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Summary. An axiomatic system of the thermodynamics of ideal gas is proposed. After for­
mulating several definitions and proving some fundamental theorems, adiabatic processes are 
defined and studied. Then the consistency and independence of axioms is proved. 
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1. INTRODUCTION 

Thermodynamics is usually explained in a manner which is very unsatisfactory 
for any mathematician. It is usually not clearly indicated which notions are primitive 
and which are defined. Two different standpoints are mixed: a statistical standpoint 
in which a system is considered as a set of particles, and a macroscopic standpoint 
in which a system is given by means of state quantities. This mixture of the two stand­
points leads to inconsistent notions, as e.g. "an infinitely slowly running process". 
The proofs of theorems are often inexact and incomplete, sometimes heuristic 
considerations are presented as proofs (some remarks to these problems see in [7]). 
There are papers on thermodynamics — e.g. [1], [5], [6] — which are quite exact 
from the mathematical point of view, but they are so general and abstract that the 
application of the respective theories to simple particular cases is considerably 
difficult. 

In this paper we try to lay, in a mathematically exact way, the foundations of 
thermodynamics of the ideal gas. We deduce the formula for the heat quantity con­
sumed by a process, define adiabatic processes and find formulae for them. In current 
textbooks of thermodynamics these formulae are usually "deduced" from Gay-
Lussac's and Boyle-Mariotte's laws, but some further suppositions are implicitly 
used (e.g. continuity). Moreover, the way of the deduction is not satisfactory from the 
logical point of view. The; papers which are satisfactory from the theoretical point 
of view (as the above mentioned papers [1], [5], [6]) discuss the thermodynamics 
of systems more generally and the case of the ideal gas is mentioned only as an 
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example; the formulae which we deduce are in these examples usually given as 
definitions. The deduction of these formulae is therefore kept on the level of heuristic 
considerations of the textbooks of classical thermodynamics. The result then is 
that an ordinary mathematician accustomed to exact mathematical methods is not 
able to read these papers. 

We try to fill this gap. We introduce primitive notions, give axioms for them and 
deduce theorems from axioms. At the end, we prove consistency of our system of 
axioms and independence of the individual axioms on the other ones. . 

This paper is not intended for physicist (the less so for specialists in thermo­
dynamics); they would hardly find anything new in it. It is intended for mathe­
maticians who have only little knowledge of physics but who want to study some 
papers about thermodynamics and are not able to penetrate the logical chaos in the 
fundamental notions. 

2. PRIMITIVE NOTIONS AND AXIOMS 

If / i s a mapping defined on a domain M and Mx c M, we denote by / 1 Mt the 
partial mapping defined on Mv If we have mappings 

f:Mt->M2, g:M2-+M39 

we denote by g of the mapping defined by 

(g of) (x) = g(f(x)) for every x e Mx . 

If J is a compact interval and / real function defined on an interval K => J, then 
the total variation of/ on J will be denoted by i^j. 

Our starting point will be the theory of real numbers. We denote by R the set of 
all real numbers, by R+ the set of all real positive numbers, by K the set of all real 
compact non-degenerate intervals. 

Put S = R+ x R+ x R+ . Elements of the set S will be called states. We define 
mappings V, p, T: S -> R+ in the following way: given 5 = (al9 a29 a3)e S, then 
V(s) = al9 p(s) = a2, T(s) = a3. The numbers au a2, a3 will be called the volume, 
pressure and temperature of the state 5. 

If J e K, we define a process with the base J as a mapping n: J -> S such that 
V o 7i, p o 7i, T o 7i are continuous functions with bounded variation. The set of all 
processes with the base J will be denote by Pj. We put P = [j Ps. 

JeK 

We will discuss thermodynamics as an axiomatic theory described in a way which 
was outlined by N. Bourbaki (see [2], § 1, n° 4). This method of description of a theory 
was applied by G. Ludwig to physical theories (see [3], § 7.1). 

We will discuss a theory whose structure (see [2], § 1, n° 4 and [3], § 7.1) is given 
by a principal base formed by a single term X, by an auxiliary base {R, R+, K, P, S}> 
by structural terms x0, Mo, W9 Q which are characterized by the typification 



(Tl) x0eX, 

(T2) fi0 e R+ , 

(T3) W c X x S , 

(T4) Q c X x P x R, 

and by axioms A l , . . . , A9, which we shall formulate below. 
We will give an intuitive explication of these notions for readers who are not 

familiar with Bourbaki's method. We start from the theory of real numbers as 
a basic theory. The terms of the auxiliary base, i.e. R, R+, K, P, S, are sets defined 
in the basic theory, which we use to describe the primitive notions of our new theory. 
The term X of the principal base is a primitive notion of our theory. Intuitively, 
X is a set of some objects which we will call systems. The relation x e X will be read 
"x is a system". Further primitive notions are the structural terms x0, n0, W, Q. 
The typifications (Tl), ...,(T4) gives a characterisation of these primitive notions. 
So, x0 is an element of X(or, in other words, x0 is a system), and n0 is a real positive 
number. The system x0 will be called the scale system, the number fi0 will be called 
the mass quantity of the scale system. Wis 2L set of pairs (x, s), where x is a system, 
s is a state. Therefore, TV is a binary relation between X and S. If this relation is 
fulfilled, i.e. if (x, s) e W, we shall say that s is a possible state of the system x. 
Similarly, Q is a ternaty relation between X, P and R. If this relation is fulfilled, i.e. 
if (x, n, q) e Q, we shall say that the process n of the system x consumes the heat 
quantity q. 

A process n e Pj is called a possible process of a system x, if (x, 7T(T)) G JVfor every 
TG J. 

We are now going to formulate the axioms A l , . . . , A9. 

Axiom Al. For any x e X there exists an s e S such that (x, s) e W. 

