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Summary. An axiomatic system of the thermodynamics of ideal gas is proposed. After for-
mulating several definitions and proving some fundamental theorems, adiabatic processes are
defined and studied. Then the consistency and independence of axioms is proved.
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1. INTRODUCTION

Thermodynamics is usually explained in a manner which is very unsatisfactory
for any mathematician. It is usually not clearly indicated which notions are primitive
and which are defined. Two different standpoints are mixed: a statistical standpoint
in which a system is considered as a set of particles, and a macroscopic standpoint
in which a system is given by means of state quantities. This mixture of the two stand-
points leads to inconsistent notions, as e.g. “an infinitely slowly running process”.
The proofs of theorems are often inexact and incomplete, sometimes heuristic
considerations are presented as proofs (some remarks to these problems see in [7]).
There are papers on thermodynamics — e.g. [1], [5], [6] — which are quite exact
from the mathematical point of view, but they are so general and abstract that the
application of the respective theories to simple particular cases is considerably
difficult.

In this paper we try to lay, in a mathematically exact way, the foundations of
thermodynamics of the ideal gas. We deduce the formula for the heat quantity con-
sumed by a process, define adiabatic processes and find formulae for them. In current
textbooks of thermodynamics these formulae are usually “deduced” from Gay-
Lussac’s and Boyle-Mariotte’s laws, but some further suppositions are implicitly
used (e.g. continuity). Moreover, the way of the deduction is not satisfactory from the
logical point of view. The papers which are satisfactory from the theoretical point
of view (as the above mentioned papers [1], [5], [6]) discuss the thermodynamics
of systems more generally and the case of the ideal gas is mentioned only as an




example; the formulae which we deduce are in these examples usually given as
definitions. The deduction of these formulae is therefore kept on the level of heuristic
considerations of the textbooks of classical thermodynamics. The result then is
that an ordinary mathematician accustomed to exact mathematical methods is not
able to read these papers.

We try to fill this gap. We introduce primitive notions, give axioms for them and
deduce theorems from axioms. At the end, we prove consistency of our system of
axioms and independence of the individual axioms on the other ones.

This paper is not intended for physicist (the less so for specialists in thermo-
dynamics); they would hardly find anything new in it. It is intended for mathe-
maticians who have only little knowledge of physics but who want to study some
papers about thermodynamics and are not able to penetrate the logical chaos in the
fundamental notions.

2. PRIMITIVE NOTIONS AND AXIOMS

If f is a mapping defined on a domain M and M, = M, we denote byf] M, the
partial mapping defined on M. If we have mappings

f:Ml—’Mz, g:MZ_'jM‘},
we denote by g - f the mapping defined by

(9 of)(x) = g(f(x)) forevery xeM,.

If J is a compact interval and f real function defined on an interval K > J, then
the total variation of f on J will be denoted by ¥}.

Our starting point will be the theory of real numbers. We denote by R the set of
all real numbers, by R* the set of all real positive numbers, by K the set of all real
compact non-degenerate intervals.

Put S = R* x R* x R*. Elements of the set S will be called states. We define
mappings V, p, T: S —» R* in the following way: given s = (a, a,, as) € S, then
V(s) = ay, p(s) = a,, T(s) = as. The numbers a,, a,, ay will be called the volume,
pressure and temperature of the state s.

If J e K, we define a process with the base J as a mapping n: J — S such that
Vom, pom, Tom are continuous functions with bounded variation. The set of all
processes with the base J will be denote by P;. We put P = |J P,.

JeK
We will discuss thermodynamics as an axiomatic theory described in a way which

was outlined by N. Bourbaki (see [2], § 1, n° 4). This method of description of a theory
was applied by G. Ludwig to physical theories (see [3], § 7.1).

We will discuss a theory whose structure (see [2], § 1, n°4 and [3], § 7.1) is given
by a principal base formed by a single term X, by an auxiliary base {R, R*, K, P, S},
by structural terms xo, o, W, Q which are characterized by the typification
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(T1) xo€X,

(T2) #OER+’
(T3) WeXxS,
(T4) QcXxPxR,

and by axioms Al, ..., A9, which we shall formulate below.

We will give an intuitive explication of these notions for readers who are not
familiar with Bourbaki’s method. We start from the theory of real numbers as
a basic theory. The terms of the auxiliary base, i.e. R, R*, K, P, S, are sets defined
in the basic theory, which we use to describe the primitive notions of our new theory.
The term X of the principal base is a primitive notion of our theory. Intuitively,
X is a set of some objects which we will call systems. The relation x € X will be read
“x is a system”. Further primitive notions are the structural terms x,, po, W, Q.
The typifications (Tl), ...,(T4) gives a characterisation of these primitive notions.
So, x, is an element of X (or, in other words, X, is a system), and p, is a real positive
number. The system x, will be called the scale system, the number u, will be called
the mass quantity of the scale system. W is a set of pairs (x, 5), where x is a system,
s is a state. Therefore, Wis a binary relation between X and S. If this relation is
fulfilled, i.e. if (x, s) € W, we shall say that s is a possible state of the system x.
Similarly, Q is a ternaty relation between X, P and R. If this relation is fulfilled, i.e.
if (x, T, q) € Q, we shall say that the process n of the system x consumes the heat
quantity q.

