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Summary. Commutative separative semigroups whose lattice of congruences is a sublattice
of the lattice of tolerances are described.
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A tolerance on a semigroup S is a reflexive and symmetric subsemigroup of the
direct product S x S. The set 7(S) of all tolerances on S forms a complete lattice
with respect to set inclusion (see [1] and [2]). By %(S) we denote the complete
lattice of all congruences on S. Clearly %(S) is a complete upper subsemilattice of
7 (S), but it need not be a lower subsemilattice of 77(S). The aim of this paper con-
sists in a characterization of a commutative separative semigroup S whose congruence
lattice #(S) is a sublattice of 7(S).

Let S be a commutative semigroup. For all a, b, z € S we shall use the following
notation: (a, b) z = (az, bz). Let @ + A = S x S. By T(A4) (C(4)) we denote the
least tolerance (congruence, respectively) on S containing A. The symbol S* stands
for S if S has an identity, otherwise it stands for S with an identity adjoined. The
following two lemmas are easy to verify.

Lemma 1. Let S be a commutative semigroup. For x,y€ S, x + y, we have
(x,y)e T(4) if and only if x = x;X,...x,z and y = y1y, ... y,z where z e S*
and either (x;, y;)e A or (y;,x)ed (i=1,2,...,n).

Lemma 2. Let S be a commutative semigroup and a,be S, a + b. For x,y € S,
X # y, we have:

1. (x, y) € T(a, b) if and only if there exist ze S* and a positive integer m
such that either (x, y) = (a™, b™) z or (x, y) = (b™, a™) z;

2. (x, y) € C(a, b) if and only if there exist Xq, Xy, ..., X, € S such that x = x,,
y = x, and for i = 1,2, ...,n we have x;_, % x; and either (x;_, x;) = (a, b) z,
or (x;—y, x;) = (b, a) z, for some z;€ S'. '
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By v and A we denote the join and meet, respectively, in the lattice 77(S). Clearly
we have A v B=T(Au B) and A A B= 4 B for all 4, Be J(S).

Recall that every commutative regular semigroup S is a semilattice of commutative
groups. Terminology and notation not defined here may be found in [3]. The set of
all idempotents of S is denoted by E(S) and is partially ordered by: e < fif ef = e.
We write e < f for e < fand e # f. By e | f we denote the fact that idempotents e, f
are incomparable. For any integer k, by x* we denote the k-th power of an element x
of S in the maximal subgroup G, containing an idempotent e = x°. It is known that
for all x, ye S we have

) (x»)° = x%°.

A commutative semigroup S is said to be separative if a> = ab = b* implya = b
for a,beS.

Theorem 1. Let S be a commutative separative semigroup. If the lattice T (S)
is modular (distributive), then the lattice €(S) is modular (distributive).

Proof. Suppose that the lattice 7(S) of a commutative separative semigroup S
is modular. It follows from Theorem 3 of [4] that S is regular. Theorem 1 of [4]
{condition (M1)) implies that S has the following property: If e, f are two idem-
potents of S such that e ” [, then at least one of them is maximal with respect to the
order in E(S). Therefore E(S) is a tree. Let a, be S with a® < b°. According to
Theorem 1 of [4] (condition (M2)), we have a®b = a® and so ab = aa®bh = aa® = a.
Then Theorem 3 of [5] implies that the lattice %(S) is modular.

Assume that the lattice (S) is distributive. It follows from Theorem 2 of [4]
(condition (D1)) that every maximal subgroup G, of S is locally cyclic. According
to Ore’s theorem (see [6]), the lattice %(G,) is distributive for every e € E(S). Con-
sequently, Theorem 3 of [5] implies that the lattice %(S) is distributive.

Note 1. According to Theorem 1, it seems that €(S) is a sublattice of 7(S),

Fig. 2
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whenever S is a commutative separative semigroup. But this need not be true. Consi-
der for example the semigroup P = {e, f, 0} given by the multiplicative table

e
e e
f 0
0 0

o O™

0
0
0
0
Put O = idp, E = {(¢,0),(0,e)} U 0, F = {(f,0),(0,f)) O and I = P x P. Tt

is easy to show that 7 (P) (4(P)) is as in Fig. 1 (in Fig. 2, respectively).
Clearly €(P) is no sublattice of 7(P).

Theorem 2. Let S be a commutative separative semigroup. Then the following
conditions are equivalent:

1. 4(S) is a complete sublattice of T (S).

2. 4(S) is a sublattice of T (S).

3. S is either a group or a group with zero.

Proof. 1= 2. Clear.

2 = 3. Suppose that S is a commutative separative semigroup and %(S) is a sub-
lattice of the lattice 7(S).

