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Summary. Theorem on the representation of cyclically ordered groups was proved by S.
Swierczkowski (by using a result of L. Rieger). In the present note sufficient conditions are found
for such a representation to be determined uniquely up to isomorphism.
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1. INTRODUCTION

Cyclically ordered groups were investigated by L. Rieger [3], S. Swierczkowski
[4], A. 1. Zabarina [5], [6], A. I. Zabarina and G. G. Pestov [7], S. Cerndk and the
first author [2]. For the basic notions, cf. also L. Fuchs [1].

By applying a result of Rieger [3], Swierczkowski [5] proved a theorem on the
representation of a cyclically ordered group. (For a thorough formulation cf.
Definition 2.4 and Theorem 5 below.) A natural question arises whether this repre-
sentation is unique up to isomorphism.

Let G be a cyclically ordered group and let ¢: G —» K; ® L be a representation
in the sense of [4]. Here K, is a subgroup of the cyclically ordered group K from
Example 2.2 below and Lis a linearly ordered group. We denote by ¢, the natural
homomorphism of G onto K, which is induced by the representation ¢. Similarly,
let @, be the natural homomorphism of G onto Lwhich is induced by the representa-
tion ¢.

Let Y: G » K7 ® L' be another such representation. In the present paper it will
be proved that, with regard to the above question, the situation concerning the first
subdirect factor (i.e., the subgroup of K) essentially differs from the situation con-
+ cerning the second subdirect factor (the linearly ordered group). Namely, it will
be shown that

(i) there exists an isomorphism i, of K, onto K} such that the diagram
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G K,
1 31
¥, Kl

is commutative;
(ii) the linearly ordered groups Land L' need not be isomorphic in general.
In fact, there exists a cyclically ordered group G having the representations

UaiG-K,®L, (n=1,23,..)

such that, whenever m and n are distinct positive integers, then L, fails to be iso-
morphic to L,.
Let G, be the linearly ordered kernel of G (cf. Section 3 below). It will be proved
that
(iii) if G, is divisible and if for each g € G there is a positive integer n with
ng € G,, then there exists an isomorphism i, of Lonto L' such that the diagram
P2

G——L

.

I

_—

v, L

is commutative.

Section 2 contains the basic definitions; also, Swierczkowski’s theorem is recalled
here. Two characterizations of G, are given in Section 3 and Section 4. The above
assertion (i) is proved in Section 5. The proofs of the assertions (ii) and (iii) are
presented in Section 6.

2. PRELIMINARIES

Let G be a group. The group operation will be denoted additively, the commuta-
tivity of this operation will not be assumed.

Suppose that a ternary relation [x, y, z] is defined on G such that the following
conditions are satisfied for each x, y, z, a, b € G:

L If [x, y, z] holds, then x, y and z are distinct; if x, y and z are distinct, then
either [x, y, z] or [z, y, x].

I [x, y, z] implies [y, z, x].

1L [x, y, z] and [y, u, z] imply [x, u, z].
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IV. [x, y, z] implies [a + x + b,a + y + b, a + z + b].

Then G is said to be a cyclically ordered group. The ternary relation under con-
sideration is called the cyclic order on G.

If H is a subgroup of G, then H is considered as cyclically ordered by the cyclic
order reduced to H.

The notion of isomorphism for cyclically ordered groups is defined in a natural
way. Let G and G’ be cyclically ordered groups and let f be a mapping of G into G’
such that the following conditions are satisfied:

(i) fis a homomorphism with respect to the group operation;

(ii) if x, y and z are elements of G such that [x, y, z] is valid in G and if the elements
f(x), f(y) and f(z) are distinct, then [ f(x), f(¥), f(z)] is valid in G'.

Under these suppositions f is said to be a homomorphism of G into G'.

2.1. Example. Let Lbe a linearly ordered group. For distinct elements x, y and z
of L'we pout [x, y, z] if

Q) xX<y<z or z<x<y of y<z<Xx

is valid. Then Lturns out to be a cyclically ordered group. The cyclic order defined
in this way is said to be induced by the linear order. Each linearly ordered group
will be considered as cyclically ordered by the induced cyclic order.

2.2. Example. Let K be the set of all real numbers x with 0 £ x < 1; the opera-
tion + on K is defined to be the addition mod 1. For distinct elements x, y and z
of K we put [x, ¥, z] if the relation (1) is valid. Then K is a cyclically ordered group.