Axiom A2. If x e X, sx e S, s2 e S, (x, sx) e PVand 

/ , A V(»i) P(».) _ V ( » I ) P ( - » ) 
{ } T(Sl) T(S2) ' 

then (x, s2) e W. 

Axiom A3. If n is a possible process of a system x, then there exists a q e R such 
that (x, 7T, q) e Q. 

Axiom A4. For any x e X„ J e K, n e P3, where n is a possible process of x, and 
for any 6 e R+ there exists a 5 e R+ with the following property: 

if a e Pj, a being a possible process of x, if 

(2.2) (x, 7T, q) e Q , (x, <r, r) e Q , 



(2.3) K„ = K«. K° = K. > 
and if 

(2.4) |V(X-)) - V(a(r))| < <5 , |P(K(T)) - P(«T(T))| < 8 

for every T e J, then 

(2.5) \q - r\ < e. 

Remark 2.1. The axiom A4 says that the heat quantity consumed by a process 
depends continuously on the process. However, the continuity thus formulated has 
further consequences (see theorems 3.1 and 3.2). 

Axiom A5. If x e X, a < b < c are real numbers, J = <a, b}, K = <b, c>, 
L= JKJK, nLePL, Uj = nL\ J, nK = nL\ K, qs e R, qKe R, (x, 7ij, q3) e Q, 
(*, KK> q*) 6 Q, then (x, nL, q3 + qK) e Q. 

Axiom A6. Let a < b be real numbers, J = <a, b>, and let ne Pj, a e Pj be 
possible processes of a system x. Let the functions V 0 n, V 0 a be constant on J. 
Then (2.2) implies 

(2.6) q(T(a(b)) - T(a(a))) = r(T(n(b)) - T(n(a))). 

Axiom A7. Let a < b be real numbers, J = <a, b>, and let ne Pj9 a e Pj be 
possible processes of a system x. Let the function p 0 n, p 0 G be constant on J. 
Then (2.2) implies (2.6). 

Axiom A8. Let a < b be real numbers, J = <a, fc>, and let n e Ps be a possible 
process of a system x. Let the function V 0 n be constant on J and let T(7c(b)) > 
> T(n(a)), (x, n, q) e Q. Then q > 0. 

Axiom A9. Let a < b be real numbers, J = <a, fe>, and let n e P j , cr e Pj be 
possible processes of a system x. Let V(7C(T)) = V(C(T)), P(TC(T)) ^ p(o"(̂ )) for all 
T e J. Let the function V07c = V 0 crbe increasing on J. Let p(n(a)) = p(c(«)) and 
let P(.T(T)) < P(G(X)) for some T e J. Then (2.2) implies q < r. 

Remark 2.2. The axiom A9 has the following heuristic justification: the heat 
consumed by the process n of a system x is proportional to the work produced by 
the system x during the process n. However, as the volume is an increasing function, 
this work is positive, and, as the two processes n, a have the same volume at each 
moment, the system produces larger work by higher pressure. 

Remark 2.3. The structural terms x0, pt0 define a system of physical units. It is 
not necessary to introduce these terms as primitive notions, but otherwise they 
would appear as parameters in many theorems. It is therefore simpler, from the 
formal viewpoint, to consider them as primitive notions. 



3. SOME SIMPLE CONSEQUENCE OF AXIOMS AND DEFINITIONS 

The axioms A3 and A4 imply 

Theorem 3.1. If n is a possible process of a system x, then there exists one and 

only one number qeR such that (x, n, q) e Q. 

This number q will be denoted by qXt1l. 

Proof. I. The existence of the number q follows from the axiom A3. 

II. Suppose (x, n, q) G Q, (x, n, r) G Q. Let e e R+. If we put n = a in the axiom 

A4, then (2.2), (2.3) and (2.4) are fulfilled for any 5 > 0. Therefore (2.5) also holds. 

As e > 0 is arbitrary, we obtain q = r. 

Theorem 3.2. Let xeX, steS, s2e S, (x, Sj) G W. Then (x, s2) GW if and only if 

(2.1) holds. 

Proof. I. If (2.1) holds, then (x, s2) e Why the axiom A2. 

II. Let (x, st) 6 W, (x, s2) e W. Put J = <1, 2> and define processes n e Ps, 

G G Pj by 

n: T i-> Л----IMЛ 
ГN-oк-i)/' 
/. тT(s2)Л 

As 

V(TT(T)) pfrfr)) = V(st) p( S l) y(a(x)) P((T(T)) _ V(s2) p(s2) 

l(n(x)) T( S l ) ' T(a(T)) T(s2) 

for all T G J, the processes n, G are, by the axiom A2, possible processes of the 

system x. By Theorem 3.1, there exist uniquely determined numbers _,r such that 

(2.2) holds. As Vo7r = Vocr and p o n = p o G, (2.3) and (2.4) are also fulfilled 

(for any 5 > 0). Let e G R+. Then, by the axiom A4, (2.5) is fulfilled and therefore 

q = r. By the axiom A8 we have q > 0. But by the axiom A6 we have 

,(TM2)) - % ( 1 ) ) ) = r(T(n(2)) - l(n(l))), 
therefore 

q 
( 2T(s2) _ ______\ _ /______ _ _ _ _ _ 1 _ \ 
VV(s2) p(s2) V(s2) p(s2)1 Vv(s.) p(st) V(s.) p ( S l ) ; 

As q = r > 0, we conclude that (2.1) holds. 

Theorem 3.2 implies 

Theorem 3.3. If systems x, y have a possible state in common, then all their 

possible states are common. 



Theorem 3.4. For any system x there exists exactly one number fi(x) satisfying 

(Vs0) p(s0) T(s) 

where 
(3.2) (x,s)eW, (x0,s0)eW. 

Proof. By (Tl) and the axiom Al there exist states s0, s satisfying (3.2), therefore 
for any system JC there is a number fi(x) satisfying (3.1) and (3.2). By Theorem 3.2, 
this number is independent of the choice of the states s, s0, as far as they satisfy (3.2). 