A process € P, is called a possible process of a system x, if (x, n()) € W for every
Teld.

We are now going to formulate the axioms Al, ..., A9.

Axiom Al. For any x € X there exists an s € S such that (x, s) € W.

Axiom A2. If xe X, s, €S, s,€S, (x,s;) € Wand

V(sy) P(sl) _ V(Sz) (sz)
& TG T(s:) ’

then (x, s;) € W.

Axiom A3. If 7 is a possible process of a system x, then there exists a g € R such
that (x, 7, g) € Q.

Axiom Ad. For any x€ X,, J € K, n € P;, where & is a possible process of x, and
for any ¢ € R* there exists a 6 e R* with the following property:
if o € P;, o being a possible process of x, if

(2.2) (x,m q)eQ, (x,0,7r)€Q,



(2.3) Vo S P Voxs Voo SV gns
and if

(24) V(x(@) — Ve@)] <8, |p(a(2) - plo@))] < &
for every 7 € J, then

(2.5) lg —r| <e.

Remark 2.1. The axiom A4 says that the heat quantity consumed by a process

depends continuously on the process. However, the continuity thus formulated has
further consequences (see theorems 3.1 and 3.2).

Axiom AS. If xe X, a < b < ¢ are real numbers, J = {a, b), K = (b, ¢),
L= JUK, 7rLEPL’ ny = T[LI‘]’ g = TcLlK’ qJ€R9 qKERy (xanJ’qJ)eQ’
(X, Tk, qK) € Q) then (x’ T, 4y + qK) € Q‘

Axiom A6. Let a < b be real numbers, J = <a, b), and let n€ P;, c € P, be
possible processes of a system x. Let the functions Vo7, Vo ¢ be constant on J.
Then (2.2) implies

(2.6) (o) = T(e(a))) = r(T(n(b)) — T(x(a))-

Axiom A7. Let a < b be real numbers, J = {a, b), and let me€ P;, o€ P, be
possible processes of a system x. Let the function po=®, po o be constant on J.
Then (2.2) implies (2.6).

Axiom A8. Let a < b be real numbers, J = <{a, b), and let = € P; be a possible
process of a system x. Let the function V o 7 be constant on J and let T(n(b)) >
> T(n(a)), (x, 7, 9) € Q. Then q > 0.

Axiom A9. Let a < b be real numbers, J = {a, b), and let 7€ P;, 0 € P, be
possible processes of a system x. Let V(n(t)) = V(a(7)), p(n(z)) < p(o()) for all
7€ J. Let the function Vo = Vo o be increasing on J. Let p(n(a)) = p(c(a)) and
let p(n(t)) < p(o(7)) for some t € J. Then (2.2) implies g < r.

Remark 2.2. The axiom A9 has the following heuristic justification: the heat
consumed by the process n of a 'system x is proportional to the work produced by
the system x during the process z. However, as the volume is an increasing function,
this work is positive, and, as the two processes w, ¢ have the same volume at each
moment, the system produces larger work by higher pressure.

Remark 2.3. The structural terms x,, 4, define a system of physical units. It is
not necessary to introduce these terms as primitive notions, but otherwise they
would appear as parameters in many theorems. It is therefore simpler, from the
formal viewpoint, to consider them as primitive notions. '
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3. SOME SIMPLE CONSEQUENCE OF AXIOMS AND DEFINITIONS

The axioms A3 and A4 imply

Theorem 3.1. If © is a possible process of a system x, then there exists one and
only one number q € R such that (x, n, q) € Q.
This number g will be denoted by g, ,.

Proof. I. The existence of the number g follows from the axiom A3.

1. Suppose (x, 7, 9) € Q, (x, 7, r) € Q. Let ¢ € R*. If we put = = ¢ in the axiom
A4, then (2.2), (2.3) and (2.4) are fulfilled for any 6 > 0. Therefore (2.5) also holds
As ¢ > 0 is arbitrary, we obtain q = r.

Theorem 3.2. Let x€ X, s, €S, s, €S, (x, s,) € W. Then (x, s,) € W if and only zf
(2.1) holds.

Proof. I If (2.1) holds, then (x, s,) € W by the axiom A2.
IL Let (x,s,) € W, (x,s;) € W. Put J = 1,2) and define processes ne P,

o€ P; by
Sl U (T)(p())>
v T T(s,)
N a:n—»(l,r, \W(P(LQ

V(n(z)) p(r(c)) _ V(s1) P(ss)  V(o(2)) P(a(x)) _ V(s2) (s)

T(n(x)) )~ T(o(x) T(s2)
for all 7 € J, the processes =, ¢ are, by the axiom A2, possible processes of the
system x. By Theorem 3.1, there exist uniquely determined numbers g, r such that
(2.2) holds. As Vot = Voo and pon = poo, (2.3) and (2.4) are also fulfilled
(for any & > 0). Let ¢ € R*. Then, by the axiom Ad, (2.5) is fulfilled and therefore
q = r. By the axiom A8 we have g > 0. But by the axiom A6 we have

4(T((2)) — T(o(1) = r(T(x(2)) - T(=(1))),

( 2 T(s,) T(SZ) ) — ( 2 T(sl) _ T(sl) )
V(s))p(s2)  V(s2) P(s2) V(s) p(ss)  V(s1) P(sy)
As g = r > 0, we conclude that (2.1) holds.

