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REFLECTION AND THE DIRICHLET PROBLEM ON DOUBLY
CONNECTED REGIONS
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Summary. In the paper the Dirichlet problem on a doubly connected region in the plane
bounded by two Jordan curves is solved. The “‘exterior’’ curve is supposed to be analytic and to
have a reflection function (the ‘“‘interior’ curve is not smooth, in general). In that case the
corresponding system of two integral equations can be reduced to a single integral equation
considered on the “‘interior’’ curve.
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J. M. Sloss proved in 1974 ([15]) that for an analytic Jordan curve in the plane
there is a ““global reflection function”. This reflection function has quite analogous
properties with respect to the given curve as the function 1/Z has with respect to the
unit circle. Further, J. M. Sloss showed ([16]) that the reflection function can be used
in connection with solving the Dirichlet problem by means of integral equations
in the case of multiply connected regions if the given region is bounded by finite-
ly many Jordan curves where the “exterior” one is an analytic curve having the
reflection function. The other boundary curves are supposed to be smooth and to
have continuous curvature. Then, if the boundary of the region consists of n + 1
Jordan curves, the system of n + 1 integral equations corresponding to the Dirichlet
problem can be reduced to a system of n integral equations not involving the “‘ex-
terior” curve. In the case n = 1, that is in the case of a doubly connected region,
the system of two integral equations is reduced to a single integral equation with one
unknown. Numerical examples concerning the last case are given in [17].

In this paper we will consider the case of doubly connected regions in the plane
bounded by two Jordan curves. The “exterior” curve will be again analytic with
a reflection function. As concerns the “interior” boundary curve the assumption
of smoothness will be dropped. When investigating the corresponding integral
equation we use the approach described in [7], which enables us to deal with non-
smooth boundary curves.

In a subsequent paper it will be shown that the reflection function can be used to
the reduction of the number of integral equations also in solving the Neumann
problem. We investigate the Dirichlet and the Neumann problems separately since
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if the reflection function is used, the corresponding integral equations are no longer
adjoint to each other.

Throughout the paper we deal with the plane R?. The real plane R? will be iden-
tified with the complex plane C, that is, a point [x, y] € R* will be identified with the
point ze C, z = x + iy as usual; similarly we shall write [f, n]=¢=¢&+ inetc.
By Z we mean the conjugate of z, that is

Z=x+iy=x—1iy.

If f is a real function defined on a subset of R, we may consider f as a real function
of the complex variable z, but usually we view it as a real function of two real variables
[x, y]. The partial derivatives of f with respect to the real variables x, y will be denoted
by d.f, d,f, respectively. If g is a mapping of a subset of R* to R? we shall usually
consider g as a complex function of the complex variable. The derivative of g with
respect to the complex variable (if it exists) is denoted by g’. By § we mean the
conjugate of the complex function g, thatis g = g, — ig,ifg = g; + ig,, where g4,
g, are real functions.

1. THE REFLECTION FUNCTION

In this part we recall some results of J. M. Sloss from the paper [15] concerning
the reflection function. We will also show a simple assertion concerning the normal
derivative of a function reflected by the reflection function we shall need in the sequel.

Throughout the paper we suppose that Lis a Jordan analytic curve with the para-
metrization ®(0) = @,(0) + i®,(6), 0 € 0, 27, of the form

(1.1) ®,(0) = x(0) = i(ak cos kO + b, sin kb) ,
(1.2) ®,(0) = y(0) =k§0(ac,c cos kO + B, sin k0) .

Further, we suppose that n = m,
(21(0))* + (22(0))* + 0,

(13) (@n b,) * (0,0) * (2, Bn)
and if m = n and Lis not a circle then, in addition, either
(1.4) o + f7 + a5 + by

or

(1.5) ,a, + Bub, # 0.

Putting t = ¢’ = cos 6 + i sin § one can write (1.1), (1.2) in the form

(1.6) 2x = 2ag + 4t + ¢y + G2 + cf* + ... + " + ",
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(17) 2y = 20y + Fyt + Vif + T2 + 1B 4 oo ™ + Yul”,
where

G =a,+ib, =0+ if,.
Multiplying (1.6) by #* and (1.7) by #™ and putting

(1.8) o« =ox) =2(a, — x), B=pB») =20 —)
we see that (1.6), (1.7) are equivalent respectively to

(1.9) =0, g(=o0,

where

J@) =& +¢qF + ...+ 57 + ol + o, "+ L+ i,
9(0) = T + Fmeal + oo + FI"7 4 BT Ay i+ L+ oy BT

This means that Lis given by exactly those [x, y] for which thereis a # with |i| =1
satisfying (1.9), that is, the polynomials f, g have a common root # with |f| = 1.
However, a necessary and sufficient condition for f and g to have common roots is
that the resultant (Sylvester’s determinant) R(f, g) vanishes (for the definition and
the properties of the resultant of two polynomials see for example [18]). Put

Al«(x), B(y)] = R(f, 9)

(2, B are given by (1.8)). Then we see that all the points [x, y] € Lsatisfy the algebraic
equation
(1.10 AT(x), B)] = .
Note that J. M. Sloss asserts in [15] that the curve Lis given by the equation (1.10)
which is not quite right. Generally, it may happen that f, g have common roots i
for which |i| % 1 for some [x, y], that is, it may happen that the equation is fulfilled
for some [x, y] ¢ L.

Further, for z, { € R? put

_ z+¢ z—-¢
The equation

(1.12) ‘ M(z,{) =0

is an algebraic equation of order 2n in { and { is determined by (1.11) as an algebraic
function of the variable z. The equation (1.11) can be written in the form (see [15])

(1.12) 92(2) 2" + G2-1(z2) "+ + 91(z) L + go(z) = 0

(924(2), ---» go(2) are polynomials in z).

