
Časopis pro pěstování matematiky

Bedřich Pondělíček
Note on the congruence lattice of a commutative separative semigroup

Časopis pro pěstování matematiky, Vol. 113 (1988), No. 1, 74--79

Persistent URL: http://dml.cz/dmlcz/118334

Terms of use:
© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118334
http://project.dml.cz


113 (1988) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1, 74—79 

NOTE ON THE CONGRUENCE LATTICE 
OF A COMMUTATIVE SEPARATIVE SEMIGROUP 

BEDRICH PoNDELfcEK, Praha 
(Received December 5, 1985) 

Summary. Commutative separative semigroups whose lattice of congruences is a sublattice 
of the lattice of tolerances are described. 
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A tolerance on a semigroup S is a reflexive and symmetric subsemigroup of the 
direct product S x S. The set $~(S) of all tolerances on S forms a complete lattice 
with respect to set inclusion (see [1] and [2]). By ^(S) we denote the complete 
lattice of all congruences on S. Clearly ^(S) is a complete upper subsemilattice of 
3~(S), but it need not be a lower subsemilattice of 3~(S). The aim of this paper con­
sists in a characterization of a commutative separative semigroup S whose congruence 
lattice #(S) is a sublattice of £T(S). 

Let 5 be a commutative semigroup. For all a, b, z e S we shall use the following 
notation: (a, b) z = (az, bz). Let 0 * A s S x S. By T(A) (C(A)) we denote the 
least tolerance (congruence, respectively) on S containing A. The symbol S1 stands 
for S if S has an identity, otherwise it stands for S with an identity adjoined. The 
following two lemmas are easy to verify. 

Lemma 1. Let S be a commutative semigroup. For x, y e S, x #= y, we have 
(x, y) e T(A) if and only if x = x1x2 ... xnz and y = yty2 ... ynz where z e S1 

and either (xh yt) e A or (yh x) e A (i = 1, 2 , . . . , n). 

Lemma 2. Let S be a commutative semigroup and a,b e S, a 4= b. For x, y e S, 
x 4= y, we have: 

1. (x, y) e T(a, b) if and only if there exist zeS1 and a positive integer m 
such that either (x, y) = (am, bm) z or (x, y) = (bm, am) z; 

2. (x, y) e C(a, b) if and only if there exist x0, xl9..., xn e S such that x = x0, 
y = x„ and for i = 1, 2 , . . . , n we have xf_j 4= xt and either (x,--i, x) = (a, b) zt 

or (x f_ l5 Xj) = (b, a) z(for some zte S1. 
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By v and A we denote the join and meet, respectively, in the lattice $~(S). Clearly 
we have A v B = T(A u B) and A A B = A n B for all A, Be$~(S). 

Recall that every commutative regular semigroup S is a semilattice of commutative 
groups. Terminology and notation not defined here may be found in [3]. The set of 
all idempotents of S is denoted by E(S) and is partially ordered by: e ^ / i f ef = e. 
We write e < f for e ^ / and e =t= / . By e || / we denote the fact that idempotents e, f 
are incomparable. For any integer k, by xk we denote the fc-th power of an element x 
of S in the maximal subgroup Ge containing an idempotent e = x°. It is known that 
for all x j e S w e have 

(i) w x°y° 

A commutative semigroup Sis said to be separative if a2 

for a.beS. 
ab = b2 imply a = b 

Theorem 1. Let S be a commutative separative semigroup. If the lattice 3~(S) 
is modular (distributive), then the lattice ^(S) is modular (distributive). 

Proof. Suppose that the lattice F(S) of a commutative separative semigroup S 
is modular. It follows from Theorem 3 of [4] that S is regular. Theorem 1 of [4] 
(condition (Ml)) implies that S has the following property: If e,f are two idem­
potents of S such that e \\ f, then at least one of them is maximal with respect to the 
order in E(S). Therefore E(S) is a tree. Let a, be S with a0 < b°. According to 
Theorem 1 of [4] (condition (M2)), we have a°b = a0 and so ab = aa°b = aa° = a. 
Then Theorem 3 of [5] implies that the lattice ^(S) is modular. 