Theorem 3.2 implies

therefore

Theorem 3.3. If systems x,y have a possible state in common, then all their
possible states are common.



Theorem 3.4. For any system x there exists exactly one number u(x) satisfying
V(s) p(s) T(s0)
(1 ) = I T
) (Vo) P(s0) T(s) o
where
(3-2) (x,s)e W, (xo550)€W.

Proof. By (T1) and the axiom Al there exist states s, s satisfying (3.2), therefore
for any system x there is a number u(x) satisfying (3.1) and (3.2). By Theorem 3.2,
this number is independent of the choice of the states s, s, as far as they satisfy (3.2).

Definition. The number u(x) is called the mass quantity of the system x.
Theorem 3.5. The inequality u(x) > 0 holds for every system x. Moreover,
ﬂ(xo) = Ho-

Proof. The first assertion follows from (T2), (3.1) and from the definition of
a state; the second is a consequence of (3.1) and Theorem 3.2.
Theorem 3.2 and the axiom Al imply

Theorem 3.6. There exists a uniquely determined number R such that
o R = BV
T(So) #o

where s, is a possible state of the system Xo. Moreover, R > 0. .
The R > 0 follows from (T2) and the definition of a state. By substituting (3.3)
into (3.1), Theorem 3.4 yields

Theorem 3.7. If x€ X, s€ S, (x, s) € W, then

(3.4 ) = 5 YD,

4. SPECIFIC HEAT

For any J € K denote
P] . = {mne P;: nis a possible process of the system x, V o 7 is constant on J},
P}, = {n € P;: 7 is a possible process of the system x, p o 7 is constant on J}.

Theorem 4.1. Let x € X. Then there exists one and only one number &,(x) with
the following property: if a < b, J = {a, b), n € PY ,, then

9x.x = &(x) (T(x(b)) — T(n(a))) .



Proof. I. Let xe X, a < b, J = {a, b). Then there exists one and only one
number &(x) with the property: if = € P} ., then

(4.1) Qe = (%) (T(x(b)) — T(n(a))) -
Indeed, by the axiom Al, there exists a state s; = (V, p;, T) such that (x, s;) € W.

For te€J put v
o(t) = (Vi, f(2), Ty + T — a),

where
Ty +1—a
f)=p rtr=a
() =m T,
By the axiom A2, we have g € P} ,. Put
B = e

By Theorem 3.1, &/(x) is uniquely determined and, by the axiom A6, (4.1) holds
for any n e Py ,.
II. Let xe X, Je K, K e K. We will prove that

(4.2) : &y(x) = &y(x) .
III. Let J = <a, by, K = (b, ¢). Denote L = {a, c). Let again s, = (Vy, p;, T}),
(x, s,) € W. Define processes n, € P ., o, € P}, by
m(1) = (V1. £1(2), 94(7)) ,
O-L(T) = (Vl’f2(1)7 gZ(T)) )

where
T—a T
g:(t) = T, + , go(t) =T, +2 for telJ,
b—-a b—a
gi(t) =Ty T_l;, gz(t)=T1+2+T_ﬁfor reK,
— c—

_ D1 _ D
filx) = E g}(r) , fae) = E g,(t) for telL.
By I, we have
Qeny = (%) (91(c) — 91(“)) =3 c\l,‘(x)
Qs = E3(%) (92(c) = 92(a)) = 3 &(x)

therefore ¢, ., = q,,,. Put
= |J, ag=n|K, o;=0,|J, oxg=0,|K.
By the axiom AS and by I, we have
Qxne = Qxns + Demee = E(X) (91(0) — 94(a)) +

+ &y(x) (91(c) = 94(b)) = &y(x) +2&(x).,




Gaoe = Gusey + Qo = E(x) (0:(6) — 92(a)) +
+ 35) (02(6) — 9:(8)) = 28() + E(x).

&(x) + 285(x) = 2&(x) + &(x),

therefore

hence (4.2) holds. '
IV. Let J = {a, b), K = {c,d) with b < ¢. Denote L = (b, ¢). By I, we have

a(x) = alx), &lx) = &(x)
and therefore (4.2).
V. Let J = {a, b), K = {c, d) arbitrary. Choose A € R, B e R such that
max (b,d) < A < B
and denote L = {A, B). By 1V, we have
av(x) = &y(x), &(x) = &(x)
and therefore (4.2).

Similarly, the axioms Al, A2, AS, A7 and Theorem 3.1 imply

Theorem 4.2. Let x € X. Then there exists one and only one number &(x) with
the following property: if a < b, J = {a, b), ne P} ,, then

s = &(x) (T(n(b)) — T(n(a))) .
Definition. For x € X put
ey(x) = &(x)[u(x), c,(x) = &,(x)/u(x).
The number c,(x) is called the specific heat of the system x by constant volume,

the number cp(x) is called the specific heat of x by constant pressure.
This definition and Theorem 4.1 imply

Theorem 4.3. If xe X, a < b, J = {a, b), ne P ., then

9x.0 = cy(x) 1(x) (T(2()) — T((a))) -

Similarly, Theorem 4.2 implies

Theorem 4.4. If x€ X, a < b, J.= {a, b}, ne P} ,, then
Gex = (%) i(x) (T(x(b)) — T(n(a))) -
Theorem 4.5. We have cy(x) > O for every x € X.