We shall say that e € R? is a critical point of M(z, {) (also called a critical point
with respect to the curve L) if either g,,(€) = 0 or the equation M(e, {) = 0 (with the
unknown () has a multiple root. Let ey, ..., ¢, be those critical points of M(z, {)
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which lie in
R =1IntL

(the interior region bounded by L). Finally, let L; denote a Jordan arc lying in R
which joins all the points ey, ..., e,.
Now we are in position to formulate the following theorem due to J. M. Sloss

([15]).

1.1. Theorem. The equation (1.11) together with the condition z, = §(2o) for
some z, € Ldefine a function

=4(2)

with the following properties: There is a neighbourhood R, of Lsuch that
(1.13) g is defined and analytic on (R — {ey, ..., €,}) U Ry;
(1.14) g is single-valued on (R — L;,) U Ry;
(1.15) g'(z) # O for ze (R — L) U Ry;
(1.16) g(z) = z for ze L;
(117) 3R = L)~ (R — L) = 0;
(1.18) g can be uniquely extended onto

R, = (R — Li)u Ly g(R - L,-)

to be holomorphic there;
(1.19) §(3(2)) = z for z€R,.

In [15] J. M. Sloss also investigated the behaviour of g near the critical points
ey, ..., e,; we do not need those properties in the sequel. ‘

The function (mapping) § will be called the reflection function (mapping) with
respect to the curve L. It follows from Theorem 1.1 that g is one-to-one on R,
g(R)) = R, g(R,n R) = R,n Ext L, §(R, n Ext L) = R, N R.

Ifhisa (real or complex) function defined on M < R, then by h * § we mean the
composition of h and g defined on (g)~* (M), that is, for ze(g)~* (M) we have
h * g(z) = h(g(z)).

As Lis analytic there is a normal vector to L at any point of L. We denote by
n, = n;, n;=n} (|n,| = ||n] = 1) the exterior and the interior normal to L,
respectively.

1.2. Lemma. Let h be a real function defined and continuously differentiable
on a neighbourhood of L and let g be the reflection function with respect to L.
Then (on L)

oh 0 0

(1.20) 6T=6n.(h*g)= e (h*g).
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Proof of this lemma is simple — we include it here for completeness.
Recall that L has a parametrization of the form z = ®(f) = &,(f) + i ®,(1). Put .

1
|
Then n is the normal to L(we have either n = n, or n = n; depending on the orienta-

tion of the given parametrization). If g = g, + ig, then

grad (h x g) = [0,h 0,9, — 0,h 0,9,, 0;h 0,9, — 0,h 3,9,]

n AR

and
0 _ _
—(h*g)=n.grad (h*g) =
on

] ’ ’ ’ ’
= I?'I {_axh[ax91¢2 - 6ygld’1] - ayh["axgzq’z + ay92¢1]} .

As g is holomorphic we have

axgl = 6yg2 s aygl = —6xg2
and thus

(1.21) 5";(;, +g) =

1 ’ ’ ’ ’
l(b'l {—-axh[ayg2¢2 =+ (7xg2¢1] -_ 5y11[5yg,¢2 + a_‘gld’l]} .

For z € L we have g(z) = z, which means

Pi(1) = 9,(2(1),  @5(1) = —g,(2(1))
and we obtain .
(pll = 6xgl¢'l + aygltpé > ¢12 = _6x92¢’l - a_vg2¢,2 .

This together with (1.21) yields

0 1 oh

—(h*g) = —[0,h?; — 0,hd]] = — —

on ( g) |(p,l [ 2 ¥y 1] on
which is the equality (1.20).

1.3. Remark. Let h be a real function defined and continuously differentiable

on a “symmetric” neighbourhood of L, that is, on such neighbourhood U of L

that g(z) e U for any z e U. Suppose that h(g(z)) = h(z) for each z € U. Then for
{ € L we have

oh
E'(C) =0
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since

oh
Z(hxg) = ——
(h*3) P
by Lemma 1.2, and
%, oh
—(h*g) = —
6n( g) on

by the assumption h % § = h,

2. THE DIRICHLET PROBLEM

We will find the solution of the Dirichlet problem on some doubly connected
regions in the form of a combination of a double layer potential and the same
potential reflected by the reflection function — that is, we shall use the method of
J. M. Sloss [16]. However, if the boundary curves are not smooth the method of
proving that the corresponding integral equations possess solutions are different.
To deal with the double layer potential on non-smooth domain we use the method
described in [7] (see also [8]). Nevertheless, it will be more convenient for our
purposes to keep the notation and to use some assertions from [11], [12] (see also
[9], [10]) which concern the case of plane regions bounded by curves. For the
convenience of the reader we recall some notions and assertions we shall use.

By a path (or curve) in the plane we mean a continuous mapping y : {a, b) — R?
of a compact interval {a, b) into R%. A simple closed path (Jordan curve) is a path
¥ : {a, b> - R? such that y(a) = ¥(b) and Y(t,) + ¥(t,) for anyt,,t,e<a,b),
|t1 - t2| < b — a. The variation of the vector function  on I = {a, b) is denoted
by var [; I'] (the variation of a scalar function is denoted analogously). The path
has a finite length if var [{; (a, b)] < oo (for the definition of the variation of
a vector function, of the curvilinear integral and so on see for instance [11]).

Throughout the paper {a, b) will be a fixed compact interval, ¥ : {a, b) = R?
a simple closed path of finite length. Putting

(2.1) K = y(<a, b))

we also speak about the curve K. The symbol 4(K) stands for the space of all con-
tinuous (real) functions on K endowed with the supremum-norm; %(K) is then
a Banach space.

For z € R? let 9, be a single-valued continuous branch of arg [ — z] on <a, b) —
— ¢~ !(z) (for the existence of a single-valued continuous branch of the argument
see for example [11]). For 0 < r £ 4 0 we denote by y;, the family of all com-
ponents of the set

{teda,by; 0 < |y(t) — z| <1} .
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For a € R! the number (finite or + o) of points in
{teda,by; Y(t) — z = |Y(t) — z| e, O < |Y(t) — 2| < r}
is denoted by n¥(a, z). The following assertion is valid (see [11], [9]).

