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INTERCHANGEABILITY OF UNBOUNDED OPERATORS: 
SPECIAL CRITERIA OF TRANSMUTATIVITY 

MIROSLAV SOVA, Praha 

(Received August 25, 1985) 

Summary. In this paper, we continue the study of transmutativity of unbounded resolventive 
and scalar operators started in [1]. Thus the acquaintance with this paper is indispensable even if, 
for the sake of completeness, we repeat below the definitions of some basic notions. 

Our main aim is to give some criteria of transmutativity of special classes of the operators 
mentioned above, expressing them as far as possible most directly in terms of the given operators 
themselves. 
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L PRELIMINARIES 

1.1. We frequently use the notation, notions and results from [1] in the extent 
of Sections 1, 2, 4 and 5. 

1.2. For 4 e L + ( £ ) a n d M c E, we denote A(M) = {Ax: x e D(A) n M}. 

1.3. Let A e L+(E). The operator A is called a projector if A2 = A. 

1.4. Let A,BeL+(E). The operators A, B are called transmutative if ST = TS 

for every S, Te L(E) such that 

(I) SA c AS, 

(II) SG = GS for every G e L(E) with GA £l AG, 

(III) TB c BT, 

(IV) TH = HT for every H e L(E) with HB c BH. 

1.5. Let Ae L+(E) and zeC. The number z is called a resolvent point of the 

operator A if the operator zl -F A is one-to-one and (zl + A)'1 e L(E). 

1.6. Let A e L+(E). The operator A is called resolventive if there exists a number 

zeC which is a resolvent point of the operator A. 
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1.7. By B(C) we denote the set of all Borel subsets of C. Further, the set of all 
mappings of B(C) into L(E) will be denoted by B(C) -> L(£). 

1.8. Let Ae L+(E) and ^ G B ( C ) -> L(E). The function & is called a (spectral) 

resolution of the operator A if 

(I) the function $(•) x is a c-additive vector-valued measure on B(C) for every 
xe E, 

(II) S(X nY) = S(X) S(Y) for every X, Ye B(C), 
(III) t(C) = I, 
(IV) x e D(A) if and only if the integral Jc a S(da) x exists, 
(V) Ax = \Qo <f (dor) x for every x e D(A). 

1.9. Let A e L+(E). The operator is called scalar if there exists a function S e 
e B(C) -> L(E) which is a resolution of the operator A. 

2. RESOLVENTIVE OPERATORS AND THEIR TRANSMUTATIVITY 

2.1. Theorem. Let A, BE L+(E). If the operators A, B are densely defined re-
solventive, then the following statements (A) and (B) are equivalent: 

(A) there exists a dense subset D of cl D(A) n cl 0(B) such that for every d e D 
we can find an operator U E L(E) for which 

(l)dEK(U2), 
(II) R(U) £ D(A) n D(B), 

(III) UA c AU, UB c BU, 
(IV) AUBU = BUAU; 

(B) the operators A, B are transmutative. 

Proof. Let us first fix, according to the assumption (a), two numbers a, ft e C 
such that 

(1) a is a resolvent point of the operator A, 

(2) p is a resolvent point of the operator B. 

(A) => (B): We choose a fixed dense subset D of cl D(A) n cl D(B) such that 
the condition (A) holds. 

Since the operators A, B are densely defined by the assumption (P), we have 

(3) the set D is a dense subset of E. 

Let us now consider an arbitrary but fixed element d E D. For this d E D, let us 
fix a U E L(E) for which (A) (I)-(IV) hold. 

By (A) (III), we have 

(4) ABU2 2 AUBU, 
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(5) BAU2 3 BUAU. 

By (4) and (5), we can write 

(6) (a/ + A) (pi + B) U2 3 ctpU2 + ctBU2 + pAU2 + ABU2 3 ajSU2 + aBU2 + 
+ PAU2 + AUBU, 

(7) (PI + B) (ctl + A) U2 3 ctpU2 + ctBU2 + pAU2 + BAU2 3 a/?U2 + aBU2 + 
+ PAU2 + BUAU. 
Using now (A) (II), we see that the right hand sides of (6) and (7) are everywhere 

defined and hence 
(8) (ctl + A) (pi + B) U2 = ctpU2 + aBU2 + pAU2 + AUBU, 

(9) (pi + B) (ctl + A) U2 = aj8U2 + aBU2 + PAU2 + BUAU. 
By (A) (IV), (8) and (9) immediately imply 

(10) (ctl + A) (pi + B) U2 = (pi + B) (ctl + A) U2. 