Definition. The number JLL(X) is called the mass quantity of the system x. 

Theorem 3.5. The inequality JJ,(X) > 0 holds for every system x. Moreover, 

v(xo) = A<o. 

Proof. The first assertion follows from (T2), (3.1) and from the definition of 
a state; the second is a consequence of (3.1) and Theorem 3.2. 

Theorem 3.2 and the axiom Al imply 

Theorem 3.6. There exists a uniquely determined number R such that 

(3.3) ^ = p(s 0 )V(s 0 ) t J L > 

T(s0) i*0 

where s0 is a possible state of the system x0. Moreover, R > 0. 
The R > 0 follows from (T2) and the definition of a state. By substituting (3.3) 

into (3.1), Theorem 3.4 yields 

Theorem 3.7. If x e X, s e S, (x, s) e W, then 

f*A\ f \ 1 v 0 0 P(5) 

(3-4) ti*) = - • V A • 
R J(s) 

4. SPECIFIC HEAT 

For any J e K denote 
Pjtx =• {rc e Pj' 7i i s a possible process of the system x, V 0 n is constant on J}, 
Pj*x = {n e Py. n is a possible process of the system x9 p 0 n is constant on J}. 

Theorem 4.1. Let xeX. Then there exists one and only one number Cy(x) with 
the following property: if a < b, J = <a, 6>, neP)tX, then 

qx,я = Цx)(T(n(b))-T(n(a))). 



Proof. I. Let x e X> a < b, J = <a, b>. Then there exists one and only one 
number c^(x) with the property: if n e P)x, then 

(4.1) qXtK = cv(x) (T(n(b)) - T(n(a))) . 

Indeed, by the axiom Al, there exists a state sA = (Vu pu 7\) such that (x, st) e W. 
For T e J put 

°(*) = (Vuf(*),Tl + T - a ) , 
where 

, v Tx + T - a 

f(V = Pi -

By the axiom A2, we have a e P^x. Put 

cv(x) = 

rl 

b - a 

By Theorem 3.1, Cy(x) is uniquely determined and, by the axiom A6, (4.1) holds 
for any n e P)x. 

II. Let x e X, J e K, K e K. We will prove that 

(4.2) ctfx) = c«(x) . 

III. Let J = <a, b>, K = <b, c>. Denote L = <a, c>. Let again sx = (Vl5 pu Tt), 
(x, s4) G W. Define processes nL e PLx, aL e PLx by 

%(T) = (Vl,f!(T),fll(T)), 

^(T) = (V„f2(T),fl2(T)), 
where 

9i(T) = Ti+\—?-, g2(r) = T, + 2T-—^ for TGJ, 
b — a b — a 

gl(T)=T1 + l + 2T-^.9 g2(z) = Tv +2 + T-^ for TGK, 
c — b c — b 

/ i t o = £ » . ( * ) . f2(T) = £<72(T) for T G L . 
*i . ri 

By I, we have 

Ix.nt. = cftx) (gi(c) - fl.(a)) = 3 cftx) , 

9*,*., = c^(x) (g2(c) - g2(a)) = 3 c$(x) 

therefore qx^ = gx_fft. Put 

nJ = "i. I J > n* = ^L | -^ , ffj = oL | / , ffjc = aL | X . 

By the axiom A5 and by I, we have 

0X.-1 = ?«.-., + fl*.*K = sv(*) (0i(*>) - 0i(a)) + 

+ <£(*) (ffi(<0 - 0i(&)) = cJ
w(x) + 2 cftx) , 



qx,<rL = <lx,<rj + qx,*K = ci(x) (82(b) - 92(a)) + 

+ # (* ) (02(c) - flf2(6)) = 2 cvW + cfj(x), 
therefore 

c^(x) + 2 cv (x) = 2 cv(x) + cv(x), 
hence (4.2) holds. 

IV. Let J = <a, b>, K = <c, d} with b < c. Denote L = <b, c>. By III, we have 

cv(x) = c^x ) , cf}(x) = c*(x) 

and therefore (4.2). 

V. Let J = <a, b>, K = <c, d> arbitrary. Choose A e R, B e R such that 

max (b, d) < A < B 

and denote L = <A, B}. By IV, we have 

cv(x) = c£(x) , cv(x) = c^(x) 

and therefore (4.2). 
Similarly, the axioms Al, A2, A5, A7 and Theorem 3.1 imply 

Theorem 4.2. Let xeX. Then there exists one and only one number cp(x) with 
the following property: if a < b, J = <a, b>, ne P$ x, then 

«».- = ?p(*)(TW&))-T(n(fl))). 

Definition. For xe X put 

cv(x) = cy(x)\ii(x) , cp(x) = cp(x)\fi(x) . 

The number cv(x) is called the specific heat of the system x by constant volume, 
the number cp(x) is called the specific heat of x by constant pressure. 

This definition and Theorem 4.1 imply 

Theorem 4.3. If xeX, a < b, J = <a, b>, n e P)x, then 

qx,„ = cy(x)n(x)(T(7i(b))-T(n(a))). 

Similarly, Theorem 4.2 implies 

Theorem 4.4. If x e X, a < b, J >= <a, b>, n e PjtX, then 

qx,« = cp{x)n{x){T{n{b))-T(*{a))). 

Theorem 4.5. We have cv(x) > Ofor every xeX. 

Proof. By the axiom Al, there exists a possible state st = (Vu pi9 Tt) of the 
system x. Put J = <0,1>, choose a number T2 > TY and define a process ne Pj by 

"to = (Vi,f(t), ri + r(T2 - TO), 



where 

fix) = £ (r. + <T2 - r.)) • 
- 1 

7r is a possible process of x by the axiom A2, therefore n e Pjx. By Theorem 4.3 
we have 

1x,n = cy,(x) fi(x) (T2 - Tt)\ 

But T2 - Tt > 0, /z(x) > 0 by Theorem 3.5 and qx>n > 0 by the axiom A8, therefore 
also cw(x) > 0. 