2.1. Proposition. For any ze R?, r > 0 the function n¥(x, z) of the variable
a € R! is Lebesgue measurable. If we define

(2.2) o(z) = .r"nf’(a, z) da
then .
(2.3) o(z) = eyz var [9,;1].

Further, we shall shortly denote

n¥(x, z) = n%(®%,2), ;= Vrw, 0%(z) =0v%(2).

The symbol v¥(z) is called the cyclic variation of the curve K (of the path y) at the
point z.

In what follows we shal deal with the (logaritmic) double layer potential. The
double layer potential can be defined in different ways. From possible definitions
we choose the following (see [11], [12] or [9]). Let z € R? be such that v¥(z) < 0.
Then for fe%(K) the value of the double layer potential W(z,f) = Wy(z,f) =
= Wg(z, f) is defined by the equality

(24) W(z,f) = - Z F((1) d9,(r) .

Tey: J g

Note that our definition of W(z, f) differs from that given in [11], [ 12] by the multiplica-
tive constant 1/x.

Under the assumption var [{; (a, b)] < oo the following assertion holds (see
[11], [9]). If z = x + iy € R* — K, then v¥(z) < oo and for any f € ¢(K)

(2.5) Wiz f) =m L [ L g _
T w{—z
L[ G = )y,  SEH I (E = x)
n)y &+ in -z &+ in = 2|°

Thus W(*,f) as a function of two real variables [x, y] (z = x + iy) is harmonic
on R? — K and

(2.6) lim W(z,f)=0.

|z] =+ o

Given { € K choose t; € <a, b), t, €(a, b) such that { = y(t,) = y¥(t,). If v¥({) <
< oo then there exist limits ([11]) .
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T = 1%({) = lim ——————‘//(t) mild
(27) +(0) = () = lim VOETk

7_(0) = ¥ =im—————w(t)—c
(29) 0= 2@ = im TAE

Further, let G denote the interior and E the exterior of the path (i.e. G =IntkK,
E = ExtK). Let ¢ stand for the constant value of the index of a point with respect
to y on G (that is ¢ = 1 if ¥ is positively (counterclockwise) oriented and ¢ = —1
if Y negatively (clockwise) oriented).

To a point { € K with v/({) < co we assign two numbers «,(¢), @_({) such that

(2.9) (D) = €9, 7_({) = =@
and such that
(@) () < a_(0) < ay(l) + 2n
if 7+(C) :*: ‘t—(C),
() a-() = () + (1 = 9=
if 7,({) = 1-(¢) and the vector e’®*@*™ is directed at { to E,
(©) 5 = %) + (1 + 97
if 7,(0) = 7-(¢) and the vector e’**@*™ s directed at { to G.

(We say that a vector ve R? — {0} is directed at z € R? to A < R? if there is an
r > 0 such that {z + ¢v; 0 < @ < r} = A.) Then we put

(2.10) 40 = n = (@-(0) = 2:(0) -
From now on we shall suppose that
(2.11) Vi = sup v¥(z) < 0 .
zeK

Then A4({) is defined for each { € K. For f € 4(K), { € K we define Wf({) by

(212) WIQ) = WES) + - 4050 -

Under the assumption (2.11), for each fe€ %(K), { e K there exist finite limits (see
[11], [12], [9], [10])

(2.13) WL, f) = lincl Wz, f) = W) + e f(0) <1 + itd({)) ,

zeG

Q19 W) = im W) = WES) - SO (1 - -17;‘4({)).

zeE

Note that in the case ¥ is smooth we have L(C) = —1:+(C) for each { € K, that is
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4(f) = 0 and the equalities (2.13), (2.14) can be written in the form ((2.11) is sup-
posed all the time) :

Wi(C)f) = W(Crf) + "f(C) ’ We(C’f) = W(C’f) - ‘f(C)
which are the classical jump formulas for tiie double layer potential.

Keeping the given notation we have (under the assumption (2.11) only) for every
{eK

(2.15) Wi(L,f) = WA(Q) + +S(0),
(2.16) WL, f) = Wf(Q) = ¢f(0),
(2.17) - WIQ) =W S) = o f(Q) = WL S) + e S(D).

It is seen from (2.17) that Wf € ¥(K) for each f € ¥(K) and W can be thus considered
as a (linear) operator acting on ¢(K) (W: f > Wf, W: 4(K) - ¢(K)).

Further, let L be a fixed analytic Jordan curve with the parametrization z = (1),
® = &, + i®, of the form (1.1), (1.2). We always suppose that either Lis a circle
of Lsatisfies all the assumptions of Part I, especially the conditions (1.3) to (1.5) (the
conditions (1.4), (1.5) are not fulfilled in the case of the circle). We denote

R=IntL, P =ExtL.

Let ey, ..., e, be all critical points with respect to Llying in R; if Lis a circle then we
consider its centre as the only critical point.

We shall also always suppose that the curves L, K are related as follows: Suppose
that

(2.18) KcR=IntL
and that
(2.19) ’ {e, ...} = G =1IntK.

Let L; be a Jordan arc joining all the points ey, ..., e,; according to (2.19) we can
suppose that L; = G (if Lis a circle then L; is a singleton, of course). Let g be the
reflection function determined by L(see Theorem 1.1; if Lis the circle |z — zo| = r

then g(z) = zo + r?/(z — z,)). Further denote
(2.20) S*=RNE=IntLnExtK, S~ =g(s*).
As L,n (S* UK) = 0 we see that the reflection function g is defined on a neigh-
bourhood of the set
KuS*uLus uik)
and g is holomorphic there.
Our aim is to solve the Dirichlet problem on S*. In order to achieve it we first

investigate an operator H defined as follows.
For f € 4(K) we define a function Hf on S* by

(2.21) Hf(z) = W(z,f) — W(g(2).f) (z€S*)..
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It is seen that for any fe %(K) the function Hf is harmonic on S*. If { € L then
g(¢) = ¢ and as W(, f) is continuous on R* — K we have for each { € L (and for
each fe 4(K))

(2.22) lim H(2) = W(C.) = W) = 0.
zeS+

It follows from (2.14), (2.16) that for { e K

(2.23) Hef(l) = 1i§2 Hf(z) = W, f) — W@, f) =

= W) — «f(Q) — W(3(0). /) -
Given u € ¢(K), we look for the solution (in %(K)) of the equation

(2.24) Hef(Q) = u(), (eK.