Assume that the lattice ^(S) is distributive. It follows from Theorem 2 of [4] 
(condition (Dl)) that every maximal subgroup Ge of S is locally cyclic. According 
to Ore's theorem (see [6]), the lattice %>(Ge) is distributive for every e e E(S). Con­
sequently, Theorem 3 of [5] implies that the lattice <tf(S) is distributive. 

N o t e 1. According to Theorem 1, it seems that ^(S) is a sublattice of $~(S), 

o-

F 

Fig. 1 Fig. 2 
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whenever 5 is a commutative separative semigroup. But this need not be true. Consi­
der for example the semigroup P = {e,f, 0} given by the multiplicative table 

e f 0 

e 

f 
0 

e 0 0 
0 / 0 
0 0 0 

Put O = idP, E = {(e, 0), (0, e)} u O, F = {(/, 0), (0,/)} u 0 and I = P x P. It 
is easy to show that 3~(P) (^(P)) is as in Fig. 1 (in Fig. 2, respectively). 
Clearly #(P) is no sublattice of ^"(P). 

Theorem 2. Let S be a commutative separative semigroup. Then the following 
conditions are equivalent: 

1. %(S) is a complete sublattice of £~(S). 
2. <#(S) is a sublattice of 3~(S). 
3. S is either a group or a group with zero. 

Proof. 1 =>2. Clear. 
2 => 3. Suppose that S is a commutative separative semigroup and C£(S) is a sub-

lattice of the lattice 3T(S). 
I. First we shall show that S is regular. By way of contradiction, assume that 

there is an element a of S, which is not regular. Since S is separative, the element a 
is aperiodic. Let A = C(a, a3) v C(a3, a4) in ^(S). By hypothesis, we have A e 
e %>(S). It is clear that (a, a3), (a3, a4), (a4, a2) e A and thus we obtain (a, a2)e A = 
= T(C(a, a3) u C(a3, a4)). Since a <£ a2Sl by hypothesis, we have by Lemma 1 
and Lemma 2, (a, a2) e C(q, a3). It follows from Lemma 2 that there exist x0, xl9... 
...,x„e S such that x0 = a, xn = a2 and for i = 1, 2 , . . . , n we have x^ 4= xt and 
either (xt-l9 xf) = (a, a3) zt or (xi-1, x,) = (a3, a) zt for some zt e S1. 

We shall prove that 

2) Xi(a2) n a<a2> * 0 

for i = 0, 1, 2 , . . . , n, where <a2> stands for the subsemigroup of 5 generated by a2. 
Evidently (2) is satisfied for i = 0, because x0 = a. 
Suppose that (2) is satisfied for i e {0, 1, 2 , . . . , n — 1}. It means that x^a2-1' = a2k+1 

for some positive integers j and k. We have (xh xi+1) = (a, a3) zi+1 or (xi9 xi+1) = 
= (a3, a) zi+1, where zi+1 e S1. If xt = azi+1 and xi+1 = a3zi+i, then xi+l = a2xt 

and so xi+1a
2j = a2k+3. If xt = a3zi+1 and xi+i = azi+1, then xi+ia

2j + 2 = 
= x{a

2i = a2fc+1. Consequently, (2) is satisfied for i + 1. 
For i = n we have xt = a2 and so (2) implies that a2<a2> n a<a2> =# 0. This 

means that a is aperiodic element of S, which is a contradiction. Therefore the semi­
group S is regular. 

II. We shall prove that the semilattice E(S) is a chain. By way of contradiction, 
assume that there exist idempotents e,f of S such that e \\f. Let A = C(e, ef) v 

76 



v C(ef, f) in 3~(S). By hypothesis, we have A e %(S) and so (e, f) e A = T(C(e, ef) u 
u C(ef,f)). According to Lemma 1 and Lemma 2, we have (e,f)eC(e,ef)u 
u C(ef,f). If (e,f) e C(e, ef), then by Lemma 2 we obtain fe eSl and so / ^ e, 
a contradiction. Then we have (e,f)eC(ef,f), which is analogously impossible. 
Therefore, E(S) is a chain. 