5. HEAT CONSUMED BY A PROCESS 

Theorem 5.1. Let J = (a, by and let ne Pj be a possible process of a system x. 
Let (x, n, q) e Q. Then 

(5.1) q = I |cp(x) J*p(«(05 dV(-:(.)) + cv(x) J V(«(0) dp(*(0)J . 

where J denotes the Riemann-Stieltjes integral.1) 

Proof. I. Let us have a number e > 0. By the axiom A4, there exists a ^ e R + 

with the following property: if a e Pj is a possible process of x, if (2.2) and (2.3) 
hold and if (2.4) is true for all z e J, then 

(5.2) \ q - r \ < i £ . 

We choose such a 5, so small that 

(5.3) 5 < * \ J 
l + 4 e v ( x K v o * 

(cw(x) > 0 by Theorem 4.5). 
II. The functions V o n, p o n are continuous on the compact interval J, therefore 

there exists a number rjt > 0 such that 

(5.4) ( V ^ T O ) - V(TT(T2))| < S , IPWTO) - P(K(T2))| < 8 

if 
Ti 6 J , T2G J , |TX - T2| < Y\± . 

*) We use the definition of the Riemann-Stieltjes integral given in [4]: 
Jfl/d^ = A, if for any e > 0 there exists a S > 0 such that 

M-f/Kf|)(«<*i)-^i- i))|<« 
i = l 

for all partitions 
_?: a = *0 5̂  ^ < ... < xn — b 

such that max {xx — xt_ ,) < 5, and for every choice £. e <*,_i, *,•>. 
; = i » 



Further, there exists a number rj2 > 0 with the following property: if we have 
•a partition 

(5.5) 9: a = a0 < at < ... < an = b 

of the interval J such that 

max (яř — ař_i) < Цг 
1<І<П 

and if we have numbers £i9..., £n such that a^t _S {, rg a, for / = 1, 2 , . . . , n, then 

i rb " \ RF 

(5.6) | P(40) dV(«(i)) - - p(^f)) (V(„(a,)) - VKa,,,))) < *' •, 
I J . i=1 I - + 4 I C P W I 

(5.7) |J vo<o)dpWO) - Z v(«(.,))(K«(-»)) - PM«.-I)))I 1 + 4|cv(x)| 

(see [4], Chap. X, § 7, Definition 21). 
III. Choose a natural number n such that 

(5.8) A = (b - a)/n < min (*h, *h) . 

In the partition (5.5) put 

(5.9) a( = a + iA , i = 0, 1, . . . , n , 

and denote 

(5.10) J, = <a,_ l f fl|>. 

If we now have Tj e Jf, T2 G J, for some i, 1 ^ i ^ n, then (5.4) holds. If the partition 
9 is defined by (5.5), (5.8) and (5.9) and f, e J, for i = 1, 2 , . . . , n, then (5.6) and 
(5.7) hold. 

IV. There exist numbers ct e Ji9 i = 1, 2 , . . . , n, such that 

(5.11) P(K(C,)) = max P(TT(T)) . 
te-

For i = 1, 2, . . . , n denote 

J_, = <«,_., a , . ! + i_l> , Nt = <a,-i + *A, a, - _•_!> , 

L, = <a, - i J , a,> . 

We define the process trePj in the following way: 

(5.12a) V(O-(T)) = V(7t(a,_.)) for Te__ f , 

<5.12b) V(<T(T)) = V(7t(af_. + 3(T - a,_. - *_!))) for x e N , , 

<5.12c) V(CT(T)) = V(jr(af)) for t e L , , 

<5.13a) p(ff(T)) = P « a , . . ) ) + 3^T " ^ ^ (p(n(c,)) - pfrfr.-i))) * * " K , , 
A 

<5.13b) P(O-(T)) = p(7r(cf)) for xeN,, 
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(5.13c) p(<r(r)) = p(,t(c,)) + 3 ( T * ' ; l *A) (p(n(a,) - p(*(c,))) for r e Z , , 
A 

(5.14) T^(^ = ̂ W^T^^ f 0 r a U T G / -
V(;c(a)) p(7c(a)) 

By (5A4) and by the axiom A2, <j is a possible process of the system x. 
V. We have (2.4) for every x e J. 
Indeed, if T e Jh then by (5.12) there exists ax e Jt such that V(<T(T)) = V(;r(f)), 

and (5.4) implies (with respect to (5.8)) that |V(TC(T)) - V(TI(T))| < <5, therefore 
|V(TT(T)) - V((J(T))| < 5. Moreover, (5.11) and (5.13) imply that for T e Jt we have 

min(p(7r(a l_1)). P W * I ) ) ) - P W O ) - P W C - ) ) -

by (5.4) we have 

|p(-.(c.)) - p(»c(«7t))| < 5 , |p(.x(c,)) - p(7t|a.-_))| < « , 

|p(«(c.)) - P(-.(T))| < a 

and therefore |P(TT(T)) — P(O"(T))| < S. 

