0(<p) is a subgroup of G. 

In view of the facts mentioned in the proof of 3.3 we obviously have 

3.5. Lemma. Let H be a subgroup of a cyclically ordered subgroup of G. Let <p 
be as above. Then the following conditions are equivalent: 

(a) H £ G0(<p). 
(b) H is linearly ordered. 

Proof. The implication (a) => (b) is obvious. The proof of the implication (b) => (a) 
is the same as the proof of the relation (ii) => (i) in 3.3. 

For a related result, cf. [7], Theorem 2.7. 

3.6. Corollary, (i) G0(cp) is the largest linearly ordered subgroup of G. (ii) G0(<p) 
is a normal subgroup of G. (iii) If \J/: G -> Ki ® U is another representation of G, 
then G0(\l/) = G0(<p). 

In view of part (iii) of 3.6 we shall often write G0 rather than G0(<p). 

4. c-CONVEX SUBGROUPS 

It is well known that the kernel of a homomorphism of a linearly ordered group G 
into a linearly ordered group is a convex subgroup of G. 

In this section the notion of a c-convex subgroup of a cyclically ordered group is 
introduced. The definition of c-convexity is formulated in such a way that in the 
particular case of linearly ordered groups it coincides with the notion of convexity. 

4.1. Definition. Let G be a cyclically ordered group. A subgroup H of G is said 
to be c-convex if one of the following conditions is fulfilled: 

(0 H = G; 
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(ii) for each ft e H with h 4= 0 we have 2ft 4= 0; if h e H, g e G, [-ft, 0, ft], 
[ — ft, #, ft], then g e H. 

Another notion of convexity in cyclically ordered groups (called z-convexity) 
was studied in [7]. 

From 4.1 and from the fact that for a nonzero element ft of a linearly ordered 
group we always have 2ft 4= 0 we immediately obtain 

4.2. Lemma. Let H be a subgroup of a linearly ordered group G. Then the fol­
lowing conditions are equivalent: 

(i) H is a convex subgroup of the linearly ordered group G. 
(ii) H is a c-convex subgroup of the cyclically ordered group G. 
For a subgroup H of a linearly ordered group G the condition (i) from 4.2 is 

equivalent to each of the following conditions: 
(ax) If ft1? ft2 e H, g e G, ht < g < ft2, then g e H. 
(a2) If ft e H, g e G, 0 < g < ft, then g e H. 
By analogy to (a^ and (a2) we can consider the following conditions for a sub­

group H of a cyclically ordered group G: 
(fit) If hl9 ft2 e H, g e G, [ft1? g, ft2], then geH. 
(P2) If ft e H, a e G, [0, g9 ft], then g e H. 
The question arises whether (pt) is equivalent to the c-convexity of H (and similarly 

for the condition (/?2)). The following lemma (and the fact that there exists a cyclically 
ordered group G having a nonzero c-convex subgroup distinct from G) shows that 
the answer is negative. 

4.3. Lemma. Let H be a nonzero subgroup of a cyclically ordered group G. 
Assume that H satisfies the condition (j82). Then H — G. 

Proof. There exists ft e H with ft 4= 0. Let g e G, g 4= 0, -ft 4= g * ft. If 2ft = 0, 
then we have either [0, #, ft] or [0, —g9h]; hence in both cases, g belongs to H. 
Thus H = G. 

Now suppose that 2ft =1= 0. Without loss of generality we may suppose that 
[ — ft, 0, ft] (if not, then we take —ft instead of ft). Thus one of the following possi­
bilities is valid: (i) [0, g, ft]; (ii) [ft, g, —ft]; (iii) [ — ft, g, 0]. In the case (i) we have 
g e H. If (ii) is valid, then [0, g — ft, —2ft], hence g — ft e H and thus g e H. In the 
case (iii) the relation [0, —a, ft] holds (in view of 2.6), whence geH. 

Since (jt?t) => (/?2), we infer that in 4.3 the condition (j62) can be replaced by (p{). 
The following two assertions are immediate consequences of 4.1. 