Note that if f € ¢(K) is a solution of (2.24) then according to (2.22), (2.23) the har-
monic function Hf defined on S* is the solution of the Dirichlet problem on S*

with the boundary condition u on K and with the zero boundary condition on L.
For f e 4(K), { € K denote

(2.25) W10 = w@(Q).f)
then the equation (2.24) can be written in the form
(2.26) (I—-dW—-W)f=—uw,

where I stands for the identity operator on %(K). Finally, for f e ¢(K), { € K we
denote

(2.27) HfQ) = (W—-W)f(Q) = WfQ) — W(g(Q).f)-

Since W: 4(K) —» ¢(K), W: 4(K) —» 4(K) are linear operators on %(K) then also H
is a linear operator acting on %(K). Now the equation (2.24) (that is, the equation
(2.26)) can be written in the form

(2.28) (I— H)f=—w.

Investigating the equation (2.28) we shall first determine the Fredholm radius
of the operator H and then study the question of unicity of the solution of the homo-
geneous equation

(2.29) (I-H)f=0.

In this connection we shall make use of some results from [12].
However, let us show now the following auxiliary assertion.

2.2. Lemma. Suppose that var [y; {a, b)] < co. Then the operator W: 4(K) —
— G(K) (W: f — Wf) is compact.
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Proof. Let B = {fe 4(K); |f| < 1}. It suffices to show that W(B) is a set of
equicontinuous and uniformly bounded functions on K.
By [11], Lemma 9.2,

var [9,; <a, b)] < (dist (z, K))~*! var [y; <a, b)]

for z ¢ K, where for A = R? the term dist (z, 4) stands for the distance of z and 4,
that is

dist (z, A) = inf {|z — z,|; z, € 4} ;
similarly we put for A, C = R?
dist (4, C) = inf{|z; — z3|; z, € 4, z,€C} .
Since g(c) € Ext Lfor { € K, we have for such {
dist (§(¢), K) = dist (K, L) = ¢ > 0.
Now it is seen that for { € K, f € 4(K)

1WA = [W@©).1)] = \1 j OO

T

= i |71 var [95¢; <a, b] < L If]l e=* var [¥; <a, b)],

7t

which implies that W(B) is a set of uniformly bounded functions.
By [11], Lemma 9.2

(2.30) var [9,, — 9,5 <a,b)] <
< |2y — z| (dist (z4, K))~* (dist (z5, K)) ~* var [; <a, b)]
for any z,, z, € R? — K. If we put
00 = dist (K, §(K))
then surely ¢, > 0 and it follows from (2.30) that for {;, {, e K
(231)  var [85¢) = 953 <a, b>] = [d(L1) — G(82)] 05 var [; <a, b)] .
From (2.31) ti follows that for fe B, {;,{, €K

|WF(C) = W) = [W@(Lw).f) — W(@(). /)| =

= I% ( b)f(‘ﬁ(t)) d93¢c,(2) —i ( b)f (W(1) d95¢c,(1)| =
-1 j SO0 daalt) = Ipea®)] S
T1J<a,b)

1
= - 171 var [S5¢ — 5¢nys <as BY] <

Q|-

lg(C1) _'g(fz)l Q(-)_z var [lﬁ, {a, b)] .
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Since g is continuous on K it is seen now that W(B)is a set of equicontiriuous functions.

2.3. Notation. Let A" stand for the set of all compact (linear) operators acting
on %(K). Given a linear continuous operator A: 4(K) - %(K), denote

=inf |4 — D|.
Dex”
Note that wA is the reciprocal value of the Fredholm radius of A.

2.4. Lemma.

of =1 tim sup v¥(¢) = = llm sup (@) + |4(2)) -

T r—>0+ feK
Proof. As H = W — Wand Wis compact, we have
wH = oW.
Now it suffices to note that by [12], Theorem 12.47 (see also [10])

oW =L tim sup () = L 1.m sup W40 + |4(0) -

TTr-0+ feK

2.5. Lemma. Suppose that the condition (2.11) is fulfilled and Ietfe %(K) be
such that (I — «H) f is constant on K. Then (I — ¢H)f = 0 on K and W(z, f) = 0
for every z € E (= ExtK).

Proof. For { € K we have (see (2.23))

—I — H)f(Q) = H*f(() = W, f) — W(3(0), f) =
= lim W(z, /) - W(30).1)-

The function W(+, f) is harmonic on E,
lim W(z,f)=0

]z|*+
and W(-, f) has a continuous extension from E to E (the values of this extension
on K are of course equal, to the values of W*(-, f)).
First, let us observe that Hf = ¢ cannot hold on K with ¢ constant, ¢ + 0. Suppose
that Hf = ¢, ¢ % 0. One can take ¢ = 1 (it suffices to multiply f by a suitable
constant). Then for { € K we have

we(L, ) — w(g(0),f) = 1.

Since W(+, f) is continuous on K there is a {, € K such that

We(lo, f) = inf WL, f) .
. {eK F
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By the maximum principle for harmonic functions in R? (see for instance [12],
Lemma 14.3)

W(z, f) = We(o, f)
for any z € E. But

W(g(%o). f) = W(lo, f) = 1 < W¥(o., f)

by the above, which is a contradiction as g({,) € E.
Now let f € ¢(K) be such that (I — H) f = 0. There is a {; € K such that

W6 ) = sup WG 1) = sup W 1)
(the second equhlity follows from the maximum principle). By the assumption

0= Hef({,) = Wi, f) — W(G(2,).f),

that is |W(g(¢,), f)| = [W®(Cy, f)|- But this means that W(-, f) attains its extremal
value on E at a point from E (for g({,) € E) and by the sharp maximum principle
W(-,f) is constant on E. Since lim W(z, f) = 0, we have W(z, f) = 0 for every
zeE. 21>+

The following assertion is known (cf. [10] or [12], Lemma 12.55, for example).