2.3. Example. Let Lbe as in 2.1 and let K be as in 2.2. Let K; be a subgroup
of K. Let K; x Lbe the direct product of the groups K; and L. For distinct elements
u = (a,x), v=(b,y) and w = (¢, z) of K; x L we put [u,v, w] if some of the
following conditions is satisfied:

() [a, b,

(i) a=b=*cand x < y;

(iii) b=c+a and y < z;

(ivyc=a=+band z <x;

(V) a=b=cand [x,y,z].
The group K, x L with this ternary relation is a cyclically ordered group; 1t will
be denoted by K; ® L.

For M < K, x Lwe denote by M(K,) the set of all elements a € K, having the
property that there exists x € Lwith (a, x) € M. The set M(L) is defined analogously.

2.4. Definition. Let G be a cyclically ordered group. Let K, ® L be as in 2.3.
A mapping ¢ of G into K; ® Lis said to be a representation of G if the following
conditions are satisfied:
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(i) ¢ is an'isomorphism of G into K; ® L;
(i) ¢(G)(K,) = K, and ¢(G)(L) = L.
Let G, K, Land ¢ be as in 2.4. Let g € G and ¢(g) = (a, x). Then we put ¢4(9) = a,

?2(9) = x.
The following result is due to Swierczkowski [4].

2.5. Theorem. Each cyclically ordered group possesses a representation.
From 2.5 we obtain by a routine calculation:

" 2.6. Lemma. Let a and b be elements of a cyclically ordered group such that
[0, a, b] is valid. Then [0, —b, —a] holds.

3. LINEARLY ORDERED SUBGROUPS OF A CYCLICALLY ORDERED GROUP

If G is a cyclically ordered group, then by the expression “G is linearly ordered”
we always mean the fact that there exists a linear order < on G such that (G; <)
is a linearly ordered group and that the given cyclic order on G is induced by this
linear order.

The relation of cyclic order on G will often be denoted by [ ].

3.1. Lemma. Let (G; <) be a linearly ordered group and let [ ] be the corre-
sponding induced cyclic order on G. Then the linear order on G can be uniquely
reconstructed from the cyclically ordered group (G; [ ]).

Proof. In view of the definition of the induced cyclic order (cf. Example 2.1)
we have

x>0<[-x,0,x].

3.2. Corollary. Let (G; +, <,) and (G; +, <,) be linearly ordered groups.
Let [ ], and [ ], be the corresponding induced cyclic orders. If [ ], coincides with
[ 12, then <, coincides with <,. ‘

Example 2.1 and Lemma 3.1 show that the notion of cyclically ordered group is
a generalization of the notion of linearly ordered group. Moreover, the class of all
linearly ordered groups as a subclass of all cyclically ordered groups can be deter-
mined by using merely the properties of the corresponding cyclic orders; namely, the
following assertion is valid:

3.3. Lemma. Let G be a ¢yclically ordered group. Then the following conditions
are equivalent:
(i) G is linearly ordered.
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(ii) Each nonzero subgroup of G is infinite and for each g € G and each positive
integer n the relation
[_g’ 0: g] = [_g, 0’ ng]
is valid.

Proof. The implication (i) = (ii) is obvious. Assume that (ii) holds. By way of
contradiction, suppose that G fails to be linearly ordered. According to 2.5, there
exists a representation

.G K, ®L

of the cyclically-ordered group G. Then without loss of generality we can suppose
that G = K, x Land that ¢ is the identity on G. Because G is not linearly ordered,
there exists g € G, g = (a, x) such that a * 0.

First we shall verify that na + 0 for each positive integer n. In fact, suppose that
there exists a positive integer n with

(1) na=0;

let n be the least positive integer with the property mentioned. Clearly n = 2 and
there exists a positive integer m < n such that a = m/n, and the positive integers m
and n are relatively prime.

Since the subgroup of G generated by the element g is infinite, the relation (1)
yields x # 0. There exists an integer k such that kg = (1/n, kx) and kx < 0. Then
—kg = (1 — 1/n, —kx). According to the definition of the cyclic order in K, ® L
we have

[07 kga —kg] ’
hence [ —kg, 0, kg]. Therefore in view of (ii), the relation

(2) [—kg,O, nkg]
holds. According to (1) we have nkg = (0, nkx). Since nkx < 0, we obtain
[0, —kg, nkg]. Thus [nkg, 0, —kg], contradicting (2).