I. First we shall show that S is regular. By way of contradiction, assume that
there is an element a of S, which is not regular. Since S is separative, the element a
is aperiodic. Let 4 = C(a, a®) v C(a%, a*) in J(S). By hypothesis, we have A€
€ %(S). It is clear that (a, a®), (a®, a*), (a*, a*) € A and thus we obtain (a, a*) e 4 =
= T(C(a, a®) U C(a?, a*)). Since a ¢ a?S' by hypothesis, we have by Lemma 1
and Lemma 2, (a, a®) € C(a, a*). It follows from Lemma 2 that there exist xo, Xy, ...
...y X, € S such that x, = a, x, = a* and for i = 1,2, ..., n we have x;_, + x; and
either (x;-q, x;) = (a, a®) z; or (x;-4, x;) = (a*, a) z; for some z, e S".

We shall prove that
2) xa®) nada® + 0

fori=0,1,2,...,n, where {a%) stands for the subsemigroup of S generated by a?.

Evidently (2) is satisfied for i = 0, because x, = a.

Suppose that (2) is satisfied for i € {0, 1, 2, ..., n — 1}. It means that x,a*/ = a?**!
for some positive integers j and k. 'We have (x;, X;41) = (a, @) z;41 o1 (x5, X;44) =
= (a® a) z;41, where z;, 1 € S*. If x; = az;,; and x;4, = @z, 4, then x;,, = a’x;
and so x;.,a% = a®*3 If x; = a3z;,, and x;,, = az;,, then x;,,a%*? =
= x;a* = a***1, Consequently, (2) is satisfied for i + 1.

For i = n we have x; = a? and so (2) implies that a®*¢a®) n a{a®) = 0. This
" means that a is a periodic element of S, which is a contradiction. Therefore the semi-
group S is regular. _

II. We shall prove that the semilattice E(S) is a chain. By way of contradiction,
assume that there exist idempotents e, f of S such that e || f. Let 4 = C(e, ef) v
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v C(ef, f)in 7 (S). By hypothesis, we have 4 € ¢(S) and so (e, f) € A = T(C(e, ef) U
U C(ef, f)). According to Lemma 1 and Lemma 2, we have (e, f) e C(e, ef) U
v C(ef, f). If (e, f) € C(e, ef), then by Lemma 2 we obtain feeS' and so f < e,
a contradiction. Then we have (e, f) € C(ef, f), which is analogously impossible.
Therefore, E(S) is a chain.

III. Now we shall prove that S is either simple or O-simple. By way of contradic-
tion, assume that I is a proper ideal of S with card I = 2. Choose ae S\I. If e =
= a%el, then a = ae eI, which is a contradiction. Thus e € S\ I. For any element x
of I we have x° = xx™* eI and so card E(I) = 1.

We shall show that

(3 f<e

for every fe E(I). If e £ f, then e = ef €I, a contradiction. According to part II of
the proof, we have (3).
Now we can distinguish two cases.

Case 1. card E(I) 2 2. Then we can choose two idempotents f, g €I such that
f>g.Let A = C(e,f) v C(f, g) in Z(S). By hypothesis, we have 4 € (S) and so
(9,¢)e A = T(C(e, f) v C(f, g9)). According to Lemma 1, Lemma 2 and (3), we
have (g, €) € C(e, f). Then it follows from Lemma 2 that there exist xo, Xy, ..., X, € S
such that x, = g, x, = ¢, and for i = 1,2,...,n we have x;_; % x; and either
(%i-15 x;) = (e, f) z; or (xi-1, x;) = (f, €) z; for some z; € S*.

We shall prove that
4) X =g
fori =0,1,2,..., n. Clearly, (4) is satisfied for i = 0.

.Suppose that (4) is satisfied for i€{0,1,2,...,n — 1}. We have (x;, X;41) =
= (e,f) zis1 Of (X1 Xi+1) = (f; €) z;+1. Assume that (x;, x;44) = (e, f) Z;+1. Then,
by (1), we have g = x{ = ez}, ;. According to part II of the proof and (3), we have
g =z> andso x{; = fz0,; = g. If (x;, x;+1) = (f, €) z;4 4, then it can be proved
in an analogous manner that x{,, = g.

Using (4) for i = n we have g = x{ = e, which is a contradiction.

Case 2. card E(I) = 1. Let E(I) = {f}. Since card I 2 2, we can choose an element
bofIsuchthat b° = fand b + f. Let A = C(e, f) v C(f, b) in 7(S). By hypothesis,
we have 4 € 4(S) and so (e, b) € A = T(C(e, f) u C(f, b)). Using Lemma 2 we can
easily show that C(f, b) € I x I U ids. Then, by Lemma 1 and (3), we have (e, b) €

€ C(e, f). According to Lemma 2, there exist xo, Xy, ..., X, € S such that x, =< e,
X, =b,and for i = 1,2,...,n we have x;_, % x; and ‘
) o (u-px)=(ef)z or

(xi—n xi) = (f, e) Z;

for some z; e S!.
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Now, we shall prove that-x; = ffor all odd i, where 1 < i £ n. First we shall show
that x, = f. According to (5), we have (xo, x;) = (e, f) z; or (xo, X;) = (f, €) z;.
If xo = fzy, then it follows from (1) that e = x3 = fz{ and so e £ f. This contradicts
(3). Thus we obtain (xo, x,) = (e, f) z; and so x; = fz, = fez; = fxo = fe = f.