On the other hand, from (A) (II) we easily obtain that 

(11) (ctl + A)U2 = aU2 + AU2 3 aU2 + U2A = U2(a/ + A), 

(12) (pi + B)U2 = PU2 + BU2 3 PU2 + U2B = U2(jM + B). 

It follows from (11) and (12) that 

(13) (ctl + A) (pi + B) U2 3 U2(ctl + A) (pi + B). 

Having the relations (10) and (13) at hand, we can continue as follows. 
First, it is clear from (1) and (2) that 

(14) R((a/ + A) (pi + B)) = E. 

We see from (A) (I) and (14) that 

(15) d e R(U2(a/ + A) (pi + B)). 

By (10), (13) and (15), we obtain 

(16) d e R((a/ + A) (pi + B) U2), 

(17) d e K((pl + B) (ctl + A) U2). 

Let us now denote 

(18) N = {x: U2x = 0). 

It is easy to see from (18) that there exists a unique operator 0 on EjN into E 
such that 

(19) Ox = U2x for every xeEjN and xeE such that xex. 

From (18) and (19) we immediately obtain that 

(20) the operator 0 is a one-to-one operator on EjN into E. 

It follows from (10), (16), (17) and (19) that 

(21) (ctl + A) (pi + B)0 = (pl + B) (ctl + A) 0, 
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(22) d 6 R(aI + A) (pi + B) <9), 

(23) d e R(pi + B) (aI + A) 0). 

By (1), (2) and (20)-(23), we obtain 

(24) 0~1(al + A)"1 (pi + B)"1 = 0~\pl + B)-1 (aI + A)"1, 

(25) de D(0~\al + A)"1 (pi + B)"1), 

(26) de D(6)"1(i9I + B)" 1 (aI + A)"1). 

Since de D was supposed aribtrary, we conclude from (24) — (26) that 

(27) (aI + A)"1 (pi + B)" 1 d = (pi + B)"1 (aI + A)'1 d for every d e D. 

It follows from (1), (2), (3) and (27) that 

(28) (aI + A)"1 (pi + B)'1 = (pi + B)-1 (aI + A)"1. 

By virtue of [1] 4.4, the desired implication (A) => (B) is an immediate conse­
quence of (28). 

(B) => (A): By virtue of [1] 4.4, we obtain from (B) and (l), (2) that 

(29) (aI + A)"1 (pi + B)" 1 = (pi + B)'1 (oil + A)"1. 

Let us denote 

(30) U = (aI + A)"1 (pi + B)-1. 

We begin with proving that 

(31) the set R(U) is a dense subset of E. 

Indeed, by (30), we have R(U) = R((aI + A)"1 (pi + B)" 1 = (aI + A)"1 (D(B)). 
Since the set D(B) is dense in E by the assumption (P), we obtain that R(U) is a dense 
subset of D(A). But by (p), the set D(A) itself is also dense in E and this gives (31). 

As an immediate consequence of (1), (2), (30) and (31) we have 
(32) the set R(U2) is a dense subset of E. 

Let us now put 

(33) D = R(U2). 

Let us write down the following evident consequences of (P), (32) and (33): 

(34) the set I) is a dense subset of cl D(A) n cl D(B), 

(35) d e R(U2) for every d e D. 

We obtain easily from (29) and (30) that 

(36) R(U) s D(A) n D(B). 

Let us now note two easy consequences of (l) and (2), namely 

(37) (aI + A)'1 A s A(aI + A)"1, A(aI + .4)"1 = I - a(aI + A)"1, 

(38) (PI + B)-1 B c B(pl + B)~\ B(pi + B)" 1 = I - p(pi + B)"1 . 

Now it follows from (29), (30), (37) and (38) that 
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(39) UA = (pi + B)~l (a/ + A)"1 A s (pi + fl)-1 A(a/ + A)'1 = 

= (PI + By1 (I - a(a/ + A)"1) = (/ - a(a/ + A)"1 (pi + B)'1 = 

= A(a/ + A)"1 (pi + B)-1 = AU, 

and by the similar pattern, 

(40) UB c BU. 