Let b be the inverse element of a in K, hence b = 1 — a. Since a #+ 1, one of the
elements a or b is contained in the open interval of reals with the endpoints 0 and 1.
Without loss of generality we can assume that 0 < a < 4. Then £ < b < 1, whence
[0, g, —g] and thus [ —g, 0, g]. In view of (ii) the relation

() [-g.0,ng]

is valid for each positive integer n. Because 0 < a < b, there is a positive integer ¢
such that

(4) ta<b and (t+1)axb.

(In the relations (4) the addition and the multiplication is in the field of reals, not
in Ki.) If (t + 1) a < b, then in K; we would have (¢ + 2) a = 0, which contradicts
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the result proved above. Hence (¢ + 1) @ > b. From the first inequality in (4) we
obtain

(t+1)a<1l.
Thus 0 < b < (¢t + 1)a < 1, whence

[0, (b, —x), ((t + 1) a, (t + 1) x)],

and thus [0, —g, (k + 1) g]. Therefore [(k + 1) g,0, —g], contradicting the rela-
tion (3).

3.4. Corollary. Let G be a cyclically ordered group. Let G, be a subgroup of G.
Then G, is linearly ordered if and only if it fulfils the condition (ii) of 3.3.

Let G be a cyclically ordered group and let ¢: G - K; ® L be its representation.
We denote by Go(¢) the set of all g € G having the property that there exists x,eL
with ¢(g) = (0, x,). Then Go(¢) is a subgroup of G.

In view of the facts mentioned in the proof of 3.3 we obviously have

3.5. Lemma. Let H be a subgroup of a cyclically ordered subgroup of G. Let ¢
be as above. Then the following conditions are equivalent:

(a) H < Gy(o).

(b) H is linearly ordered.

Proof. The implication (a) = (b) is obvious. The proof of the implication (b) = (a)
is the same as the proof of the relation (ii) = (i) in 3.3.
For a related result, cf. [7], Theorem 2.7.

3.6. Corollary. (i) Go(9) is the largest linearly ordered subgroup of G. (ii) Go(¢)
is a normal subgroup of G. (iii) If Y: G - K| @ L’ is another representation of G,

then Go('ﬁ) = Go(‘l’)'
In view of part (iii) of 3.6 we shall often write G, rather than G,(¢).

4. ¢-CONVEX SUBGROUPS

It is well known that the kernel of a homomorphism of a linearly ordered group G
into a linearly ordered group is a convex subgroup of G.

In this section the notion of a c-convex subgroup of a cyclically ordered group is
introduced. The definition of c-convexity is formulated in such a way that in the
particular case of linearly ordered groups it coincides with the notion of convexity.

4.1. Definition. Let G be a cyclically ordered group. A subgroup H of G is said
to be c-convex if one of the following conditions is fulfilled:

(i) H = G;

189



(ii) for each he H with h 0 we have 2h + 0; if he H, g€G, [=h,0,h],
[—h,g,h], then ge H.

Another notion of convexity in cyclically ordered groups (called z-convexity)
was studied in [7].

From 4.1 and from the fact that for a nonzero element h of a linearly ordered
group we always have 2h + 0 we immediately obtain

4.2. Lemma. Let H be a subgroup of a linearly ordered group G. Then the fol-
lowing conditions are equivalent:

(i) H is a convex subgroup of the linearly ordered group G.

(ii) H is a c-convex subgroup of the cyclically ordered group G.

For a subgroup H of a linearly ordered group G the condition (i) from 4.2 is
equivalent to each of the following conditions:

(ay) If hy,h,€eH, g€ G, hy < g < h,, then ge H.

(x;) If heH, ge G, 0 < g < h, then g H.

By analogy to (o) and (a,) we can consider the following conditions for a sub-
group H of a cyclically ordered group G:

(By) If hy, h,eH, geG, [hy, g, h;], then g€ H.

(B,) If heH, geG, [0,g,h], then g€ H.

The question arises whether () is equivalent to the c-convexity of H (and similarly
for the condition (B,)). The following lemma (and the fact that there exists a cyclically
ordered group G having a nonzero c-convex subgroup distinct from G) shows that
the answer is negative.