VI. The inequalities (2.3) are satisfied. 
Indeed, 

n n 

-4TJ _ V <4rJi «i/*J — V «1/°Ji 

7 Vo<r — _ , T V°<T > r Vorc — 2^ r V»ic » 
i = l i = l 

but (5.12) implies 

therefore 

Moreover, 

but (5.13) implies 

r Woa — r Vo<r + ' Vo<r ^ ' Vo<r J 

^ ^ І _ ҶГLІ — 0 -^"^1' — ҶҐJi 

r Vo<т "— y Vo<T ~ u > ' Vo<т ~ ' V°я > 

-гWi _ V/^І ' . W _ n(ГJ 

r Votт ~" ' Voя > ' Vo<т — r Voл 

v^J _ v ^rJi ~jrJ __ v ^rJi 
' po<T _ , ' po<T > ' polX _ , r poJT > 

i = l t = l 

<ýrJi _ ^ ^ i i- ^ ^ i _i_ 'VLi 

r po<T ' po<T • ' p o t T ' r po<T > 

^ - | p ( w ( c l ) ) - p W f l I _ 1 ) ) | , ^ - 0 , 

* ^ = |p(^(a,.)) - pC«C«f»| . 
therefore 

*% = |PWa,.)) - pWc,.))| + |pWc)) - P ( « ( - . - I ) ) I ^ ̂  • 
therefore 

Y^J < ^/*J 

' poor = r port * 

VII. From I, IV, V and VI we obtain 

(5-15) |«7_._ - «J,.,| < h • 

11 



VIII. We will calculate qXt<T. By the axiom A5, we have 
n n 

(5-1 6) 4*,. = _L °*,-|-, = I ! (lx,<,\K, + <lx,«\N, + 4„,.|L.) • 
i = l i = l 

Theorem 4.3 with respect to (5.12a), (5.13a), (5.14) and to Theorem 3.7 implies 

<IX,<,,\K, = cv(x) j.(x)(T(<T(a,_! + iA)) - T(<r(a,_.))) = 

= cv(x) tfx) {V(<r(a,_. + *_.)) p(<r(a,_ . + *_.)) -

-V(a(a l . 1 ))p(a(a l . 1 ))} T ( ? r ( a ) ) -
V(„(a)) p(„(a)) 

= cv(x) „(*) V(*(a,_ 0) ( P «c,)) - p(„(a,_,))) i - L = 
R^(x) 

= i cv(x) V ^ a , . . ) ) (p(*(c,)) - pMa,..))) , 

and similarly (with respect to (5.12c) and (5.13c)), 

«x..|t, = <v(*) /x(x) (T(<r(a,)) - T(<r(a, - i_l))) = 

= i cjx) v ( * M (PW-«)) - P W « , ) ) ) ; 

Theorem 4.4 with respect to (5.12b), (5.13b), (5.14) and to Theorem 3.7 implies 

<Z*,.|N, = c„(x) fi(x) (T(<r(a, - •}_!)) - T(<r(a,_1 + JJ))) = 

= <,(*) AtW {V(cr(a, - -JJ)) p(<r(a, - *__)) -

- V ( . ( a M + *_.)) p ^ a , . . + *_.))} ^ f . = 
v(»(a)) P « a ) ) 

= ..(*) „(*) PWC,)) (V(„(a,)) - V«a,_ t))) i - i - = 
i?Mx) 

= ic p (x)pKc j ) ) (VKa,))-VWa,_ 1 ) ) ) . 

Thus we obtain . . 
<lx,<f\Ji = Qx,<r\Ki + qjc,<r|JVf + Qx,<r\Li = 

= i cv(x) {V(>.(fll_.)) (p(„(c,)) - ?(„(«,_/))) + 
K 

+ W(n(al))(p(n(a^)-p(n(c,)))} + 

ic.(x)p(«(c ł ))(VWв,))-V(я(a ł . 1 )))-
Я p 
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l- cv(x) V(я(a._.))(p(я(a,)) - p(я(a,_.))) + 
R 

+ ic p (x)p(«(c l ) )(V(n<a,))-V(«(a l . 1 ) ) ) + 
l\ 

+ ± <VM (VWa,)) - V^a,., ) ) ) (p(;r(ai)) - p(n(ct))). 
K 

If we substitute this result into (5.16), we obtain 

(5.17) qx,a = 1 cv(x) £ V(;t(ai_ .)) (p(^(ai)) - p ^ a , . . ) ) ) + 
_R i = i 

+ è<>(*)І PШ)<УШ) ~ vWfl,-,))) + 
я i = l 

1 
+ £ -vto E (V(^(fli)). - V«a ,_ , ) ) ) (p(7r(al)) - p^c,))) • 

K i-=l 

IX. By III, we have |p(rc(a;)) — p(^(^/))| < $ for * = 1, 2 , . . . , w. Therefore, from 
(5.3) we obtain 

ìcv(x)Ê(V(я(a ř ) ) - V(я(ał_1)))(p(я(ał)) - ?Ш)) 
K i = l 

< 

= ± - v M I . |VWaf)) - V(<a ř_.))| . \P(n(a$ - p(n(c$\ < 
R Í=Í 

< - cy(x) Rs 
R 1 + 4cv(x) тГj., І=I 

= Ф) 

Z|v(»(-.))-v(*(fl,-,))| 

1 + 4cv(x) Гi„ 
<ir3 <- Lp 

,_f ' VoTC ^ 4 f c • 

X. Using (5.17), we obtain 

*-.* - { {CPW J*P WO) dVW0) + cv(x) J v«0) dp WO)} 

= |.»., - _...| + |a ; C i.-i{cp(x)J f 'p(7r(0)dV(7r(0) + cv(x) J V(„(.)) dp(„(.))} 

= | q * . л - qjc,<r| + ic v (x)f V(„(a._.))(p(..(_.)) - ?(„(«._.))) + 
R i = l 

+ ^PWIPWci))(VKař)) - V«_M))) + ̂ c v(x)f (V f̂l,)) - VWa,.,))). 
R Í = I _R i = i 

. (P(n(a,)) - P(n(c,))) - i {cp(x) J* P W0) dV(ir(ř)) + cv(x) Jv(n<.)) d P W 0 ) } 
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š \qx.« - qx,«\ + ~cy(x)\І V(Я(вl.1))(p(я(-«)) " PW«.-. - l ) » -

