
Časopis pro pěstování matematiky

Václav Alda
Boolean embeddings and hidden variables

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 3, 284--295

Persistent URL: http://dml.cz/dmlcz/118324

Terms of use:
© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118324
http://project.dml.cz


112 (1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 3, 284—295 

BOOLEAN EMBEDDINGS AND HIDDEN VARIABLES 

VÁCLAV ALDA, Praha 

(Received January 22, 1985) 

Summary. In this paper, two known methods of embedding a quantum logic or more generally 
an orthocompbemented poset in a Boolean algebra are considered. Some simplifications in the 
proofs are introduced. It is also shown on an elementary example that the existence or non­
existence of hidden variables depends on the definition of hidden variables and on the space 
states which can be realized on the considered system. 

Keywords: orthocomplemented posets, hidden variables. 
AMS Classification: 81B. 

Since the foundation of quantum theory, there has been a search for the description 
of quantum theory as a theory of the classical system where a part of the coordinates 
is unknown and the behaviour is governed by the laws of probability. 

Therefore it is necessary to extend the description of a system with additional 
variables. If we take as the basis of the description the set of possible questions (yes — 
no experiments), then it is necessary to extend this set to a Boolean alebra which 
serves as a basis for the description of a classical system. 

In the following, we shall give the survey of two methods which were developed 
for the solution of this task. Some simplifications, a slight generalization, and some 
corrections are added. 

1. 
The first method of extending the set of yes — no experiments (briefly the logic) 

P to a Boolean algebra is in [ZS]. It is possible to extend this method to a more 
general case: the set P can be only a poset with an orthocomplementation — the weak 
modularity is unnecessary. 

Our assumption is therefore the following: 
P is a poset with the least element 0, the greatest element 1, and an involution 

x -*• x': 
x" = x , x — y => y' — x' and x A x' = 0, X V X ' = 1 . 

Let C be a subset which has the following properties: 
CI) it is a Boolean algebra with regard to the ordering induced by P and to the 

functions of P, 
C2) if x, y e C, z e P, then z A (X V y) = (z A X) V (Z A y). 
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If P is an orthomodular poset with existence of sup for orthogonal elements, 
then the properties CI, C2 give that C is a subset of center. 

If Q is another poset with the same properties as P, then a function h: P -> Q 
is called a homomorphism if 

(1) x = y ^ h(x) = h(y), h(0) = 0, 
(2) h(x>) = (*(*))', 
(3) if x, y e C and h(x) v h(y) exists, then h(x v j;) = h(x) v h(y). 

Remark. It would be better to speak of a homomorphism of (P, C) in Q. If P is 
a Boolean algebra, then we shall suppose that C = P. 

An ideal in P (more correctly in (P, C)) is a non-void set / with the properties 
(4) x e / and y = x => y e / , 
(5) / n /' = 0, 
(6) if x, y e C n / , then x v y el. 
We shall suppose that our poset P has more than one element and so 0 4= 1. The 

kernel h_1(0) of a homomorphism h: P -> Q is an ideal. 

Lemma 1.1. Every ideal is contained in a maximal ideal. 
This follows from Zorn's lemma. 

Lemma 1.2. If x' _ x, then x = 1 (or if x 4= 1, then x' _ x does not hold). 

Proof. If x' = x, then 1 = x v x' = x. 

Lemma 1.3. If I is an ideal and x' 4 /> then there is an ideal which contains I and x. 

Proof. Let J = E\_y | y = x] , K = E[z | z = wvt>, w e / n C , ve J n C], 
I1=IuJuK. 

If r\ = £el (J,K resp.), then rjel (J,K resp.) and so (4) is satisfied. 
Now to (6). Let £, r\ e Ix n C. Then there are substantially six possibilities for the 

distribution of f, n in / n C, J n C, K n C. It is an easy consequence of CI, C2 and 
(4) that £ v r\ e Ix n C in all cases. 