4.4. Lemma. Let G be a cyclically ordered group. Let H be a c-convex subgroup 
of G and let Ht be a c-convex subgroup of H. Then Hk is a c-convex subgroup of G. 

4.5. Lemma. G0 is a c-convex subgroup of G. 
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4.6. Lemma. Let G be a cyclically ordered group. Let H be a subgroup of G. 
Then the following conditions are equivalent: 

(i) H is a c-convex subgroup of G. 
(ii) Either H = G or H is a c-convex subgroup of G0. 

Proof. The assertion (ii) => (i) follows from 4.4 and 4.5. Assume that (i) is valid. 
If/Y c G0, then H is obviously a c-convex subgroup of G0. Suppose that H fails to be 
a subset of G0. Hence there is h e H such that, under a representation cp: G -> Kt ® L 
of G, we have (p(h) = (a, x), a 4= 0. Let g e G, cp(g) = (b, y). 

Let us first consider the case a = \. Then x =J= 0 (because 2h 4= 0). Without loss 
of generality we can suppose that x < 0 (in the case x > 0 we take —h instead of h). 
Thus [-/?, 0, h] holds. If b 4= \, then [- / i , a, /i] is valid, hence g e H. In the case 
b = \ denote g' = g — /t. We have [ — h, g', h], thus g' e H and therefore g e H. 
We obtain H = G. 

Next, let us consider the case a 4= \. Then without loss of generality we may sup­
pose that 0 < a < \, hence [ — h, 0, h]. We distinguish the following subcases: 

(a) If 0 ^ b < a or 1 — a < b < 1, then [ — h, g, h], hence g e H. 
(/?) If b = a or b = 1 — a, then for the element g' = g — h or g' = g + h, 

respectively, we have g' e H (according to (a)), hence g e H. 
(y) Let a < b < 1 — a. First suppose that there exists a positive integer n such 

that na = \. Put h1 = nh e H. Then cp(h^) = (\, nx). Hence in view to the result 
proved above (for the case a = \) we infer that g e G. Now suppose that na 4= \ for 
each positive integer n. There exists the least positive integer n with na < \ < 
< (n + 1) a. Let cp(-g) = (bu gt) and assume that g 4= 0. It suffices to verify 
that g e H or -g e H. We have either 0 ^ b ^ \ or 0 ^ bx <; ^. Without loss of 
generality we may suppose that 0 <L b ^ \. If b = na, then according to (a) or (/?), 
we obtain g e H (we take now h' = nh instead of h). Let na < b. Then na < b < 
< (n + 1) a, hence 0 < b - na < a. In view of (a) we have g - nhe H, which 
implies that g e H. Therefore H = G. 

4.7. Corollary. Let G be a nonzero cyclically ordered group, G 4= G0. 77?ef2 G0 

is the largest c-convex proper subgroup of G. 
For a related result (concerning z-convexity) cf. [7], Theorem 2.6. 
From 3.6 and 4.7 we obtain 

4.8. Corollary. Let H be a subgroup of a cyclically ordered group G. Then the 
following conditions are equivalent: 

(i) H is the largest linearly ordered subgroup of G; 
(ii) H is the largest c-convex proper subgroup of G. 

5. THE FIRST SUBDIRECT FACTORS 

In this section the assertion (i) from the introduction will be proved. 
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Let cp: G -> Kx ® Lbe a representation of a cyclically ordered group G. Then Kt 

of Lis said to be the first subdirect factor and the second subdirect factor, respectively, 
with regard to the given representation of G. Let g e G and <p(g) — (a, x). Denote 
(pt(g) = a. The mapping <pl is a homomorphism of the group G into the group Kx. 
For each at eKt there exists gte G such that <pt(g) = av Hence <p1 is an epi-
morphism. The kernel of <px is G0(<p). For each element g + G0 of the factor group 
GjG0(cp) we put 

<Pi(g + G0) = a . 

Then (pi is correctly defined on G\G0(cp) and cp[ is an isomorphism of the group 
GjG0(q>) onto the group Kv 

Let gf + G0 (i = 1, 2, 3) be distinct elements of GJG0(<p), <p(g) = (ah x,) (i = 
= 1, 2, 3). Then we have 

(1) [gi>g2>g3]^[0i>fl2>fl3]. 