- jV(0)dP«o)J| + \±ф) [É Р(Я(С,.))(П<«,)) - vwe,.,))) -

-Jb

P(*(0)dvKO)} -vtoECW) - v ^ o ) ) ^ . ) ) - P«C<))) 
i = l 

By (5A5), (5.7), (5.6) and by IX, we conclude that 

1 |«.- " { { s (*) J W ) ) dV«r)) + cv(x) J V«0) dp WO)} < 

< ie + - |cv(x)| r ^ — + - |cD(x)| £-—, + ie < s . 
K ' V W I 1 + 4|cv(x)| K ' p W I 1 + 4|cp(x)| ' 

As e was an arbitrary positive number, we obtain (5.1) from the last inequality. 
Integrating by parts (see [4], Chap. X, § 7, Theorem 147), we can give two other 

forms of (5.1): 

Theorem 5.2. Let J = <a, b} and let nsPjbe a possible process of a system x. 
Let (x, n, q) e Q. Then 

'" + (5.18) 

(5.19) 

9 = ±{(Ф) - Ф)) J PWO) dVW0) 

f ф)(У(п(Ь)) p(n(b)) - У(4а)) Р(п(аЦ, 

Ч = ~R [(cv(x) - cp(x))£vK0)dp(^(0) + 

+ ф) (V(n(b)) р(Щ) - У(п(а)) р(л(а)))J . 

Theorem 5.3. We have cp(x) > cv(x) > Ofor every x e X. 

Proof. By the axiom Al, there exists a possible state sx = (Vl9pi9 Tt) of the 
system x. Put J = <0, 2) and define processes TIE Pj, ce Pj in the following way: 

n(t) = (V, + t, p., (Y. + 0 r./F.) for * e <0, 2> , 

<T(0 = (Vx + f, Pt + t, (p. + 0 (P. + 0 -Ti/Pi^i) f o r f e <0, 1> , 

a(t) = (K. + f, p t + 2 - «, (p.. + 2 - 0 (^i + 0 -VPiPi) f°r < e <-. 2> • 

By the axiom A2, n, a are possible processes of x. By (5.18), we have 

*-.« = ̂  |(CP(*) - cvW) j'/'i d (n + 0 + -v(*) ((n + 2) p. - VxPx)} , 
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<?,.„ = j kcjix) - cv(x)) ( j % . + t) d(K, + 0 + j " V + 2 - 0 d(V, + o) 

+ cw(x)((V1 + 2)pl-VlPl)\. 

As <?*,„ < qx,a by the axiom A9 and R > 0 by Theorem 3.6, this yields 

(cp(x) - cv(x))f -1d(K1 + 0 < 

(cp(x) - cv(*)) ( f \Pl + .) d(V. +t) + j \ P l + 2 - 0 d(K. + .)) -< 

But 

| Pid(^i + 0 = | . P i d ^ = 2Pi , 

P(PI + OdCi + >> + [ (PI + 2 - OdCi + 0 = 

= [ (Pi + 0 dt + f (Pi + 2 - f) dt = 2Pi + l9 

therefore 
(cp(x) - cv(x)) . 2Pl < (cp(x) - cv(x)) (2px + 1) 

hence cp(x) > cw(x). Finally, cVvx) > 0 by Theorem 4.5. 

6. AUXILIARY THEOREMS 

In the Chapter 7 we will study special processes called adiabatic. For this purpose 
we need some theorems about the Riemann-Stieltjes integral that we are now going 
to express. The proofs of these theorems we leave to the reader. 

Theorem 6.1. Let f, g, h be continuous real functions on an interval <a, fe> and 
let g, h have bounded variation on <a, &>. Then 

rb rb 
ífd(gh)= Cfgdh+ Cfhdg 

J a J a J a 

Theorem 6.2. Let / , g be continuous real functions on <a, ft>, let g have bounded 
variation on <a, b> and let g(t) > 0 for all te <a, b>. Let y be a real number. 
Then 

rb rb 
Г/dИ^ľľV^dű 
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Theorem 6.3. Let f, g be real functions defined on <a, b>. Let f be continuous 
on <a, by and letf(t) > Ofor all t e <a, b>. Let a have bounded variation on <a, b>. 
Then 

Í fdg = 0 

for all a, P such that a^a</?_b/f and only if g is constant on <a, b>. 
Now, we are going to express several theorems that will be useful in Chapters 8 

and 9. 

Theorem 6.4. Let f, g be real functions defined on <a, by. Let f be continuous 
on <a, by and g increasing on <a, by. Letf(t) ^ Ofor all t E <a, fc> and letf(c) > 0 
for some c e <a, fc>. 

Then 
rb 

fda>0. 
: 

Theorem 6.5. Letf, h, g be real functions defined on <a, by. Letf, h be continuous 
on <a, b> and g increasing on <a, by. Let f(t) ^ h(t) for all te <a, &> and let 
f(c) > h(c) for some c e <a, b>. 

Then 
rb rb 

hdg. 
rb rb 

\fág>\h 
J a J a 

Theorem 6.6. Let f0, g0 be real continuous functions on <a, &> with bounded 
variation. Then for any e > 0 there exists a 5 > 0 with the following property: 
tff> Q a™ real continuous functions on <a, b> such that 

|/o(0-/(0l<*. WO-*(0I <* f°ral1 te{a,by 
and 

~jT<a,b> < «jr<a,b> 
r 9 = r 90 » 

then 
rb 

/o dg0 -
J a J c 

fàg < є . 

1. ADIABATIC PROCESSES 

Definition. Let KeK. k process n e PK is called an adiabatic process of a system x 
if it is a possible process of x and (x, n \ J, 0) e Q for every compact interval J 
such that J c K 

Theorems 5.1 and 5.2 immediately yield 
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Theorem 7.1. Let K = <a, ft) and let ne PK be a possible process of a system x. 
Then n is an adiabatic process of x if and only if for any pair of real numbers 
(a, P) such that a ^ a < /? g ft one of the following relations holds: 

(7-1) cp(x) f p(rr(0) dV(n(t)) + cv(x) \\(n(t)) dp(n(t)) = 0 ; 
J <t J <X 

(7-2) (cp(x) - cv(x)) f p(^(0) dV(rt(0) + 

+ cv(x) (%(/?)) p^/})) - Vlrcfa)) p(H(«))) = 0 ; 

(7.3) (cv(x) - cp(x))i\(n(t)) dP(n(t)) + 

+ -P(x) (%(/*)) P(«0J)) - V(.-(a)) p(n(a))) = 0 . 