Suppose that x; = f for some odd i < n — 2. If (x;, X;+1) = (&, f) Zi+1, then
x; = fx; = fez;y1 = fz;41 = X;4,, a contradiction. According to (5), we have

(©) (X0 Xi41) = (f’ e) Zisy -

If (Xi+1» Xi42) = (f, €) Z;42, then using (6) and (3) we have X;41 = fZi12 = fXi4q =
= fez;41 = fz;4+1 = X;, a contradiction. Therefore, by (5), we obtain

(xi+l9 xi+2) = (e,f) Ziy2 -
This, (6) and (3) imply that x,,, = fz;4, = fez;, = fXi+1 = fezis1 = fZisy =
=x;=f.

Since x, = b * f, we see that n is even, n = 2 and x,-; = f. According to (5)
we have either (x,-1, X,) = (&, f) 2, 01 (X,=1, X,) = (s €) 2 If (¥u-15 %) = (&, f) Zps
then by (3) we have f = fx,_, = fez, = fz, = x, = b, a contradiction. If
(xs-1, Xs) = (f, €) z,, then by (3) we have b = b’ = fb = fx, = fez, = fz, =
= x,-; = f, again a contradiction.

Consequently, S is either simple or O-simple.

IV. Itis well known that every commutative simple semigroup is a group. Clearly,
it can be easily proved that every commutative regular O-simple semigroup is a group
with zero. See [3].

3= 1. If S is a group, then it is known that %(S) = 7(S). Suppose that S is
a group with zero. To show that ‘g(S) is a complete sublattice of I (S) it suffices to
prove that %(S) is a complete lower subsemilattice of 7(S).

Let A;€%(S) (iel). Put A = V A; in Z(S). We shall prove that 4 € (S). Let

(a,b),(b,c)e A = T(UA;) where a+b#+c If b+0, then (a,c) = (a,b).

(7L 7Y (b, c)eA. Assume that b = 0. It follows from Lemma 1 that a =
= a,a,...a, and b = b,b, ... b,, where (a,, b) € A4, for i,el (k=1,2,..., m).
Since b = 0, there exists je{1,2,...,m} such that b; = 0. We have a; + 0 and
(a;, 0) € 4;,. Then (a, 0), (c,0) € 4;, and so (a,c)e A;, = A. Hence we have A€
€ %(S). Consequently, %(S) is a complete sublattice of 77(S).

Corollary 1. Let S be a commutative separative semigroup. If 4(S) is a sublattice
of T (S), then the lattices 4(S) and F(S) are modular.

Proof follows from Theorem 2 and Corollary 2 of [4].
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Souhrn

POZNAMKA KE SVAZU KONGRUENC{
NA KOMUTATIVNI SEPARATIVN{ POLOGRUPE

BepiicH PONDELICEK

Tolerance na pologrupé je reflexivni, symetrickd a kompatibilni relace. Svaz viech toleranci
[kongruenci] na pologrupé S ozna&ime Z (S) [€¢(S)]. V préci je dokdzdna tato véta:

Tyto vlastnosti komutativni separativni pologrupy S jsou ekvivalentni:

1. €(S) je uplny podsvaz svazu I (S).

2. €(S) je podsvaz svazu T (S).

3. S je grupa nebo grupa s nulou.

Pesome

\
3AMEYAHUE O CTPYKTYPE KOHIPYEHLIUI1 HA KOMMYTATUBHON
CEITAPATUBHOW ITOJIVIPVIIIE

BecRicH PONDELICEK

Jns TOro, YT00HI MOTYYHTH MOHATHE TOJCPAHTHOCTH HA MOKYrpynne, AOCTATOYHO B OIpenesie~
HUM KOHIPDYyCHLUHMH OIIyCTHUTBb YCIIOBHC TPAH3UTUBHOCTH. CTPYKTYpy BCEX TOJEPaHTHOCTEH [KOH-
rpyeHumii] Ha monyrpymme S o6osgayumM yepes J (S) [€(S)]. B craTee nokasbiBaeTCsA ClEAYIOMIAS
Teopema:

Ha xommymamusHoii cenapamugnoii noayzpynne 3K6UBAAEHMHbl CAedyloujue ceoiicmea:

1. €(S) — noanaa nodcmpykmypa cmpykmyper I (S).

2. €(S) — noocmpyxmypa cmpykmypot I (S).

3. S — zpynna uau 2pynna ¢ nyaem.

Author’s address: FEL CVUT, Suchbétarova 2, 166 27 Praha 6.

79




		webmaster@dml.cz
	2012-05-12T16:07:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