Thus if g\ e gf + G0 (i = 1, 2, 3), then 

(2) [g l ,g2,g3]<*[g i ,g2>g 3 ] -

Under the above notation we put [gt + G0, g2 + G0, g3 + G0] if [gl9 g2, q3] is 

valid. In view of (2) the relation [ ] on GjG0(cp) is correctly defined. From (l) we 
obtain 

5.1. Lemma. (G\G0(<p), [ ]) is a cyclically ordered group. The mapping cp\ is 
an isomorphism of this cyclically ordered group onto the cyclically ordered 
group Kj. The mapping cpt is a homomorphism of the cyclically ordered group G 
onto the cyclically ordered group Kt. 

The mapping <px will be said to be the natural homomorphism of G onto Kx. 
Let vx be the natural mapping of G onto G\G0((p)\ i.e., for each g e G we have 

vi(g) = 9 + ^o- We obviously have 

5.2. Lemma. vx is a homomorphism of the cyclically ordered group G onto the 
cyclically ordered group G\G0(<p) and the diagram 

is commutative. 

Now let }//: G -* K[ ® L' be another representation of the cyclically ordered 
group G. Let \jfu \jj\ and v2 be defined analogously as <pl9 cp\ and vx. As G0(\j/) = 
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= GoO?) (°f- 3.6), we obtain v2 = vx. For each a eKt we put 

i1(a) = ^1((<?,'1)-1(a)). 

According to 5.1 (and the corresponding assertion which concerns \j/) it is an iso­
morphism of the cyclically ordered group Kt onto the cyclically ordered group K\. 
From 5.2 and from the corresponding assertion concerning if/ we obtain 

5.3. Theorem. Let cp: G -* K ® L and ty: G -> Kf ® L be representations of 
a cyclically ordered group G. Let <pt: G -> K and i/r1#* G -> K' be the corresponding 
natural homomorphisms. Then there exists an isomorphism it of the cyclically 
ordered group K onto K' such that the diagram 

is commutative. 

6. THE SECOND SUBDIRECT FACTORS 

In this section it will be proved that the assertions (ii) and (iii) from the introduction 
are valid. 

Let us denote by R the additive group of all reals with the natural linear order. 
Let Q be the subgroup of R consisting of all rationals. Let y be an irrational number 
with 0 < y < 1. We denote by A the set of all elements r of R which can be expressed 
in the form 
(1) r = q + ny, 

where q e Q and n is an integer. Then A is a subgroup of R and each element of A 
can be uniquely expressed in the form (l). 

Let N be the set of all positive integers with the natural linear order. For each 
neN let Bn = Q. Denote L = rneNBn. (Cf. [1].) Let Kt be the subgroup of K 
generated by the element y. Put 

G = Ki®L. 

Let meN. Put Cm = A, and Cn = Q for each neN\{m}. Denote L(m) = 
= TneNCn. Then we obviously have 

6.1. Lemma. If mx and m2 are distinct positive integers, then L(mt) fails to be 
isomorphic to L(m2). 
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The elements of G will be denoted by g = (ty, bn)neN, where / is an integer and 
bn e Bn. Similarly, the elements of the cyclically ordered group G(m) = Kx ® L(m) 
can be denoted by (t'y, cn)neN, where t' is an integer and cn e Cn for each neN. 
Let us put 

<pn(g) = (ty, cn)neN , 

where 
(i) cn = bn for each neN\{m}9 

00 cm = K + ty. 
The following two assertions are easy to verify. 

6.2. Lemma. cpm is an isomorphism of the cyclically ordered group G into G(m). 

6.3. Lemma. Let (cn)neN e L(m). Then there exists g = (ty,bn)eG such that 

<Pm(d) = (ty, cn)neN. 
From 6.2 and 6.3 we obtain 

6.4. Corollary. For each meN, the mapping cpm: G -> Kt ® L(m) is a representa­
tion of the cyclically ordered group G. 

Now, 6.1 and 6.4 yield that the assertion (ii) from Introduction holds. 
Let us investigate the following conditions for a cyclically ordered group G: 
(a) G0 is divisible. 
(0) For each g e G there exists a positive integer n such that ng e G0. 
Let <p: G -> Kx ® Lbe a representation of G. If g e G and cp(g) = (a, x), then we 

put <p2(g) = x. Then we obviously have 

6.5. Lemma. <p2 is a homomorphism of the group G onto the group L. 
<p2 will be said to be the natural homomorphism of the group G onto L. 