Finally, by (29), (30), (37) and (39), we obtain that 

(41) At/BU = A(a/ + ^l)"1 (fil + B) - 1 B(j5/ + B)" 1 (a/ + ^l)"1 = 

= (/ - a(a/ + A)"1) (pi + B)"1 (/ - p(pi + B)-1) (a/ + A)"1 = 

= (/ - )8(j8/ + B)-1) (a/ + A)"1 (/ - a(a/ + .A)"1) (pi + B)~x = 

= B(pi + B)"1 (a/ + A)"1 A(td + A)"1 (/?/ + B)-1 = BUAU. 

The implication (B) ==> (A) now follows from (1), (2), (30), (34), (35), (36), (39), 
(40) and (41). 

2.2. Proposition. Let A e L+(E). / / the operator A is resolventive, then it is closed. 

Proof. Immediately from [1] 4.1 and 4.2. 

2.3. Lemma. Let A e L+(F). Then 
(a) the set of all resolvent points of the operator A is open, 
(b) the function (zl + A)*1 is analytic on the set of resolvent points of the 

operator A. 

Proof. Well-known - cf. [2], Part I. 

2.4. Let A e L+(F). The operator A is called extensively resolventive if there exists 
an unbounded, connected subset of resolvent points of the operator A. 

2.5. Theorem. Let A, B e L+(F). / / the operators A, B are densely defined exten­
sively resolventive, then the following statement (A) implies the statement (B): 
(A) there exists a dense subset A of cl D(A) n cl D(B) such that 

(I) i c c l D(AB) n cl D(BA), 
(II) ABx = BAx for every x e A, 

(III) for every xe A, we can find a closed linear subspace F of E satisfying 
xeT, T c A, A(T) s F and B(r) S F; 

(B) the operators A, B are transmutative. 

Proof. By assumption, we have 

(1) cl D(A) = E, cl D(B) = E. 

Further, in view of 2.4, we can fix subsets XA £ C, XB «= C such that 
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(2) the sets XA, XB are unbounded connected, 

(3) all a e XA, P eXB are resolvent points of the operators A, B, respectively. 

By [1] 4.2 and 2.2, we get from (2) and (3) that 

(4) the operators A, B are closed. 

Now let us fix a dense subset A of cl D(A) n cl 0(B) such that the statement 

(A) holds. 

By (1), we have 

(5) the set A is a dense subset of E. 

Let us now consider an arbitrary but fixed xe A. 
By (A) (III) we can fix a closed linear subspace F of E such that (A) (ill) holds. 

Consequently, we have 

(6) xeT, 

(7) r S A, 
(8) A(r) s r, B(r) <= r. 

It follows from (A) (I), (II) and (7) that 

(9) r s D(A)J5 n D(BA), 

(10) ABy = BAy for every y e F. 

Let us now denote by Ar, Br the restrictions of the operators A, B to the sub-
space r. 

We see from (8) and (9) that 

(11) D(Ar) = D(pr) = r, R(Ar) s F, R(flr) s r. 

By the closed graph theorem, we obtain from (1) and (4) that 

( 1 2 ) A r , B r 6 L ( r ) . 

Moreover, by (10) and (11) we have 

(13) ArBr = BrAr. 

It follows from (12) that 

(14) the operators aI + Ar, pi + Br are one-to-one and (aI + -4r)_ 1 , (pi + £ r ) _ 1 e 
G L(F) for sufficiently large a, p e C. 

Moreover, we obtain from (13) that 

(15) (aI + Ar)"1 (PI + BrY1 = (£I + Br)~
l (aI + A^"1 for sufficiently large 

a, p e C. 

On the other hand, it is easy to see that (2), (3), (11) and (14) imply 

(16) (aI + A)"1 y = (aI + Ar)
_1 y, (pi + B)"1 y = (pi + B r ) _ 1 y for every y e F 

and for sufficiently large a e XA and /J e XB. 
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Now we get from (15) and (16) that 

(17) (aI + A)'1 (pi + B)'1 y = (pi + B)"1 (aI + A)"1 y for every y e F and for 
sufficiently large cceXA and P e XB. 