This theorem together with the theorems from Chapter 6 yields 

Theorem 7.2. Let K = <a, ft) and let ne PKbe a possible process of the system x. 
Then n is an adiabatic process of x if and only if the function 

(7.4) ( P o7r ) (Vo7r ) c ^ ) / c v ( x ) 

is constant on a, ft. 

Proof. For t e <a, ft) denote 

(7.5) L(i) == p(;r(0) V(TT(0)CP(X)/CV(X) • 

The function Lis continuous with bounded variation on <a, ft). By Theorem 7.1, 
n is an adiabatic process of x if and only if (7.1) holds for all a, /J such that a ^ 
^ a < P ^ ft. However, (7.5) implies 

/ ( a , $ = cp(x) [ V ( 0 ) dV«0) + cy(x) f V(«(0) dpWO) = 

= cp(x) rL(0V(7t('))"Cp(* ) / cv(X)dV(tc(0) + cv(*) rV(7c(0)d(L(0V(^(0)-c-(J[) /cv(x)). 

The functions L, V 0 jt and (V o TO~CI>(*)/CV(JC)
 a r e continuous with bounded variation 

on <a, b> and V(7t(0) > 0 for all t e <a, fr>. Theorems 6.1 and 6.2 imply 

/ ( a , 0) = cp(x) f L(0 V(7r(0)-Cp(*)/Cv(;c) dV(n(t)) + 

+ cv(x) j V ( 0 ) L(0 d(V(40)"CpW/cvW) + 

,(x) fv(7C(0)1-c»'(x)/cv(x) dL(0 = cp(x) fL(0 V(7r(0)-CpW/cv(x) d(V(<-(0) + + c 
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+ CN 

f Cv(x) (" ^))fw(<t)) L(í) v «0) - C C p < ' , / c v ( , t ) ] - , dVWO) + 

(x) ^(n^y-^V^UL^) = cv(x) [^(O)1"^^''"^.) 
J a J <x 

But, by Theorem 6.3, / ( a , j3) = 0 for all a, j3 such that a = a < ft = b if and only 
if Lis constant on <a, b>. 

For a system x, denote 

y(x) = cp(x)/cv(x) . 

Theorem 5.3 implies y(x) > 1 for any system x. Theorem 7.2 together with Theorem 
3.7 yields 

Theorem 7.3. If7r is an adiabatic process of a system x, then the following three 

functions are constant: 

(7.6) (p o 71) (V o -.)*->, 

(7.7) (To7t)(Vo.t)rf->- i, 

(7.8) ( T . - ) ' W ( p , - ) ' - * ' . 

If one of these functions is constant, then n is adiabatic. 

Proof. Put p(n(t)) V(n(t)yw = L(t). As by (3.4) we have 

V(-.(.)) = R n(x) T«0)/PW0) . PWO) = * !<(*) T(*K0)/V(«(0) . 
we obtain 

TW0)V(7r(0r)-1 = L(0/(R^))J 

T(;r(0)y(x) p(n(t))l-'M = L(0/(-V(x) fa)™) , 

therefore either all three functions are constant or all three functions are non-
constant. However, (7.6) is identical with (7.4). 

8. CONSISTENCY OF THE SYSTEM OF AXIOMS 

We will prove that the theory formed by typifications (T l ) . . . , (T4) and by axioms 
Al, . . . ,A9 is consistent, provided the theory of real numbers is consistent. The 
proof will be carried out by constructing, in terms of the theory of real numbers, 
a model fulfilling all the above axioms. 

In our model, the term X will be the set {l}, containing the single number 1. The 
structural terms will be defined as follows: 
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(*T1) xQ = 1; 

(*T2) ^ -- 1; 

(*T3) (x, (au a2, a3)) e Wif and only if x = 1 and a.a2/a3 = 1; 

(*T4) (x, n, q)e Q if and only if x = 1, n e P<a,b->> (*> w) e Wand 

(8.1) q = 2 rP(7r(0) dV(n(t)) + Pv(*(0) dp(.r(.)) • 

Theorem 8.1. The model described above fulfils all axioms Al,..., A9. 

Proof. The validity of axioms Al, A2, A3 and A5 is obvious. 

Verification of the axiom A4. LetxeX, J = <a, &> and let n e Pj be a possible 
process of x. If s > 0, then, by Theorem 6.6, there exists a St > 0 such that if a e Pj 
is a possible process of x such that 

\V(n(t)) - V(a(0)| < <5. , | p « 0 ) " P W 0 ) I < <*i for all ( e J 

t then 

jbp(n(t))dV(n(t))-^p(v(t))dV(a(t)) 

and if ~ ^ „ < y ^ then 

<łe, 

and there exists a <52 > 0 such that if a e Ps is a possible process of x such that 

| v(«(0) - V W 0 ) | < $2 , | P W 0 ) - P ( * ( 0 ) | < *2 for all f e J 
a n d i f Г ^ f f < < 0 Я t h e n 

Ґv«0)dp(7r(0)-ľvW0)dpW0) 
J a J a 

<łв. 