III. Now we shall prove that S is either simple or 0-simple. By way of contradic­
tion, assume that I is a proper ideal of S with card I = 2. Choose ae S\I. If e = 
= a0 el, then a = aeel, which is a contradiction. Thus ee S\I. For any element x 
of I we have x° = xx" 1 el and so card E(l) ^ 1. 

We shall show that 

(3) f<e 

for every fe E(I). If e = / , then e = ef el, a contradiction. According to part II of 
the proof, we have (3). 

Now we can distinguish two cases. 

Case 1. card E(l) = 2. Then we can choose two idempotents f, g el such that 
/ > g. Let A = C(e,f) v C(/, g) in $~(S). By hypothesis, we have A e <£(S) and so 
(g,e)eA = T(C (e , / )u C(f,g)). According to Lemma 1, Lemma 2 and (3), we 
have (g, e) e C(e,f). Then it follows from Lemma 2 that there exist x0, xl9 ...,xne S 
such that x0 = g, xn = e, and for i = 1, 2 , . . . , n we have *,-_! =f= xt- and either 
(xi_ l5 Xi) = (e , /) z, or (*;_!, Xf) = (/, e) Zi for some z£ e S1. 

We shall prove that 

(4) *? = g 

for i = 0, 1, 2 , . . . , n. Clearly, (4) is satisfied for i = 0. 
Suppose that (4) is satisfied for i e {0, 1, 2 , . . . , n — 1}. We have (xh xi+1) = 

= (e,f) zi+1 or (xh xi+1) = (/, e) zi+1. Assume that (xh xi+1) = (e,f) zi+1. Then, 
by (1), we have g = x° = ez°+1. According to part II of the proof and (3), we have 
g = z?+1 and so x?+ 1 = / z? + 1 = g. If (xi} xi + 1) = (/, e) zi+1, then it can be proved 
in an analogous manner that x?+ 1 = g. 

Using (4) for i = n we have g = x? = e, which is a contradiction. 

Case 2. card E(l) = 1. Let £(I) = {/}. Since card I = 2, we can choose an element 
b of/ such that b° = / a n d b * / . Let .4 = C(e,/) v C(f b) in «T(S). By hypothesis, 
we have A e ^(S) and so (e, b)e A = T(c(e,f) u C(f b)). Using Lemma 2 we can 
easily show that C(f b) = I x I u id5. Then, by Lemma 1 and (3), we have (e, b) e 
eC(e,f). According to Lemma 2, there exist x0, xl9..., xne S such that x0 = e, 
xn = b, and for i = 1, 2 , . . . , n we have x ^ + X| and 

(5) (^ - i ,Xi ) = (e , / )z i or 

( x ^ , Xf) = (fe)Zi 

for some z>x e Sl. 
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Now, we shall prove that x,. = ffor all odd i, where 1 = i = n. First we shall show 
that xx = f. According to (5), we have (x0, xt) = (c,f) zt or (x0, xx) = (f, e) zt. 
If x0 = fzi9 then it follows from (1) that e = x% = fz\ and so e <i f This contradicts 
(3). Thus we obtain (x0, x ^ = (c,f) zt and so xt = fzt = fezi = fx0 = fc = f. 

Suppose that xt = f for some odd i = n — 2. If (xf, x i + 1) = (e,f) zi+i, then 
x. = fxt = fezi+i = fzi+1 = x i + 1 , a contradiction. According to (5), we have 

(6) (xhxi+i) = (f,e)zi+l. 

If (x i + 1 , x i + 2 ) = (f, e) zi+2, then using (6) and (3) we have x i + 1 = fzi+2 = fxi+1 = 
= fezi+i = A / + i = xh a contradiction. Therefore, by (5), we obtain 

(xi+uXi+2) = (e,f)zi+2. 