Since x e A was chosen fixed but arbitrary, we conclude from (6) and (17) that 

(18) (aI + A)-1 (pi + BY1 x = (pi + B)-1 (aI + .A)'1 x for every x e A and for 
sufficiently large a e XA and p e XB, possibly in dependence on x. 

By virtue of 2.3 it follows from (3) that 

(19) the functions (aI + .A) - 1 , (pi + B)'1 are analytic for OLEXA and jS eXB. 

By analytic continuation, we easily prove that (2), (18) and (19) give 

(20) (aI + .A)""1 (pi + B)" 1 x = (pi + B)"1 (aI + A)"1 x for every xeA and every 
OLEXA and P e XB. 

By (3), (5) and (20), we get 

(21) (aI + A)"1 (pi + BY1 = (pi + B)"1 (aI + A)"1 for every a e XA and p e XB. 

Using now [ l ] 4.4 with arbitrary o:eXA and jS 6 KB, we get the statement (B) 
immediately from (21). 

2.6. Examples . It is easy to see and well-known that every everywhere defined 
continuous operator is resolventive and even extensively resolventive. The same is 
true for generators of semigroups or cosine functions and for scalar operators with 
real spectra, especially for selfadjoint operators in Hilbert spaces. 

2.7. Remark. The condition (A) (III) in 2.5 cannot be replaced by a simpler 
one, namely 

(A) (IIP) A(A) c= A, B(A) c= A. 

This condition (A) (III') was shown to be insufficient by an example constructed 
by Nelson. Compare [3], VIII.5 — in particular p. 273. 

2.8. Remark. The statements (A) and (B) of 1.5 become equivalent for scalar 
extensively resolventive operators (especially for selfadjoint operators in Hilbert 
spaces) as shown in 3.8. 

3. SCALAR OPERATORS AND THEIR TRANSMUTATIVITY 

3.1. Proposition. Let A e L+(£). If the operator A is scalar, then it is closed and 
densely defined. 

Proof. See [2], XVIII. 
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3.2. Lemma. Let A9Pe L+(£) and £ e B(C) -> L(£). If 
(a) PA s .AP, 
(P) rhe operator P is a projector from L(£), 
(y) the function E is a resolution of the operator A, 
then the function EP is a resolution of the operator AP. 

Proof. Easy, by virtue of [1] 5.4(b). 

3.3. Lemma. Let A e L+(£) and £ e B(C) -• L(£). i / the function £ is a resolution 
of the operator A9 then K(£(X)) c D(A) for every bounded set X e B(C). 

Proof. Immediately from [1] 5.2. 

3.4. Lemma. Let £ e B(C) -> £. J/ there exists an operator A e L+(£) such that 
the function £ is a resolution of the operator A9 then 

(a) £(X) is a projector from 1(E) for every X e B(C), 

(b) £(Xt) £(X2) = £(X2) £(Xt) for every Xl9X2e B(C). 

Proof. Immediately from [1] 5.2. 

3.5. Lemma. Let £9 2F e B(C) -> £. If there exist operators A9Be L+(£) such that 
the functions £9 2F are resolutions of the operators A9 B9 then the set {£(X) fF(Y) X: 
x e £, X9 Ye B(C), the sets X, Y bounded} is dense in E. 

Proof. Immediately from [1] 5.2. 

3.6. Theorem. Let A9 B e L+(£). If the operators A9 B are scalar, then the fol­
lowing statements (A) and (B) are equivalent: 

(A) there exists a dense subset D of cl D(A) n cl D(P) such that for every de D 
we can find a projector P e L(£) for which 

( i ) d e R ( P ) , 
(II) R(P )czD (A )nD (5) , 

(III) PA s AP, PB c BP9 

(IV) APBP = BPAP; 

(B) the operators A, B are transmutative. 

Proof. By assumption, we can find two functions £A9 £B e B(C) -> L(£) such that 

(1) the function £A is a resolution of the operator A9 

(2) the function £B is a resolution of the operator B. 