If we put S = min (o\, S2) and if <x e PJ is a possible process of x such that (2.2), 
(2.3) and (2.4) hold, then (*T4) gives 

\q - r\ = \l Cp(n(t))dV(n(t)) + f\(n(t)) dp(n(t)) -
I Ja Ja 

- 2Jfcp(a(0)dV(a(0) - jVW0)dp(«x(0)| < 

< 2 J j V ( 0 ) d V « 0 ) - j%W0) dV(a(0)| + 

+ I Pv(tt(0)dp(H0) - [V(0)dp(<7(0) < £e + |8 = e , 
I J a J a 

therefore (2.5) holds. 
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Verification of axioms A6 and A8. Let J = <a, b>, let n e Pj be a possible 
process of x and let V(.r(f)) = V0 for all t e J. Let (x, it, q) e Q. Then, by (8.1), 
we obtain 

q = JV0 dp(ít(0) = ^(ptø*)) - P(«(«))) 

But (*T3) yields T(TC(.-)) = V(n(t)) . p(n(ij) for all t e J and therefore 

(8.2) q = T(n(b))-T(n(a)). 

This implies the axiom A8. 
In the same way, if a e Pj is a possible process of x, V o a is constant on J and 

(x, cr, r) e Q, we obtain 

(8.3) r = T(c(b))-T(c(a)). 

The axiom A6 follows from (8.2) and (8.3). 

Verification of the axiom A7 is analogous to the verification of the axiom A6# 

Verification of the axiom A9. Let J = <a, b>, let n e Pj9 a e Pj be possible 
processes of x, let V(7c(f)) = V(cx(f)), p(n(f)) = p(<K0) f o r all t G J, let V o TT = V o tr 
be increasing on J, p(7c(a)) = p(o"(a)), let P(TC(T)) < P(^(T)) for some T G J, and let 
(2.2) hold. Then (*T4) implies (by integrating by parts in the second integral (8.1)) 

<l 

and similarly, 
ŕb 

r 

("p(n(t))dV(n(t)) + V(n(b)) p(n(b)) - V(n(a)) p(n(a)) 

JЬp(Ч0) dV(Ч0) + УШ) PШ - V(a(a)) pЦa)) . 

Further, 

V(n(a)) p(n(a)) = V(a(a)) p(a(a)), V(n(b)) p(n(b)) = V(<r(b)) p(<r(b)) 

and by Theorem 6.5 we have 

fpWt))dVWí))<fpWt))dV(a(ř)), 
J a J a 

therefore q < r. 

9. INDEPENDENCE OF THE AXIOMS 

We will now prove that axioms Al,..., A9 are independent (if the structural terms 
are given by typifications((Tl), ...,(T4)). To this end we shall construct, in terms of 
the theory of real numbers, models, each of them fulfilling all axioms Al,..., A9 
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except one. We leave the verification of the axioms to the reader, noting only that 
Theorems 6.5 and 6.6 will be useful. 

In each of these models, the term X will be the set {1}, containing the single num­
ber 1. The structural terms x0, \t0 will be always given by (*T1) and (*T2) from 
Chapter 8. Each model will be defined by giving the structural terms W and Q. 

Independence of the axiom Al. 

W = 0 , Q = 0 (empty sets) . 

Independence of the axiom A2. 

(xu (au a2, a3)) e Wo x = 1 , ax = a2 = a3 = 1, 

(x, n, q) e Q <=> x = 1 , TT is constant, q = 0 . 

In all the other models, the term W will be defined by (*T3). It remains to define 
the term Q in each model. 

Independence of the axiom A3. Q = 0 (empty set). 

Independence of the axiom A4. 
(x, n,q)eQ if and only if x = 1, n e P<a,b> and either (8.1) holds or none of the 
functions p o n, V o n is monotone on <a, b}. 

Independence of the axiom A5. 
(x, n, q)e Q if and only if (x, n)eW,ne P<a,&> anc-

q= (b - a)(l j"p(n(t))dV(n(t)) + j\(n(t)) dp(n(t))) . 

Independence of the axiom A6. 
(x, n,q)eQ if and only if (x, n) e W, n e P<atb> and 

q = 2 Cp(n(t)) dW(n(t)) + f*(VW0) + arc tS VM'))) <-K»(0) • 
J a J a 

Remark. 9.L This model represents the theory in which the specific heat by con­
stant volume depends on the temperature. 

Independence of the axiom A7. 
(x, n,q)e Q if and only if (x, n) e W, ne P<0fby

 ar-d 

q = 2 ["(1 + p(n(t)) dV(«(r)) + !\(n(t)) dp(n(t)) . 
J a J a 

Independence of the axiom A8. 
(x, n,q)eQ if and only if (x, n) e W, n e P<atb> and 

rb 

q= (p(n(t))dV(n(t)). 
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Independence of the axiom A9. 
(x, n,q)e Q if and only if (x, n) e W, n e -P<a,&> and 

q = J*p(«(0) dV(«(0) + 2 j*V(«(0) dpMO) • 

Remark 9.2. In this model, the specific heat by constant volume is greater than 
the specific heat by constant pressure. 
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Souhrn 

MATEMATICKÉ ZÁKLADY THERMODYNAMIKY IDEÁLNÍHO PLYNU 

MILOSLAV JŮZA 

Článek je pokusem o matematicky přesné zavedení základních pojmů thermodynamiky ideál­
ního plynu. Je zaveden systém axiomů a z něho odvozeno několik základních vět. Pak jsou 
definovány a studovány adiabatické procesy. Nakonec je dokázána bezespornost a nezávislost 
používaných axiomů. 

Резюме 

МАТЕМАТИЧЕСКИЕ ОСНОВАНИЯ ТЕРМОДИНАМИКИ ИДЕАЛЬНОГО ГАЗА 

МI^08^АV 1й2А 

Статья является попыткой найти математически точную формулировку основных понятий 
термодинамики идеального газа. В основу положена система аксиом и из неё выведено не­
сколько теорем. После этого определены и изучены адиабатические процессы. В заключение 
доказаны непротиворечивость и независимость аксиом. 

АшНог'з аййгеаа: 8 а з а п ^ 4 2655, 106 00 РгаЬа 10. 
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