2.6. Lemma. Suppose that the condition
(2.32) (wV_V=)l lim sup v¥(¢) < 1
T r=0+ feK

is fulfilled and let f € 4(K) be such that (I — W) f is constant on K. Then f is
constant on K.

2.7. Corollary. Suppose that the condition
(2.33) (wH =)1 lim supo¥({) < 1
T r>0+ LeK

is fulfilled. Then the space of all f € €(K) which are solutions of the homogeneous
equation (I — «H) f = 0 is just the space of all constant functions on K.

Proof. Let f € ¥(K) be such that (I — «H) f = 0. Then, by Lemma 2.5, W(z, f) = 0
for every z € E which implies (cf. (2.16)) that

—(I = W) £(0) = W2, f) = lig; W(z,f) =0

for each { € K. It follows immediately from Lemma 2.6 that f is constant on K.
Suppose now that f is constant on K, f = ¢. Then for z€ E

W) =2 s ast = j as.(i) = 0
n T J ¢aby

(a,b)
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since 9,(1) is a single-valued continuous branch of arg [¥(t) — z] on <(a, b), ¥ is
closed (simple) and z € Ext K. It follows that for { € K (note that g({) € E for { € K)

{1 = ) Q) = W) — W(E.f) = 0.

2.8. Some other notation. Let ¢’(K) stand for the space of all (real) signed Borel
measures on K, that is, measures on R? with supports contained in K (measures
from %'(K) are also called charges). For u e '(K) we denote by u*, u~, |u| respec-
tively the positive, the negative and the total variation of u. We have then p = u* —
—p7, |ul = p* + p7, and p*, pu7, |u| are non-negative measures. The norm on
%'(K) is defined by

lel = |u] (X).

%'(K) is then a Banach space — the dual space to ¥(K). Given z € R?, a function h,
is defined on R? by

(2.34) h(¢) = =In

1
T

1

lt~ 2|’
and h,(z) = + .
For pe %'(K) (generally for a signed measure u with a compact support in R?)
the logaritmic potential U, is defined by

(2.35) U,(2) = Lhz(ﬁ) du(?)

teR? -z,

for all such z € R? for which the integral on the right-hand side exists. Note that
in any case U, is defined on R* — K (if p € ¢'(K); generally on R* — spt u, where
spt u denotes the support of ;1) and is harmonic there.

For r = 1, 2 we denote by s, the r-dimensional Hausdorff measure on R2. #, is
supposed to be normalized in such a way that 3, coincides on R? with the outer
2-dimensional Lebesgue measure, while 2, coincides on lines R? with the outer
linear (1-dimensional) Lebesgue measure on those lines.

The space of all infinitely differentiable (real) functions with compact supports
in R? will be denoted by 2. The support of ¢ € 9 is denoted by spt ¢ and gol » Stands
for the restriction of ¢ to M = R2.

Let h be a harmonic function on G (recall that G = Int K) such that

J |grad h| do#; < o .
G

Then we define a functional (a distribution) Ngh on 9 by (see [12], def. 13.12;
cf. also [7]) '

{@, Ngh) =f gradgpgrad hds#,, ¢eP.
G
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Ngh may be considered as a generalized normal derivative of h on G = K (with
respect to G). If p € 4'(K) then

J‘ lerad U,| do#, < o
G

and thus NgU, is always defined. The following assertion is valid (see [12], Theorem
13.33; cf. also [7]).

2.9. Proposition. The distribution NgGU, can be represented by a charge v, € %’(K)
for each pe €'(K) (in the sense that

<(Pa NGUu> = I QdV“
K

for each ¢ € 9) if and only if

(2.36) sup o¥({) < o0.
feK

If the condition (2.36) is fulfilled then for each pe %'(K) the charge v, e ¢'(K)
is uniquely determined and

(237) I = (2 + Zsupo¥(0) [l

2.10. Remark. Suppose that the condition (2.36) is fulfilled. Then we can and
will identify the functional NgU, with the charge v,. NgU can be regarded as an
operator (linear operator) acting on %'(K):

NgU:p— NgU,, NgU:%'(K) - %'(K).

It follows from (2.37) that the operator NgU is bounded.
The following assertion (see [12], Theorem 13.36; cf. also [7], [10]) is important
for our purposes.

2.10. Proposition. Suppose that the condition (2.36) is fulfilled. Then the operators
NgU and (I — W) are adjoint to each other.

2.11. It will be useful in the fallowing to know also the operator adjoint to W.
First let us briefly recall another expression of the double layer potential Wand some
related notions.

Let ze R* — K and let fe 4(K) be such that there is a ¢/ € @ with z ¢ spt ¢7,
@’|x = f. The value of the double layer potential at z is then defined in [7] by

Wef(z) = J- grad ¢/ grad h, do#, .
G ,
It is also shown in [7] how to define the double layer potential for a general f € 4(K)
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provided (2.36) is fulfilled. Note that the definition of the cyclic variation in [7] is
slightly different from the definition given here (it uses the notion of the so-called
hits of a set) but the values of the cyclic variation in both definitions are equal to each
other (up to a multiplicative constant) — see [4], Theorem 3.3.