6.6. Lemma. Let (a) and (0) be valid. Let cp be as above, xeL. There exists 
gt e G0 such that <p(g^) = (0, x). 

Proof. There exist g e G and a eKt such that cp(g) = (a, x). In view of (ft) there 
exists a positive integer n such that ng = g0e G0. Hence <p(ng) = (na, nx) and na = 
= 0 in K. Next, according to (a) there is gt e G0 with ngt = g0. Let <p(gt) = (0, z). 
Hence <p(ngt) = (0, nz) = <p(g0) = (0, nx). We infer that nz = nx. Because L is 
linearly ordered, we obtain that z = x. 

Under the notation as in 6.6 put <pr
2(x) = gx. Then we have 

6.7. Lemma. <p2 is an isomorphism of the linearly ordered group L onto the 
linearly ordered group G0. 

Let i/>: G -> Ki ® 11 be another representation of G. Let \j/2 be defined analogously 
to q>2. The elements g0 and gx are as above (we apply 3.6). If x e L, g0 e G0, cp(g0) = 

194 



= (0, x), then there is a uniquely determined element x' e L' with \j/(g0) = (0, x'). 

Put i2(x) = x'. In view of 6.7 (and of the analogous assertion concerning \l/'2) we 

obtain 

6.8. Theorem. Let G be a cyclically ordered group such that the conditions (a) 

and (p) are satisfied. Let cp: G -> Kx ® L and \J/: G -> Ki ® L' be representations 

of G. Then i2 is an isomorphism of L onto L' such that the diagram 

is commutative. 

Let Q0 be t n e s e t °f aU rational numbers a with 0 ^ a < 1. By a slight modifica­

tion of the above example which was used for proving the assertion (ii) from Intro­

duction we obtain the following result (its proof will be omitted): 

6.9. Proposition. Let K0 be a subgroup ofK such that K0 fails to be a subset of Q0 

(i) Put Gx = K0 ® Q. There exist representations i/^: G1 -> Kx ® LY and 

i/t2: G1 -> K2 ® L 2 such that Lt is not isomorphic to L2. 

(ii) Let cc be an infinite cardinal. There is a linearly ordered group Lsuch that 

for the cyclically ordered group G2 = K0 ® Lthere exist representations ^ : G2 -> 

-> K( ® Lv (i el), card I = a having the property that whenever i(l) and i(2) are 

distinct elements of I, then L l ( 1 ) is not isomorphic to L t ( 2 ) . 
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Súhгn 

REPREZENTÁCIE CYKLICKY USPORIADANÝCH GRŰP 

JÁN JAКUBÍК, GABRIELA PRINGEROVÁ 

S. Swierczkowski dokázal vetu o гepгezantácii cyklicky usporiadaných grúp (pritom použil 
starší výsledok L. Riegra). V Článku sú nájdené postačujúce podmienky, za ktorých je takáto 
reprezentácia uгčená jednoznačne (až na izomorfizmus). 

Peзюмe 

ПPEДCTABЛEHИЯ ЦИKЛИЧECKИ УПOPЯДOЧEHHЫX ГPУПП 

JÁN JAКUBÍК, GABRIELA PRINGEROVÁ 

Teopeмa o пpeдcтaвлeнияx циқличecки yпopядoчeнныx rpyпп былa дoкaзaнa C Cвepчкoв-
cким (гrpи иcпoльзoвaнии oднoгo peзyльтaтa Л. Pyгepa). B пpeдлaгaeмoй cтaтьe нaйдeны 
дocтaтoчныe ycлoвия, пpи кoтopыx этo пpeдcгaвлeниe oднoзнaчнo c TOЧHOCTЬЮ дo изoмop-
физмa. 
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