Proof. By the axiom Al, there exists a possible state s, = (Vy, p;, T;) of the
system x. Put J = <0, 1>, choose a number T, > T, and define a process n € P, by

2(r) = Vi, f(z), Ty + «(T; — TY)),




where

f(x) = % (T, + (T, — Ty)).

n is a possible process of x by the axiom A2, therefore n € P} .. By Theorem 4.3
we have

dx,n = Cv(x) p(x) (Tz - Tx) g

But T, — Ty > 0, p(x) > 0 by Theorem 3.5 and g, , > 0 by the axiom A8, therefore
also ¢y(x) > 0.

5. HEAT CONSUMED BY A PROCESS

Theorem 5.1. Let J = {a, b) and let n € P, be a possible process of a system x.
Let (x, m, q) € Q. Then

60 0= 1ol [ o0 V) + o0 [ V() a8}

where [ denotes the Riemann-Stieltjes integral.")

Proof. I. Let us have a number ¢ > 0. By the axiom A4, there exists a § € R*
with the following property: if o € P, is a possible process of x, if (2.2) and (2.3)
hold and if (2.4) is true for all t € J, then

(5.2) ‘ lg —r| < %e.

We choose such a J, so small that

(5.3)

(ey(x) > 0 by Theorem 4.5).
II. The functions Vo 7, p o @ are continuous on the compact interval J, therefore
there exists a number 7, > 0 such that

(5.4) V(x(ey)) = V(@) < 6, [p((z))) = p(n(z2))| < 6

if

o< .___R;g_.___
1 + 4ey(x) ¥ 3.n

neJ, ,ed, |ty -1 <n.

1) We use the definition of the Riemann-Stieltjes integral given in [4]:
[bfdg = A, if for any ¢ > 0 there exists a § > 0 such that

|4 — Zif(f,) (g(x) — glx;— )| < e

for all partitions ,
Dia=xp < xS ... x,=0b

such that max (x; — x;_ ) < &, and for every choice £; € (x;_, x; ).

i=1,..,n



Further, there exists a number n, > 0 with the following property: if we have
a partition

(5.5) Dia=a,<a;<..<a,=b

of the interval J such that

max (a; — a;-4) < 7,
1Z5isn

and if we have numbers &,, ..., &, such that a;_; < &, < a;fori = 1,2,..., n, then

(n(t)) dV(=(1)) - Z P(n(¢) (V(n(a) — V(r(ai-1))| <

I+ 4| 1+ 4]’
) j V(=(9) dp(a(0) — %, V(&) (p(n(ar) - p(n(a.-o»l

(see [4], Chap. X, § 7, Definition 21).
III. Choose a natural number n such that

1+ 4| v(x)l

(5.8) 4 = (b — a)/n < min (1, 12) -
In the partition (5.5) put

(5.9) a;=a+id, i=0,1,...,n
and denote

(5'10) Ji=<ai-y, a1

If we now have t, € J;, 7, € J;for some i, 1 < i £ n, then (5.4) holds. If the partition
9 is defined by (5.5), (5.8) and (5.9) and ¢;e J; for i = 1,2,...,n, then (5.6) and

(5.7) hold.
IV. There exist numbers c;e J;, i = 1,2, ..., n, such that
(5.11) P(n(e:)) = max p(x(x)) .

Fori=1,2,...,n denote
K;=<aj-y,a;-4 + 34y, N;= <ai-l + 34, a; — 145,
L;=<{a; - %4,a; .

‘We define the process o € P, in the following way:

(5.12a) V(o(z)) = V(n(a;-,)) for ek,
(5.12b) V(o(z)) = V(n(a;=y + 3(c — a;—, — 34))) for zeN,,
(5.12¢) V(o(z)) = V(n(a,)) for tel;,
(5:132)  p(o(d) = plaar-y) + C e D (p(n(e) — p((ai-r)) for teK,,
(5.13b) p(a(z)) = p(n(c) for teN;,
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(5.13) p(o()) = p(n(e)) + 9=t =) (r(a) — p(a(c))) for telLi,

4

(5.14) T(a(2)) = V(o(c) p(o(c)) T(n(a)) forall zelJ.
V((a)) p(n(a))
By (5.14) and by the axiom A2, o is a possible process of the system x.
V. We have (2.4) for every t € J.
Indeed, if 7€ J;, then by (5.12) there exists a 7 € J; such that V(a(7)) = V(n(%)),
and (5.4) implies (with respect to (5.8)) that |V(n(r)) — V(n(%))| < &, therefore
[V(n(z)) — V(o(z))| < 6. Moreover, (5.11) and (5.13) imply that for e J; we have

min (p(n(a;- ), p(r(a;))) = p(o(x)) = p(n(e)) 5

by (5.4) we have

Ip(n(c:)) — p(n(a))| < 6, [p(n(cy)) — p(a(a;i-1))| <9,
|p((c)) — p((x)] < o
and therefore |p(n(c)) — p(a(7))| < 6.