If M < R?is a Borel set then put

P(M) = supf divwds#,,
w o JM

where w = [w,, w,] ranges over all vector-valued functions with components
wy, Wy € 2 such that |w]|*> = wi + w3 < 1. P(M) is called the perimeter of M.
In the case M = G we have

P(G) = var [¢; <a, b)] = #,(K).
For the basic properties of sets with finite perimeter see [7]; more information can
be found in [2], [3], [5], [6].
The term n*(z) is used in the sequel to denote the exterior normal in Federer’s

sense of G at z € R? (for the definition of the normal in Federer’s sense see, for
example, also [7]). The following assertion is valid (divergence theorem):

Suppose that P(G) < . If w = [wy, w,]|, where wy, w, are continuously dif-
ferentiable function on some neighbourhood of G, then

J w() n%(0) do#4(0) = f div w(z) d#5(2).
K G

We shall use this assertion in the following situation. Let ¢ € 2 and let u be a func-
tion harmonic on some neighbourhood of G N spt ¢. Then clearly

div (¢ grad u) = grad ¢ grad u
(on R?) and the divergence theorem yields (if P(G) < )

(2.38) J grad ¢ grad u d#, = | () n*(¢) grad u({) do#,(0) .
G K

o

If z€ R?, p € 9, z ¢ spt ¢ then in particular

J' grad ¢ grad h, do#, = | ¢(¢) n*(0) grad, h,({) d#,(0)
G

J K

(grad; indicates that the gradient is taken with respect to the variable {). .
It is shown in [4], Part 3 that the the values of the double layer potential in both

definitions (the definition from [7] and the definition (2.4)) coincide up to the sign

which depends on the orientation of y (and up to a multiplicative constant). Precisely,

we obtain that for z € R? — K, f € 4(K) such that f = ¢'|, where ¢/ € 9, z ¢ spt ¢,

the following identity holds: '
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(2.39) W(z,f) = —LJ‘ grad ¢/ grad h, d#, =
G

-t f £(0) n*(¢) grad, 1,(0) do#4(0) .
K
Further, we denote
R =3(K).

It follows from the properties of g that K is a Jordan curve, K < Ext L. In what
follows it suffices to know that K is a compact set, dist (G, K) > 0.

Analogously to %’(K) we denote by ‘K'(K) the space of all signed Borel measures
on R. The following relation between ¢’(K) and %’(K) can be defined. Let u € '(K).
We assign to this measure a measure 4 € (g’(ﬁ) such that

(2.40) A(M) = p(g(M))
for any Borel set M <= R. Conversely, if A € ¢’(K) then we define p € ¢'(K) such that
for each Borel M = K we put

#(M) = p(g(M)).

Since § is one-to-one on K and the inverse mapping of § |x is equal to g7| g, it is easily
seen that the given correspondence is an isometric isomorphism of the spaces %'(K),
C'(R). We shall write p ~ fi. For f € 4(K), p € ¢'(K), e €¢'(K), u ~ A we then have

(2.41) j £(0) dule) = j 60) 400,

and similarly for f € ¢(K)
(242) [ 090 = [ et anto.

For fie %'(K) the (logaritt;mic) potentialxis, of course, defined by
(2.43) Uy2) = -[ h(0) dA(0)

for those z € R? for which the integral on the right-hand side exists. If pe % (K)
p =~ fi then it follows from (2.42) that

Uxz) = j (5(0) dn(0).

As h,({) = h(z) we can also write
(244 0,2) = [ haolz) (0

Taking into consideration that dist (G, K) > 0 we see that for each f e ¢'(R) the
potential U, has bounded partial derivatives on G and thus the generalized normal
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derivative NgU, is defined by

{@,NgUp) = J. gradogradU,do#,, ¢9e9.
G

If var [¥; <a, b)] < oo then (2.38) yields
(0, N> = f o(v) n(y) grad U(y) d#,(5), (0 e 2).

Since grad U, is bounded on K (for dist (K, K) > 0) we see that for each 2 € '(R)
the (linear) functional NgU, is bounded on 9, the support of NgU, is contained in K
and {f, NgU,) can be defined for any f € ¢(K) by

(2.45) fyNGUpy = f f(¥) n*(y) grad Up(y) do#y(y) -
K
Then, of course, NgU, can be considered as a charge on K (that is NgU, € €'(K))
and we can define an operator “N;U on ¢'(K) by
(2.46) ANGU: pt > NgUy ,
where pe¥'(K), pe%'(K), p~ p. We have "NgU:%'(K) - ¢'(K) and “NgU

is a bounded linear operator. Indeed,

sup grad U,0)| 5 [ sup avad, 0] )] < 7 (st (6, )

yekK

and thus (as [u] = [A])
|*NgUk| = [NoUy| = sup {<f, NsUp; fe 4(K), || < 1

}
= sup {Lf (v) n*(y) grad Up(y) d#,(y); fe %(K), ||f] 1}

IIA
IIA

1,.. -
< - (dist (K, R))~* |lu| var [¥; <a, b)] .
Now we are in position to prove the following assertion.
2.12. Lemma. Suppose that var [y;<a, b)] < co. Then the operators W and
—t*NgzU are adjoint to each other.
Proof. We should show that for each f € 4(K), u € ¢'(K)
(2.47) , Wfy = Kf, —e*NgUp) .

For fe ¢(K), {eK we have Wf(¢) = w(G(0),f) by definition. Now let ¢ €2,
spto A R = 0, f = ¢|x. Then g({) ¢ spt ¢ for { e K and by (2.39),

Wr() = —lJ grad ¢ grad h, dof, .

G
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If further u e ¢'(K), e ¢'(K), p ~ fi then (see also (2.44))

{u, WY = —1 f J' grad o(x) grad, h(x) do#,(x) du(f) =
KJG

= —t j grad ¢(x) grad-[ hy(x) du(C) dof(x) =

K

= —LJ. grad o grad Updo#, = — i, NgUp) = — @, "NgUp) .
G

We have thus proved that (2.47) is valid for any p € %'(K) and every f € 4(K) of the
form f = ¢|x, where ¢ € 2, spt ¢ N K = 0. Now let u € €'(K) be fixed and f € ¥(K)
arbitrary. Then there are ¢,e2 (n=1,2,...) such that sptg,nK =0 and
Ja = @4|x = f uniformly on K. As grad U, is bounded on K we obtain from (2.45)
that

(2.48) lim <f,, NgUpy = {f, NgUp> .

n—>+ o

For { € K we further have

710 = 01 = 19607 =) = |2 (= £) 00) 49560

{a,b)
1
s - If = fall ©*(@(2)) -

Since var [y; <a, b)] < oo (and dist (K, K) > 0) then surely

sup v¥(z) <
zeR

from which it is seen that

(2.49) lim {u, Wf,». = {u, WF) .

n—+ oo

Consequently,
<#,Wf9 = Qﬁ,—ﬁANbUP> = —L<A,Nbuﬁ>

and now it follows immediately from (2.48), (2.49) that (2.47) holds for each f € ¢(K)
(and each p e ¥'(K)).
By (2.27) we have

(I-H)= (I‘— (W — W) =(I — W)+ .