4.3. Lemma. Let H be a nonzero subgroup of a cyclically ordered group G.
Assume that H satisfies the condition (ﬁz) Then H = G.

Proof. There exists he Hwith h £ 0. Let ge G, g9 £ 0, —h + g + h.If 2h = 0,
then we have either [0, g. h] or [0, —g, h]; hence in both cases, g belongs to H.
Thus H = G.

Now suppose that 2k + 0. Without loss of generality we may suppose that
[—h, 0, h] (if not, then we take —h instead of h). Thus one of the following possi-
bilities is valid: (i) [0, g, h]; (ii) [, g, —h]; (iii) [—, g, 0]. In the case (i) we have
g € H. If (ii) is valid, then [0,g — h, —2h], hence ¢ — h € H and thus g € H. In the
case (iii) the relation [0, —g, h] holds (in view of 2.6), whence g € H.

Since (B,) = (B,), we infer that in 4.3 the condition (B,) can be replaced by (8,).

The following two assertions are immediate consequences of 4.1.

4.4. Lemma. Let G be a cyclically ordered group. Let H be a c-convex subgroup
of G and let H, be a c-convex subgroup of H. Then H | is a c-convex subgroup of G.

4.5. Lemma. G, is a c-convex subgroup of G.
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4.6. Lemma. Let G be a cyclically ordered group. Let H be a subgroup of G.
Then the following conditions are equivalent:

(i) H is a c-convex subgroup of G.

(ii) Either H = G or H is a c-convex subgroup of G,.

Proof. The assertion (ii) = (i) follows from 4.4 and 4.5. Assume that (i) is valid.
If H = G,, then H is obviously a c-convex subgroup of G,. Suppose that H fails to be
a subset of G,. Hence there is h € H such that, under a representation ¢: G - K; ® L
of G, we have ¢(h) = (a, x), a + 0. Let g € G, ¢(g) = (b, ).

Let us first consider the case a = 3. Then x =+ 0 (because 2h + 0). Without loss
of generality we can suppose that x < 0 (in the case x > 0 we take — h instead of h).
Thus [ —h, 0, h] holds. If b = %, then [ —h, g, h] is valid, hence g € H. In the case
b = 1 denote ¢’ = g — h. We have [—h,g’, h], thus ¢’ € H and therefore g € H.
We obtain H = G.

Next, let us consider the case a # 1. Then without loss of generality we may sup-
pose that 0 < a < 1, hence [ —h, 0, h]. We distinguish the following subcases:

() fO<b<aorl—a<b<l,then[—h,g,h], hence g € H.

(ﬁ) If b=a or b =1 — a, then for the element g =g — h or g’ =g + h,
respectively, we have g’ € H (according to («)), hence g € H.

(y) Let a < b < 1 — a. First suppose that there exists a positive integer n such
that na = 1. Put h; = nhe H. Then ¢(h,) = (4, nx). Hence in view to the result
proved above (for the case a = 1) we infer that g € G. Now suppose that na =+ % for
each positive integer n. There exists the least positive integer n with na < 1 <
<(n + 1)a. Let ¢(—g) = (by, g;) and assume that g =+ 0. It suffices to verify
that ge H or —g € H. We have either 0 < b £ { or 0 £ b; £ 1. Without loss of
generality we may suppose that 0 < b < 1. If b = na, then according to («) or (f),
we obtain g € H (we take now h’ = nh instead of h). Let na < b. Then na < b <
<(n+ 1)a, hence 0 < b — na < a. In view of («) we have g — nh e H, which
implies that g € H. Therefore H = G.

4.7. Corollary. Let G be a nonzero cyclically ordered group, G + G,. Then G,
is the largest c-convex proper subgroup of G.

For a related result (concerning z-convexity) cf. [7], Theorem 2.6.

From 3.6 and 4.7 we obtain

4.8. Corollary. Let H be a subgroup of a cyclically ordered group G. Then the
following conditions are equivalent:
(i) H is the largest linearly ordered subgroup of G;
(ii) H is the largest c-convex proper subgroup of G.
5. THE FIRST SUBDIRECT FACTORS

In this section the assertion (i) from the introduction will be proved.
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Let ¢: G - K; ® Lbe a representation of a cyclically ordered group G. Then K,
of Lis said to be the first subdirect factor and the second subdirect factor, respectively,
with regard to the given representation of G. Let g € G and ¢(g) = (a, x). Denote
qo,(g) = a. The mapping ¢, is a homomorphism of the group G into the group Kj.
For each a, € K, there exists g; € G such that ¢,(g9) = a,. Hence ¢, is an epi-
morphism. The kernel of ¢, is Go((p). For each element g + G, of the factor group
G/Gy(p) we put

¢i(g + Go) = a.