(A) => (B): We first fix a dense subset D of cl D(A) n cl D(B) such that the con­
dition (A) holds. 
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Since the operators A9 B are densely defined by 3.1, we have 

(3) the set D is a dense subset of E. 

Let us now consider an arbitrary but fixed d e D. For this de D9 let us fix a projector 
PeL(E) for which (A) (I)-(IV) hold. 

By the closed graph theorem, we easily obtain from (A) (II), (ill) that 

(4) AP9 BP e 1(E). 

By 3.2, we obtain from (1), (2) and A(III) that 

(5) the functions &AP9 &BP are resolutions of the operators AP9 BP9 respectively. 

By [1] 2.8, we infer from (4) and (A) (IV) that 

(6) the operators AP9 BP are transmutative. 

By [1] 5.5, it follows from (5) and (6) that 

(7) SA(X) P £B(Y) P = SB(Y) P £A(X) P for every X, Ye B(C). 

By [1] 5.4(b), it is clear from (A) (ill) that 

(8) SA(X) P = P £A(X)9 SB(Y) P = P SB(Y) for every X, Ye B(C). 

Now it is immediate from (7) and (8) that 

(9) SA(X) £B(Y) P2 = SB(Y) SA(X) P2 for every X, Ye B(C). 

* Since the operator P is a projector, we see from (9) that 

(10) SA(X) SB(Y) P = £B(Y)£A(X) P for every X, Ye B(C). 

On the other hand, by (A) (I) we have 

(11) Pd = d. 

Recalling that de D was chosen fixed but arbitrary, we get from (10) and (11) 
that 

(12) SA(X) SB(Y) d = £B(Y) SA(X) d for every d e D and X, Ye B(C). 

By (3) and (12), we then have 

(13) SA(X) SB(Y) = SB(Y) £A(X) for every X9 Ye B(C). 

The desired implication (A) => (B) now follows from (l), (2) and (13) by virtue 
of [1] 5.5. 

(B) => (A): Since now the condition (B) is supposed to hold, we get from (l) 
and (2) by virtue of [1] 5.5 that 

(14) SA(X) SB(Y) = SB(Y) SA(X) for every X9 Ye B(C). 

On the other hand, we get from (1) and (2) by virtue of 3.4 that 

(15) £A(Xt)£A(X2) = ^(XJ^XJ, SB(YX)SB(Y2) = MY2)^B(Y1) for every 

Xl9X29 Yl9 Y2eB(C). 
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Let us denote 

{16) D = {SA(X) SB(Y) X.XBE, X, Ye B(C), X, Y bounded sets}. 

It is clear from (16) that for every de D we can fix sets X, Fsuch that 

(17) X, fe B(C), X, Abounded, 

(H)deK(SA(X)SB(f)). 

We obtain from (l), (2) and (17) by 3.3 that 

(19) WAX)) £ D(A), K(SB(f)) £ D(B). 

Further, from (1) and (2) by [1] 5.4 (a) we find that 

(20) SA(X) ASA SA(X), SB(Y) BzB SB(f). 

Finally, from (l), (2) and (14) by [1] 5.4(c) we conclude that 

(21) SB(Y) ASA SB(Y), SA(X) B £ B SA(X). 

Let us now put 

{22)P = SA{X)SB{Y). 

It follows from (14), (15) and (17) that 

(23) the operator P is a projector from L(£). 

Further, it is obvious from (18) and (22) that 

(24) d e R(P). 

By (19) and (22) we have 

(25) R(P) c: D(A) n D(B). 

By (20), (21) and (22), we have 

(26) PA c AP9 PB c BP. 

Since by 3.1, the operators A, B are closed, we get from (23) and (25) by virtue 
of the closed graph theorem that 

(27) AP, BP e L(£). 

On the other hand, it follows from (l), (2), (23) and (26) by virtue of 3.2 that 

(28) the functions SAP9 SBP are resolutions of the operators AP, BP respectively. 

Further, it follows from (1), (2), (14), (15) and (22) that 

(29) tA{X) P = P tA{X\ £B{Y) P = P SB{Y) for every X, Ye B(C). 

As an easy consequence of (14) and (29) we obtain 

(30) SA{X) P SB{Y) P = SB{Y) P £A{X) P for every X, Ye B(C). 