The following assertion follows immediately from Proposition 2.10 and Lemma 2.12
(note that (2.36) implies var [y; <a, b)] < oo; see for example [7]).

2.13. Theorem. Suppose that the condition (2.36) is fulfilled. Then the operators
(I — ¢H) and (NgU — *NgU) are adjoint to each other.

2.14. Remark. If g€ 9, pe ¢'(K), e €' (R), u ~ fi then
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(2.50) ¢,(NgU — "NgU) ) = {9, NgU,> — {9, "NeUp) =
= <(P, NGUu> - <(P, NGU[)> = <(P, NG(U/t - Uﬁ)> .

The functional (NGU — “NgU) ut can be thus considered as a generalized normal
derivative (with respect to G) of the difference of the potentials U, and U,.

2.15. From now on we shall suppose that Lwith the parametrization @ is positively
oriented. In the same way as we have defined the double layer potential W(-, f)
for the curve K and f e 4(K) we can define the double layer potential for the curve L
and fe é(L) which will be denoted by W(-,f). Recall once more that we have
denoted S* = Ext K n Int L. Since L is “sufficiently smooth™ we have for each
fed(L), LeL

WL f(C) = linz Wiz, f) = Wi, f) + f(O)
zeS+

W) = lin’; Wiz, f) = WL(C,f) - f(C) .
zeExtL

For fe 4(L), ze S* denote

(2.51) H,f(z) = Wi(z,f) — W(3(2). 1) -
Since §(z) € Ext Lfor z€ S* and g({) = ¢ for { € L(and § is continuous) we have
for fe4(L), (e L
(2.52) lin; Hpf(z) = 2£(0).
zeS+

We are going to solve the Dirichlet problem on S*. Let uy € 4(K), u, € ¢(L).
The problem is to find a function h harmonic on S* and such that

(2.53) lim h(z) = ug(0)
z—{
zeS+t

for {eK and

(2.54) lim h(z) = uL({)
z={
zeS+

for { € L. We shall look for the solution in the form

(2.55) h(z) = H fx(z) + Hp fi(z) + a h,(2),

where fi € 4(K), f € 6(L), a € R* is a constant, z, € G is fixed.
It follows from (2.22), (2.52) that

(256) lim h(z) = 2 f({) + a h.y(0)

z={

zeS+
for { € L. Thus (2.54) is fulfilled if and only if for { € L we have
(2-57) fL(C) = ‘}(“L(C) —a hZo(C)) .
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In this way fr can be found. However, we still do not know the constant a and the
function fx.
From now on we shall always suppose that

(2.58) (wH =)1 lim sup v¥({) < 1;
Tr=0+ {eK

recall that wH is the reciprocal value of the Fredholm radius of H (cf. Lemma 2.4)
and that under the condition (2.58) all the solutions of the homogeneous equation
(I — «H) f = 0 are just all the constant functions on K (Corollary 2.7), in particular
the null-space of (I — ¢H) is of dimension one. If (2.58) is fulfilled then also the null-
space of the adjoint operator to (I — «H) (which is equal to (NgU — *NgU)) is of
dimension one and Fredholm’s alternative is valid (see for example [14], or also [12],
appendix IV). Thus the following assertion holds.

2.16. Theorem. Suppose that the condition (2.58) is fulfilled and let p, € ¢'(K)
be a non-trivial solution of the homogeneous equation

(2.59) (NgU — "NU) pp = 0.

If u € 4(K) then the equation

(2.60) (I—-H)f=u

has a solution f ¢ €(K) if and only if

(2.61) : Lo, Uy = J udu, =0.
K

If the condition (2.61) is fulfilled then the solution of (2.60) is determined uniquely
up to an additive constant.

2.17. In what follows let u, be a non-trivial solution of (2.59). It is seen from
(2.23), (2.25) (with regard to the fact that the equations (2.24), (2.28) are equivalent
to each other) that the function h of the form (2.55) satisfies (2.53) if and only if

“K(C) = “‘(I - ‘H)fx(g) + HLfL(C) +a hzo(C)
for { € K, that is, fx is a solution, of the equation
(2.62) (1 - lﬁ)fK = —t(u,( - HLfL'K - ahnlx) .

However, in accordance with Theorem 2.16 the equation (2.62) admits a solution
if and only if

<#0’ Ug — HLfL - ahzo> =0.

Since fy is of the form (2.57) the last condition can be written in the form
(2'63) a<#0! %HLhzo - hzo> = <l‘l0) 1lFI:ILuL - uK>
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which determines the constant a provided

(264) <ﬂ0a '}HLhZU - hzo> * 0.

2.18. Lemma. Let p, € '(K) be a non-trivial solution of the homogeneous equa-
tion (2.59) and let zy € G. Then (2.64) is valid.
Proof. Suppose that
<.u0a %HLhzo - hzg) =0.
Then the equation
(1 = ) f = (b, — bl
has a solution in ¥(K) owing to Theorem 2.16. Let f be a solution of that equation.