Then ¢} is correctly defined on G/Go(¢) and ¢} is an isomorphism of the group
G/Go(p) onto the group K.

Let g, + G, (i = 1,2, 3) be distinct elements of G/Gy(9), ¢(g;) = (a;, x;) (i =
= 1,2, 3). Then we have

(1) [gb g2, 93]‘1’[‘11, as, a3] .
Thus if gje g; + G, (i = 1,2, 3), then

(2) [91 92, 93] < [91, 92, 93] -

Under the above notation we put [g; + Go, g2 + Go, g3 + Go] if [91, 93, 93] is
valid. In view of (2) the relation [ ] on G/G,(¢) is correctly defined. From (1) we
obtain

5.1. Lemma. (G/G,(¢), [ ]) is a cyclically ordered group. The mapping ¢} is
an isomorphism of this cyclically ordered group onto the cyclically ordered
group K. The mapping ¢, is a homomorphism of the cyclically ordered group G
onto the cyclically ordered group K.

The mapping ¢, will be said to be the natural homomorphism of G onto K.

Let v, be the natural mapping of G onto G/Gy(¢); i.e., for each g € G we have
vi(9) = g + G,. We obviously have '

5.2. Lemma. v, is a homomorphism of the cyclically ordered group G onto the
cyclically ordered group G|Gy(¢) and the diagram

G P4 K,
l ?}
vy G/GO((p)

is commutative.

Now let : G —» K; ® L’ be another representation of the cyclically ordered
group G. Let Y, ¥; and v, be defined analogously as ¢, ¢} and v;. As Go(¥) =
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= Go(9) (cf. 3.6), we obtain v, = v,. For each a € K; we put

is(a) = ¥il(e1)™* (a)).
According to 5.1 (and the corresponding assertion which concerns V) i, is an iso-

morphism of the cyclically ordered group K, onto the cyclically ordered group Kj.
From 5.2 and from the corresponding assertion concerning y we obtain

5.3. Theorem. Let ¢:G—>K ® L and y:G - K' ® L' be representations of
a cyclically ordered group G. Let ¢,: G — K and {;: G - K’ be the corresponding
natural homomorphisms. Then there exists an isomorphism i, of the cyclically
ordered group K onto K’ such that the diagram

G Py

Ky

i

4

2 !

is commutative.

6. THE SECOND SUBDIRECT FACTORS

In this section it will be proved that the assertions (ii) and (iii) from the introduction
are valid.

Let us denote by R the additive group of all reals with the natural linear order.
Let Q be the subgroup of R consisting of all rationals. Let y be an irrational number
with 0 < y < 1. We denote by A the set of all elements r of R which can be expressed
in the form

(1) r=gq+ny,

where g € Q and n is an integer. Then A is a subgroup of R and each element of 4
can be uniquely expressed in the form (1).

Let N be the set of all positive integers with the natural linear order. For each
neN let B, = Q. Denote L= I',yB,. (Cf. [1].) Let K, be the subgroup of K
generated by the element y. Put

G=K,Q®L.

Let meN. Put C, = A4, and C, = Q for each ne N\{m}. Denote L(m) =
= I',xC,. Then we obviously have

6.1. Lemma. If m; and m, are distinct positive integers, then L(m,) fails to be
isomorphic to L(ms).
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The elements of G will be denoted by g = (ty, b,),ev, Where ¢ is an integer and
b, € B,. Similarly, the elements of the cyclically ordered group G(m) = K; ® L(m) =

can be denoted by (¢'y, ¢,),en, Where t’ is an integer and c, € C, for each neN.
Let us put

q’n(g) = (ty’ cn)neN )
where
(i) cs = b, for each ne N\ {m},
(i) ¢, = b, + ty.
The following two assertions are easy to verify.