VI. The inequalities (2.3) are satisfied.
Indeed,

n n
J _ J i J — J i
VVoa - Z VVoa ’ VVnn - Z ’VV..,: )

i=1 i=1
Ple = VVia + P Vle + VNl
but (5.12) implies

Vs:a = V\l;:a =0, Vc:a = d//an ’
therefore

Ve = Vs P hw =V Ve -
Moreover,

V= Y vl vl = };lvf;;’,,,

Vile = Vgt + Vol + Vit s
but (5.13) implies

Ve = [P(n(cy)) = P(n(a;-y))|, ¥ 50 =0,

V{;:cr = IP(”(":')) - P("(Ci))l ,
therefore

sk = [p(n(a)) = p(r(c))] + [p(n(e))) = p(nlar- )| = 773
therefore
Vg £V

VII. From I, IV, V and VI we obtain
(5.15) }qx_n - qx',l < ie.

It



VIII. We will calculate g, ,. By the axiom AS, we have
(516) qx,o = Zqu.a-l.h = Zl(qx,alka + qx,a|N| + qx,a'lLl) .
Theorem 4.3 with respect to (5.l2a), (5.13a), (5.14) and to Theorem 3.7 implies

ek = cv(x) 1(x) (T(o(ai- 1 + 34)) — T(o(a;-,))) =
= cy(x) u(x) {Y(G(a:—1 + 34)) p(o(a;-, + 34)) -

= V(o(ai-1) plo(ai-1)} W(T(T)%T) )

= (x) 1) V(n{ar-1) (p(r(e)) — pln(ai- 1))
N Ilicv(x) V(n(a;- 1)) (p(n(c,)) - p.(n(a i-1)) 5

L
R p(x)

and similarly (with respect to (5.12c) and (5.13c)),
Geain, = &%) u(x) (T(o(a) — Tlola: - 44)) =
= 2 al) Vla(a) (p(x(ay) = p(x(c))
Theorem 4.4 with respect to (5.12b), (5.13b), (5.14) and to Theorem 3.7 implies
Qe = &%) 15) (T(o(a, = $4)) — T(o(ar- + 44)) =
= (<) () {V(ola; - 34) plofa; — 34)) -

= V(o(ai-1 + 34)) p(o(a;-, + 34))} ﬁ%& )
11

— 68) ) () (V) = V(or-) § =1 =
- 1_1( ¢,(x) p(rn(ey)) (V(n(a)) — V(n(a;-1))).

Thus we obtain

9x,010y = 9x,01k0 T dx,0iN; T DxojL; =
= 2 &0 (V(r(a-1) (o(n(e) = ple(ai- ) +
+ Vla(a)) pla(a) — p(x(e))} +
+ 2 ) P(a(e) (V(x(a) = V(n(a-1)) =

12




ev(x) V(m(a;- 1)) (p(n(a) — p(n(ai-,))) +

A=

1

+ — ¢(x) p(n(e)) (V(n(a) — V(n(a-1) +

~

+ 2 6ls) (V@) = Vlaas-1) () = pla(e)).
If we substitute this result into (5.16), we obtain
(G17)  dne = g el) 3 Vlalai-) (pla(a) — plaar-) +
+ 2 609 £ plr(ed) (V(e(a) - V(r(ar-0) +
+ 2 &0 3 (V@) ~ Ven(ar-) (plr(a) = plac)

IX. By III, we have |p(n(a;)) — p(n(c;))] < & for i = 1,2, ..., n. Therefore, from
(5.3) we obtain

2 a() 3 (V((a)) - Vlslai-)) ((x(a) = pla(ci)| <

=

() 3 [V(x(a) = V(x{ai- )| Ip(ra) — p(a(c)] <

|-

<L) —E ¥ V(n(a)) - Vln(a,_ )| <

R 1+ dey(x) ¥y i=1
€
Sef(x) ———— ¥V < de.
s o )1 +de(x) vy,
X. Using (5.17), we obtain

au =% fe) [ o) a¥(et) + o) [ Vi) ()} <

é Iqx,u - qx,a'l +

Txs — —;{CP(X) I :P(n(t)) dV(n(1)) + cy(x) j:V(n(t)) dp(n(t))}l =

= qu,n - qx,a'l +

2 6/() X V(a(as-1) ((n(a) = ple(ay-1) +

+ L)% plr(ed) (V(r(a) — Vlr(ar-0) + % o) 3 (V@) — V(x(ar-1)
le(a) = ple(e) = %4 [ PUR) V() + ) [ VG aptr)]
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= qu.n - qx,a'l +

£&0 O] 5 V(e(a1-0) o) = plefor-1) -

- f :V(n(t)) dp(n(r))} +
_ ij(n(t)) dV(n(t))}

By (5.15), (5.7), (5.6) and by IX, we conclude that

Gon = = {c,,(x) [*o(x(1) aV(r(2) + eu(x) j 0) dp(n(t))}' <

7o) { 3 Plr(ed) (V(r(e) = V(rar-0) ~

+ [ 6) % (V(a(@0) — Vlalar- ) (plr(ar) — p(a(e))

l ( )I + :}s <e.