Using [1] 5.5, we get from (28) and (30) that 

(31) the operators AP, BP are transmutative. 

32 



However, by [1] 2.8 it follows from (27) and (31) that 

(32) APBP = BPAP. 

Since de D was arbitrary, we conclude from (23), (24), (25), (26) and (32) that 

(33) for every d e D there exists a projector P 6 L(F) for which the conditions 
(A) (I)-(IV) are fulfilled. 

On the other hand, we get from (l), (2) and (16) by 3.5 that 

(34) the set D is dense in E. 

In view of 3.1, it follows from (34) that 

(35) the set D is dense in cl D(A) n cl D(B). 

Now the proof of the implication (B) => (A) is in fact complete since the condition 

(A) follows from (33) and (35). 

3.7. Theorem. Let A, BeL+(E). If the operators, A, B are scalar, then the 
statement 2.5(B) implies the statement 2.5(A). 

Proof. By 3.6, we can find a dense subset D of cl D(A) n cl D(B) such that the 
condition 3.6(A) holds. 

Consequently, for every d e D we can fix a projector Pd e L(F) such that 

(1) d e K(Pd) for every d e D, 

(2) K(Pd) c D(A) n D(B) for every d e D, 

(3) PdA _= APd, PdB c BPd for every d e D, 

(4) APdBPd = BPdAPd for every d e D. 

Let us now define 

(5) A = n R(P,). 
deD 

It is clear from (l) and (5) that 

(6) D c A. 

Since cl D(A) n cl D(B) = E by 3.1, we obtain from (6) that 

(7) the set A is a dense subset of cl D(A) n cl D(B). 

It follows from (2) that 

(8) D(APd) = D(BPd) = E for every deD. 

Further, by (3) we have 

(9) ABPd => APdBPd, BAPd 2 BPdAPd for every deD. 

Now we obtain from (8) and (9) that 

(10) D(ABPd) = D(BAPd) = E for every deD, 
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(11) ABPd = APdBPd, BAPd = BPdAPd for every d e D. 

Hence (4) and (11) give 

(12) ABPd = BAPd for every d e D. 

From (5), (10) and (12) we see that 

(13) A s D(AB) n D(BA), 

(14) ABx = BAx for every x e A. 

Now we prove that 

(15) for every x e A, there exists a closed linear subspace F of E such that x e T . 
F = A, A(F) s F and 5(F) c F. 

To that aim, let us fix an x e A. 
By (5), we can find a fixed d e D such that 

(16)jceR(.P,). 

Let us now define 

(17) r = R(P„). 

It is clear from (17) that 

(18) the set F is a closed linear subspace of E. 

By (5), (16) and (17) we have 

(19) x e F, F c A. 

On the other hand, we see easily from (3) and (17) that 

(20) A(F) c F, >B(F) c r . 

Since x e A was arbitrary, the points (18), (19) and (20) prove (15). 

Summing up (7), (13), (14) and (15) we see that the desired property 2.5(A) is 

verified. 

3.8. Theorem. Let A, Be L+(F). If 
(a) the operators A, B are scalar, 
(P) the operators A, B are extensively resolventive, 
then the statements 2.5(A) and 2.5(B) are equivalent. 

Proof. (A) => (B): Immediately from (p) and 2.5. 
(B) => (A). Immediately from (a) and 3.7. 

3.9. Examples . Normal operators in Hilbert spaces are scalar. Selfadjoint 
operators in Hilbert spaces are scalar extensively resolventive. Scalar operators with 
real spectra are also extensively resolventive. 
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3.10. Remark. It is interesting that the conditions (A) in 2.1 and 3.6 are formally 
very analogous. 

3.11. Remark. The class of sclar extensively resolventive operators for which 
Theorem 3.8 holds may seem fairly restrictive but it is not so bad as shown in 3.9. 

3.12. Remark. In view of [1] 5.5, the equivalence of the statements 2.5(A) and 
2.5(B) following from Theorem 3.8 can be considered an answer to the demand of 
having a criterion of transmutativity directly in terms of the operators in question. 
Compare e.g. [3], VIII.5, p. 272. It is noteworthy that some simpler conditions than 
2.5(A), which seem reasonable at the first sight, are shown insufficient (cf. 2.7 and 2.8). 
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