Then Hf is harmonic on S* and for { € L we have

lim H f(z) = 0
z—{
zeS+

and at the same time

lim H f(2) = =3HL h(0) + h.(0)

zeS+t
for { e K. Since we have
lim (%HL hZo(z) - hm(z)) = hm(c) - hm(c) =0
z={
zeS+

for { € Lit is seen that the function
%HLhzo - hzo + Hf

has zero limits on 6S* = K u L(with respect to S*), that is, this function vanishes
on S* (being harmonic there) and thus

(265) he) = $H, huo(2) + H1(2)
for zeS™.
For z ¢ K denote
Fy(z) = lf JO 4
)yl —z
Then by (2.5) (for z ¢ K)
W(z,f) = Im F,(z2).
Further, we have
W(g(2):f) = Im F((3(z)) = —Im F,(3(z))
and thus

H f(z) = W(z,f) = W(3(2), /) = Im (F,(2) + F,(3(2)))
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for ze S*. For z ¢ Ldenote
1 h
Fz(z) R _2_0(_{)dc .
n)el —2
Similarly we obtain for zeS*
Hy h,(z) = Im (F(2) + F3(§(2))) .
Now it follows from (2.65) that for ze S*,

1 1
~In
n |z =z

= h.(2) = Im [Fy(2) + F,(3(2)) + 3(Fa(z) + Fa(3(2)))] -

F, F, are holomorphic on S* and also F,((z)), F2(g(z)) are holomorphic there,
that is, h,, is on S* the imaginary part of a holomorphic function. But z, € G,
which is a contradiction.

Now the following assertion can be established.

2.19. Theorem. Suppose that the condition (2.58) is fulfilled, let pu, be a non-
trivial solution of (2.59) and let z, € G. Then for each boundary conditions
ug € 4(K), u, € 4(L) there exist a € R*, f € 4(K), fr. € (L) such that the function h
of the form (2.55) is the solution of the Dirichlet problem on S* with the boundary
conditions ug, uy (that is, the conditions (2.53), (2.54) are fulfilled). The constant a is
then determined by (2.63), fy is of the form (2.57) and fx is a solution of (2.62);
fx is determined uniquely up to an additive constant.

2.20. The erm h,, plays a role in the solution of the form (2.55). It was just this
form of the solution that J. M. Sloss employed in [16] (see also [17]). In order to
make the best of the advantages of the reflection function it seems natural to replace
h,, by the function ’

(2.66) 0(z) = hu(2) = heo(9(2))

and find the solution of the Dirichlet problem in the form
(2.67) h(z) = H fi(z) + HLf(2) + av(z).

This form of the solution is in a sense more elegant since v({) = 0 for { € Land we
can thus take simply f; = 3u;. The constant a has to be chosen in such a way that
the equation

(2.68) (I - "H)fK = ‘—l,(uK - %HLuLlK - aU|K)
admits a solution, that is (Theorem 2.16), a is detemined by the condition
(2.69) alfig, v = {po, ux — ¥Hpup) .

Here it is necessary, of course, to know that {to, v> # 0.
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2.21. Lemma. Let p, € 4'(K) be a non-trivial solution of (2.59), z, € G and let v
be defined by (2.66). Then

(2.70) oy 0) * 0.

Proof. Suppose that {u,, v) = 0. Then in accordance with Theorem 2.16 there
is an f e ¥(K) such that

(I - ‘H_)f = vIK = (hzo - hzo * g)lK )
that is, for { e K we have

He f(£) = —h.o(0) + ho,(4(0) -
It means that the function

Hf+hzo_h20*g

(which is harmonic on S*) has zero limit on 8S* = K u L(with respect to S*) and,
consequently, vanishes on S*. Since this function is harmonic even on S = S* U
u Lu S it vanishes there (S~ is defined by (2.20)). Thus

W(z,f) + ha(z) = W(3(2), f) + h.(3(2))
for ze S.
If we put

W(z) = W(z,f) + ha2)
for z € S the last equality can be written in the form
h(z) = h(3(2))
(z € S). If n stands for the normal to Lthen according to Remark 1.3

oh
n =0

for each { € L, that is
0 0
=W f)=——hy0).
on (C f) dn (C)

But this is impossible since W(-, f) is the imaginary part of a holomorphic function
and thus

J —‘7—W(-,f)d.;f1 =0,
L0

n
while

O h dw, £ 0
on
L

as z,€G.
Finally, we obtain the following assertion.
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2.22. Theorem. Suppose that the condition (2.58) is fulfilled, let p, be a non-
trivial solution of (2.59), let zo€ G and let v be the function defined by (2.66). -
Then for each boundary conditions uy € 6(K), u, € 4(L) there are acR' and
fx € €(K) such that the function h of the form

h(z) = H fy(z) + $Hpu; + av(2)

is the solution of the Dirichlet problem on S* with the boundary conditions ug, u;.
The constant a is then determined by (2.69) and fy is a solution of (2.68); fy is
determined uniquely up to an additive constant.
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Souhrn

REFLEXE A DIRICHLETOVA ULOHA
NA DVOJNASOBNE SOUVISLYCH OBLASTECH

Eva DoNTOVA

V ¢&larku je feSena Dirichletova uloha pro dvojndsobné souvislou rovinnou oblast omezenou

dvéma Jordanovymi kiivkami v pfipadé, Ze ,,vnéjsi‘‘ kiivka je analytickd a ma reflexni funkci

(vnitini kfivka mlZe byt nehladkd). V tomto pripadé lze pFislu§nou soustavu dvou integralnich
rovnic redukovat na jednu integrdlni rovnici uvaZovanou na ,,vnitini‘* kivce.

Pe3zrome

PE®JIEKCUS U 3AOAYA JUPUXIJIE U1 ABYCBSI3HBIX OBJIACTEM

EvA DoONTOVA

B crartbe pemaercs 3anada Jupuxiie Ons ABYCBA3HOW 00JIaCTM OrpaHMYeHHOM JBYMSI KPMBBIMH
XopnaHa, U3 KOTOpBIX ,,BHEIIHSA KPMBAas aHANMTHYECKass U o6nanaetT pediekcHoit byHKumei
(,,BHyTpeHHas'* xpuBasi, BOoOIe rOBOPsl, He rjlagkas). B 3TOM ciyyae COOTBE1CTBYIOYIIA S cucTema
HHTEerpajbHbIX YPaBHEHMI{ IPEeBPaNIaeTCA B OHO MHTEIPaJIbHOE ypaBHEHHE Ha BHYTPEHHEH KPHBOIi.
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