1+4l()| 1+4l()|

As ¢ was an arbitrary positive number, we obtain (5.1) from the last inequality.
Integrating by parts (see [4], Chap. X, § 7, Theorem 147), we can give two other

forms of (5.1):

<ie+— Icv( N ———=

Theorem 5.2. Let J = {a, b) and let = € P; be a possible process of a system x.
Let (x,m,q)€ Q. Then

(519 = {0600 = ) [[oe) Ve +
R CICORCORVCOTCONE

(5:19) = 2 {66 = o) [ V) ap(r(0) +
- 65) (V) POR() — V(<(0) ()}

Theorem 5.3. We have c,(x) > cy(x) > 0 for every x € X.

Proof. By the axiom Al, there exists a possible state s; = (V}, py, Ty) of the
system x. Put J = <0, 2) and define processes © € P;, o € P, in the following way:

n(t) = (Vi + 1, pi, (Vi + 1) Ty V) for te<0,2),
o(t) = (Vi + t, p1 + 1, (py + ) (V1 + 1) Ty/p, V) for te0, 1),
o) =y +t,ps+2—=1t,(ps +2—1t)(Vy + 1) Ty[p, V1) for tell,2).

By the axiom A2, 7, o are possible processes of x. By (5.18), we have

Ixn = 1—1{ {("p(x) = cy(x)) J:Ih d(V; + 1) + ey(x) ((: + 2).1’1 - Vi)
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Gxo =

{(cp(x) — o) ( .[ :pl F i) + 1) + J' j(pl 2o 0dW, + t)> -

|-

+wuxoa+npr-mm§-

AS gy < 4x,, by the axiom A9 and R > 0 by Theorem 3.6, this yields
2
(c,(x) — cv(x))J. pd(V, + 1) <
0
1 2
<mm—qujm+o«m+o+jm+z—o«n+®.
0 1

But
2 2
J‘ pl d(Vl + t) = J’Pl dt = 2p1 ,
0 0
1 2
J’(p1 + 1)d(Vy, + 1) + '( (pr +2—10)d(V; +1) =
(4] 1
1 2 .
=J(pl +t)dt+j(pl+2—t)dt=2p1+1,
0 1
therefore

(cp(x) = ey(x)) - 2Py < (cp(x) — cy(x)) (2py + 1)

hence ¢,(x) > cy(x). Finally, ¢,(x) > 0 by Theorem 4.5.

6. AUXILIARY THEOREMS

In the Chapter 7 we will study special processes called adiabatic. For this purpose
we need some theorems about the Riemann-Stieltjes integral that we are now going
to express. The proofs of these theorems we leave to the reader.

Theorem 6.1. Let f, g, h be continuous real functions on an interval {a, b) and
let g, h have bounded variation on {a, b). Then

b b b
de(gh) =ffgdh +thdg.

Theorem 6.2. Let f, g be continuous real functions on {a, b), let g have bounded
variation on {a, b) and let g(t) > 0 for all tea, b). Let y be a real number.
Then

| jbf d(g") = vﬂfg"‘ dg .
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Theorem 6.3. Let f, g be real functions defined on {a, b). Let f be continuous
on<{a, b) and letf(t) > 0 for allte{a, b). Let g have bounded variation on {a, b).

Then
B
.[fdg =0

for all a, B such that a < « < B < b if and only if g is constant on {a, b).
Now, we are going to express several theorems that will be useful in Chapters 8
and 9.

Theorem 6.4. Let f, g be real functions defined on {a, b). Let f be continuous
on {a, by and g increasing on {a, b). Let f(t) = 0 for all t € {a, b) and let f(c) > 0
for some c € {a, b).

Then

rfdg>0.

Theorem 6.5. Let f, h, g be real functions defined on {a, b). Let f, h be continuous
on {a, by and g increasing on {a, b). Let f(t) = h(t) for all te{a, by and let
£(c) > h(c) for some ce<a, b).

b b
J 7dg > J hdg.

Then

Theorem 6.6. Let f,, go be real continuous functions on {a, b) with bounded
variation. Then for any € > 0 there exists a 6 > 0 with the following property:
if f, g are real continuous functions on {a, b) such that

[fo() = F()] <6, ]ao(?) . g(t)| <6 forall tela,b)
and
ow v,

b b
Ufodgo—deg|<s.

7. ADIABATIC PROCESSES

then

Definition. Let K € K. A process © € Py is called an adiabatic process of a system x

if it is a possible process of x and (x,n | J,0) e Q for every compact interval J
such that J <« K. '

Theorems 5.1 and 5.2 immediately yield

16



Theorem 7.1. Let K = {a, b) and let n € Py be a possible process of a system x.
Then r is an adiabatic process of x if and only if for any pair of real numbers
(2, B) such that a < @ < B < b one of the following relations holds:

8 7]
(1.1 el [ PUR(0) a¥(() + () [GQECOREE

(12) (cs60) — eu(x) [ p(r(t)) aV(a() +
+ ey(*) (V(n(B)) p(n(B)) — V(n()) p(n())) = 0;
(1.3) (eul) = ,(x)) [ V() dp(a(®) +

+ ¢,(%) (V(x(8)) p(n(B)) — V(n(=)) p(n(«))) = 0

This theorem together with the theorems from Chapter 6 yields

Theorem 7.2. Let K = {a, b) and let n € Py be a possible process of the system x.
Then w is an adiabatic process of x if and only if the function

(74) (p o) (Vo m)creved)

is constant on a, b.