6.2. Lemma. ¢,, is an isomorphism of the cyclically ordered group G into G(m).

6.3. Lemma. Let (c,),cy € L(m). Then there exists g = (ty, b,) € G such that

(pm(g) = (U’, cn)nEN'
From 6.2 and 6.3 we obtain

6.4. Corollary. For each m € N, the mapping ¢,,: G > K; ® L(m) is a representa-
tion of the cyclically ordered group G.

Now, 6.1 and 6.4 yield that the assertion (ii) from Introduction holds.

Let us investigate the following conditions for a cyclically ordered group G:

(«) G, is divisible.

(ﬂ) For each g € G there exists a positive integer n such that ng € G,.

Let ¢: G > K; ® Lbe a representation of G. If g € G and ¢(g) = (a, x), then we
put ¢,(g) = x. Then we obviously have

6.5. Lemma. ¢, is a homomorphism of the group G onto the group L.
@, will be said to be the natural homomorphism of the group G onto L.

6.6. Lemma. Let () and (B) be valid. Let ¢ be as above, x € L. There exists
g1 € Gy such that ¢(g,) = (0, x).

Proof. There exist g € G and a € K, such that ¢(g) = (a, x). In view of (B) there
exists a positive integer n such that ng = g, € G,. Hence ¢(ng) = (na, nx) and na =
= 01in K. Next, according to () there is g, € G, with ng, = g,. Let ¢(g,) = (0, z).
Hence ¢(ng,) = (0, nz) = ¢(go) = (0, nx). We infer that nz = nx. Because L is
linearly ordered, we obtain that z = x.

Under the notation as in 6.6 put <p’2(x) = ¢,. Then we have

6.7. Lemma. ¢, is an isomorphism of the linearly ordered group L onto the
linearly ordered group G,.

Let y: G —» K} ® L' be another representation of G. Let i/, be defined analogously
to ¢,. The elements g, and g, are as above (we apply 3.6). If x € L, g, € Go, ¢(go) =
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= (0, x), then there is a uniquely determined element x’ e L’ with y(g,) = (0, x’).
Put i,(x) = x". In view of 6.7 (and of the analogous assertion concerning y/5) we
obtain

6.8. Theorem. Let G be a cyclically ordered group such that the conditions (o)
and (B) are satisfied. Let ¢: G - K, ® Land y: G —» K} ® L' be representations
of G. Then i, is an isomorphism of Lonto L' such that the diagram

V2

is commutative.

Let Q, be the set of all rational numbers a with 0 < a < 1. By a slight modifica-
tion of the above example which was used for proving the assertion (ii) from Intro-
duction we obtain the following result (its proof will be omitted):

6.9. Proposition. Let K, be a subgroup of K such that K, fails to be a subset of Q,

(i) Put Gy =K, ® Q. There exist representations Y,:G, > K; ® L, and
V,: Gy > K, ® L, such that L, is not isomorphic to L,.

(ii) Let o be an infinite cardinal. There is a linearly ordered group L such that
for the cyclically ordered group G, = K, ® Lthere exist representations {Y/;: G, —
- K;® L; (iel), card I = o having the property that whenever i(1) and i(2) are
distinct elements of 1, then L,y is not isomorphic to L.
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REPREZENTACIE CYKLICKY USPORIADANYCH GRUP

JAN JAKUBIK, GABRIELA PRINGEROVA

S. Swierczkowski dokézal vetu o reprezantécii cyklicky usporiadanych grip (pritom pouZil
star$i vysledok L. Riegra). V ¢lanku si njdené postatujiice podmienky, za ktorych je takdto
reprezentacia urena jednoznadne (az na izomorfizmus).

Pe3rome

IMMPEACTABJIEHU S HHUKJIIMYECKU VIIOPAOOYEHHBIX I'PVIIII
JAN JAKUBIK, GABRIELA PRINGEROVA
Teopema O NIpeACTAaBICHUAX LMKIMYECKH YHOOPSAOYEHHBIX rpynm Opina gmokaszana C. CeepukoB-

ckuM (IIPH MCOOJNB30BaHMHM OQHOro pesynsrata JI. Pyrepa). B mpenanaraemoit CTaThe HaiOEeHBI

JOCTAaTOYHBIE YCIIOBHS, IPH KOTOPHIX 3TO NpPEACTaBIICHHE OJHO3HAYHO C TOYHOCTHIO O M30MOp-
du3ma.
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