This, (6) and (3) imply that x i + 2 = fzi+2 = fezi+2 =fxi+l = fezi+i =fzi+l = 

= *< = f 
Since xn = b 4= f, we see that n is even, n = 2 and x„-i = f According to (5) 

we have either (xn-u xn) = (e,f) %nox(xn-i, x„) = (f, e) zn. If (xn-x, xn) = (e,f) zn, 
then by (3) we have f = fx„_t = fezn = fzn = xn = b, a contradiction. If 
(x„-i, xn) = (f, e) zn, then by (3) we have b = b°b = fb = fxn = fczM = fz„ = 
= xn-t = f, again a contradiction. 

Consequently, S is either simple or 0-simple. 
IV. It is well known that every commutative simple semigroup is a group. Clearly, 

it can be easily proved that every commutative regular 0-simple semigroup is a group 
with zero. See [3]. 

3 => 1. If S is a group, then it is known that #(S) = F(S). Suppose that S is 
a group with zero. To show that #(S) is a complete sublattice of $~(S) it suffices to 
prove that %>(S) is a complete lower subsemilattice of &~(S). 

Let A, e <$(S) (iel). Put A = V At in F(S). We shall prove that A e %(S). Let 
16/ 

(a, b), (b, c)eA = T(\J At), where a 4= b 4= c. If b 4= 0, then (a, c) = (a, b) . 
iel 

.(b~i,b~i)(b,c)e A. Assume that b = 0. It follows from Lemma 1 that a = 
= axa2 ... am and b = blb2 . . . bm, where (afc, bk)e Aik for f fce/ (fc = 1, 2 , . . . , m). 
Since b = 0, there exists j e {1, 2 , . . . , m} such that 6y = 0. We have a; 4= 0 and 
(a,., 0) e Atj. Then (a, 0), (c, 0) e .Aiy and so (a, c) e Atj g A. Hence we have A e 
e ^(S). Consequently, %>(S) is a complete sublattice of 3~(S). 

Corollary 1. Lef S be a commutative separative semigroup. If%>(S) is a sublattice 
of F(S), then the lattices %(S) and 3T(S) are modular. 

Proof follows from Theorem 2 and Corollary 2 of [4]. 
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Souhrn 

POZNÁMKA KE SVAZU KONGRUENCÍ 
NA KOMUTATIVNÍ SEPARATIVNÍ POLOGRUPĚ 

BEDŘICH PONDĚLÍČEK 

Tolerance na pologrupě je reflexivní, symetrická a kompatibilní relace. Svaz všech tolerancí 
[kongruencí] na pologrupě S označíme «^(S) [^(S)]. V práci je dokázána tato věta: 

Tyto vlastnosti komutativní separativní pologrupy S Jsou ekvivalentní: 
1. (€(S)je úplný podsvaz svazu ^(S). 
2. <£(S) Je podsvaz svazu F(S). 
3. S Je grupa nebo grupa s nulou. 

Peзюмe 
ч 

ЗAMEЧAHИБ O CTPУKTУPE KOHГPУEHЦИЙ HA KOMMУTATИBHOЙ 
CEПAPATИBHOЙ ПOЛУГPУППE 

BEDŘICH PONDĚLÍČEК 

Для тoгo, чтoбы пoлyчить пoнятиe тoлepaнтнocти нa пoлyгpyппe, дocтaтoчнo в oпpeдeлe-
нии кoнгpyeнции oпycтить ycлoвиe тpaнзитивнocти. Cтpyктypy вcex тoлepaнтнocтeй [кoн-
гpyeнций]нa пoлyгpyппe S oбoзнaчим чepeз<^~(S) [ЩS)]. B cтaтьe дoкaзывaeтcя cлeдyющaя 
тeopeмa: 

Ha кoммymamuвнoй cenapamuвнoй noлyгpynne эквuвaлeнmны cлeòyющue cвoйcmвa: 
1. rć(S) — noлнaя noдcmpyкmypa cmpyкmypы 3~(S). 
2. #(S) — noдcmpyкmypa cmpyкmypы $~(S). 
3. S — гpynna uлu гpynna c нyлeм. 
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