Proof. For t € {a, b) denote

(7.5) L(t) = p(n(2)) V(r(t))=eve)
The function L is continuous with bounded variation on {a, b). By Theorem 7.1,

7 is an adiabatic process of x if and only if (7.1) holds for all a, § such that a <
< @ < B £ b. However, (7.5) implies

A p) = Cp(x)r p(e(t)) AV(n(r)) + cu(x) rv(ﬂ(t)) dp((1)) =
= cp(x) J’ ﬂL(t) V(n’( t))—cp(x)/f-‘v(x) dV(n’(t)) +e (x) J f’v (n (t)) d (L(t) V(n( t))—cp(x)/cv(x)) )

The functions L, V o w and (V o m)~*®/*V( are continuous with bounded variation
on {a, by and V(n(t)) > 0 for all t € <a, b). Theorems 6.1 and 6.2 imply

76 = ) [ L V) 7 av(s) +
o) jfvor(:» L(t) d(V{r(1) " /eve0) 4
. w)J”V(n(,))x-wwm ) = ) [ "Lt) V(r(2) 0o d(V(n(s)) +
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+M”Cj£9f%mnmwmwwwmm”wwm+

cv(x a
+ ¢y(x) Jﬂv(n(l))l-[cp(x)/cv(x)] dL(t) = ¢(x) Jpv(n(t))l—[rp(x)/cv(x)] dL(r) .

But, by Theorem 6.3, j(az, B) = O for all «, B such that a < « < B < b if and only
if Lis constant on {a, b).
For a system x, denote

1) = (e,

Theorem 5.3 implies y(x) > 1 for any system x. Theorem 7.2 together with Theorem
3.7 yields

Theorem 7.3. If n is an adiabatic process of a system x, then the following three
functions are constant:

(7.6) C(pom) (Vemy®,
(7.7) (Ton)(Von)t,
(7.8) (Ton)™® (pon)i=1®

If one of these functions is constant, then r is adiabatic.
Proof. Put p(n(t)) V(n(1))’™ = L(1). As by (3.4) we have

V(n(1)) =R u(x) T(n(1)/p(n(1)), p(n(r)) = R p(x) T(a())/V(=(1),
we obtain
T(n(1)) V(=())*@~" = L(1)/(R u(x)) ,
T p(r()! ™ = LEIR™ u(xy),

therefore either all three functions are constant or all three functions are non-
constant. However, (7.6) is identical with (7.4).

8. CONSISTENCY OF THE SYSTEM OF AXIOMS

We will prove that the theory formed by typifications (T1) ..., (T4) and by axioms
Al, ..., A9 is consistent, provided the theory of real numbers is consistent. The
proof will be carried out by constructing, in terms of the theory of real numbers,
a model fulfilling all the above axioms.

In our model, the term X will be the set {1}, containing the single number 1. The
structural terms will be defined as follows:
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(*T1) xo = 1;
(*T2) po = 1;
(*T3) (x, (ay, a,, as)) € Wif and only if x = 1 and aya,[a; = 1;
(*T4) (x, 7, q) e Q if and only if X = 1, m€ P44y, (x, 7)€ Wand

(8.1 a =2 [ p(e(0) a¥(r0) + [ Vi) ).

Theorem 8.1. The model described above fulfils all axioms Al, ..., A9.
Proof. The validity of axioms Al, A2, A3 and AS is obvious.

Verificationofthe axiom A4. Let x € X, J = {a, b) and let = € P, be a possible
process of x. If ¢ > 0, then, by Theorem 6.6, there exists a §; > 0 such thatif s € P,
is a possible process of x such that

IV(=(t) = V(e(®)] < 81, [p(n(®) — p(a(t))] < 6, forall teJ
and if ¥, < ¥}, then ’

j (1) AV((9) — j "p(o(0) dV(o (1)

and there exists a 6, > 0 such that if o € P, is a possible process of x such that
[V(=(2)) — V(e(t))| < 6;, |p(n(r)) — p(a(t))| < 6, forall teJ
and if ¥'5,, < ¥, then

[[ et ap(rt) = ['Vee(@) oot

If we put 6 = min (d,, §,) and if o € P, is a possible process of x such that (2.2),
(2.3) and (2.4) hold, then (xT4) gives

lg—r| = \z j "p(x(9) AV(x(t)) + j "V(n(0) dp(r(9) ~

<ie,

<ie.

=

2 J"’p(a(r)) aV(o(t)) - j "V(o(2)) dp(o(1)

=2 +

j "p((9) AV((t) - j "p(a(0) dV(o(2)

+ <% +ie=¢,

[[ Ve aptrton - [[Vieo) avtetd)

Ja

therefore (2.5) holds.

19



Verification of axioms A6 and A8. Let J = <a, b), let 7€ P, be a poss.tle
process of x and let V(n(f)) = V, for all te J. Let (x, m, g) € Q. Then, by (8.1),
we obtain .

o= Vo dp(a(1) = Va(p(x(8) — p(a(a)

But (xT3) yields T(n(t)) = V(n(r)) . p(n(?)) for all t € J and therefore

(82) q = T(n(b)) — T(n(a)).
This implies the axiom AS.

In the same way, if o € P, is a possible process of x, V. ¢ is constant on J and
(x, 0,7) € Q, we obtain

(8.3) r = T(a(b)) — T(a(a)) .
The axiom A6 follows from (8.2) and (8.3).

Verification of the axiom A7 is analogous to the verification of the axiom A6,

Verification of the axiom A9. Let J = {a, b), let n € P;, g € P, be possible
processes of x, let V(n(1)) = V(a(t)), p(n(t)) < p(a(t)) forall te J,let Vo = Voo
be increasing on J, p(n(a)) = p(a(a)), let p(n(r)) < p(o(r)) for some 7 e J, and let
(2.2) hold. Then (*T4) implies (by integrating by parts in the second integral (8.1))

g= j "B(x(1)) AV(x()) + V(x(8)) p(x(B)) — V(x(a) p(x(a))
and similarly, '
r= j pla(t) dV(o()) + V(o(b)) p(o(8)) — V(o(a) p(e(a))
Further, :
V(x(a) p(a(a)) = V(o(a)) p(a(a)), V(x()) p(x(t)) < V(a(b)) p(o(5)
and by Theorem 6.5 we have
j"p(n(r» aV(a(1)) < j "o(o(0) dV(o 1),

therefore q < r.

9. INDEPENDENCE OF THE AXIOMS
We will now prove that axioms Al, ..., A9 are independent (if the structural terms
are given by typifications ((T1), ..., (T4)). To this end we shall construct, in terms of

the theory of real numbers, models, each of them fulfilling all axioms Al, ..., A9
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except one. We leave the verification of the axioms to the reader, noting only that
Theorems 6.5 and 6.6 will be useful.

In each of these models, the term X will be the set {1}, containing the single num-
ber 1. The structural terms X, uo will be always given by (xT1) and (xT2) from
Chapter 8. Each model will be defined by giving the structural terms Wand Q.

Independence of the axiom Al.
W=0, Q=0 (empty sets).
Independence of the axiom A2,
(x1,(ay, az,a3))eWesx =1, ay=a,=as=1,
(x,m,9)eQ<>x =1, misconstant, g =0.

In all the other models, the term W will be defined by (¥T3). It remains to define
the term Q in each model.

Independence of the axiom A3. @ = 0 (empty set).

Independence of the axiom A4, _
(x,m, q)e Q if and only if x = 1, € P, ,, and either (8.1) holds or none of the
functions p o m, V o 7 is monotone on {a, b).

Independence of the axiom AS.
(x, 7, q) € Q if and only if (x, 7)€ W, m € P, ,, and

a= (b= o) (2 [ p(et0) Vi) + [ Vi) ap(e)).

Independence of the axiom A6.
(x, 7, q) € Qif and only if (x, 7)€ W, m € P, ,, and

0= PR V() + [ (V) + et V() dp(e().

Remark. 9.1. This model represents the theory in which the specific heat by con-
stant volume depends on the temperature.

Independence of the axiom A7.
(x, 7, q) € Q if and only if (x, 7)€ W, n e P, ,, and

g=2 j (1 + ple() V(x(9) + j V(x(1)) dp(r(t) -

Independence of the axiom AS.
(x,m, q)eQif and only if (x, ) € W, m € P,y and

g = j "p(x(1)) V(1)
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Independence of the axiom A9.
(x, 7, q) € Q if and only if (x, 7)€ W, n € P, ;, and

a = [[ox@) a¥(e(9) + 2 V) ).

Remark 9.2. In this model, the specific heat by constant volume is greater than
the specific heat by constant pressure.
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Souhrn

MATEMATICKE ZAKLADY THERMODYNAMIKY IDEALNIHO PLYNU

MILOSLAV JUZA

B

Clének je pokusem o matematicky pfesné zavedeni zdkladnich pojmt thermodynamiky idedl-
niho plynu. Je zaveden systém axioml a z ného odvozeno nékolik zdkladnich vét. Pak jsou
definovdny a studovany adiabatické procesy. Nakonec je dokdzdna bezespornost a nezdvislost
pouZivanych axiomi.

Pe3rome

MATEMATHUYECKUE OCHOBAHMSI TEPMOAVHAMUKU UIEAJIBHOI'O TA3A

MiLosLAV JUzA

CTaThs SBIACTCS NOMBITKON HAUTH MAaTEMAaTHYECKH TOYHYIO GOPMYIMPOBKY OCHOBHBIX TIOHSTHI
TEPMOJMHAMHUKH HICAJBHOTO ra3a. B OCHOBY IIOJIOXE€HA CHCTEMa aKCHOM M M3 Heé BHIBEJCHO He-
CKONBKO TeopeM. ITocne 3T0r0 onpeniesieHsl ¥ U3yYeHbI aarabaTHYeCKue NPOLECCH. B 3aKNIoueHHe
0Ka3aHbl HENPOTHBOPEYNBOCTh M HE3aBMCHMOCTB aKCHOM.
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