Now the proof of (5). Let £, £' e / x . f, £' e / u J is impossible. So we have, for 
example, £ e K, hence £ ^ w v u , w e / n C , u e J n C . We have w v v e K n C, 
and w' A v' e C. Because w' A v' = ^ ' e / ^ so w' A I;' e / t by (4). It is w v y v 
v (w' A v') = 1 G /x by (6). Hence »h v q2 = 1 with ^x e / n C, ?/2 e J n C (because 
1 does not belong to / u J), r\2 = n'2 A t]i = ^^ But ?/2 = x' and so x' e I — a con­
tradiction. 

Lemma 1.4. Ify^x does not hold, then there is an ideal which contains x and 
does not contain y. 

Proof. In Lemma 1.3, we choose / = E[z | z = x] . There is an ideal which con­
tains / and y', and hence it does not contain y. 
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Lemma 1.4'. If x 4= y, then there is an ideal which contains exactly one of the 
elements x, y. Hence there is a maximal ideal with this property. 

Lemma 1.5. An ideal I is maximal iff I u / ' = P. 

Lemma 1.6. The kernel of a homomorphism P -> Z2 is a maximal ideal. For 
x =)= 0 there is a homomorphism (p: P -> Z2 such that <p(x) = 1. 

Proof. Because ft(x') = (ft(x))', the kernel is an ideal and by Lemma 1.5 it is 
a maximal ideal. If we set ft(x) = 0 for x e I (I a maximal ideal) and ft(x) = 1 other­
wise, then ft is a homomorphism P -> Z2. 

Theorem 1.1. Let P be given. There is a Boolean algebra A and a homomorphism 
a: P -> A that for a homomorphism 0: P -> B,B a Boolean algebra, there is a unique 
factorization /? = x ° a» X is a homomorphism A -> B. If a(x) :g a(y), then x = y 
and so a is infective. 

Proof. For x e P, let Ex be the set of maximal ideals which do not contain x« 
Let A be the Boolean algebra generated by all Ex in the set of all maximal ideals-
Let a be defined by a(x) = Ex. Then a satisfies (l) and (2). If x, y e C, then x v y _ 

= x, y, and so Exyy ^ Ex u Ey. If a maximal ideal I is in Exyy, then it does not 
contain x v y, hence it cannot contain x, y simultaneously. It is, therefore, in 
Ex or Ey, and so a(x v y) = EXKJ Ey. 

a is, therefore, a homomorphism from P to A. 
Let B be another Boolean algebra and /?: P -> B a. given homomorphism. 
Every element of A is of the form <̂  = (J f) a(x0), xu e P. We set x(£) = V AP(xij)-

i k i k 

If 

(*) u n*(XiJ) = u n«fo.i) 
i j k I 

and £ = V AP(xij) + V AP(yu) = */> then there is a homomorphism ft: B -> Z2 
i y fc i 

such that, for example, ft(£) = 0, h(rj) = 1. 
Because ft is a homomorphism, we have V Ah(P(xij)) = 0. If / is the kernel of 

i 1 
the hompmorphism ft o />: P -> Z2, then for every i there is such j(i) that h(p(xij{i))) = 
= 0. Hence x0(f> e 7, and 7 $ a(^i;(o)- I does not belong to the right-hand side in (*). 
Therefore, for every k there is l(k) such that ykm e I, and hence ft(V A(P(yki))) = 

k i 

= 0 — a contradiction. We can set x({J C\^(xij)) = V AP(xij), and x is uniquely 
i J i J 

determined on all A. The rest follows from Lemma 1.4. 

Remarks . 
1. If a is considered as a functor from the category P to the category A, then a 

is full and it is faithful because there are no two distinct morphisms from x to y in P. 
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2. We have supposed that x -* x'is an orthocomplementation. If C = (0,1), then the 
assumption x v x' = 1 is used only for the proof of Lemma 1.2. Hence we can 
suppose that the involution x -> x' satisfies this lemma only. 

However, this is necessary. If x' = x 4= 1, then there is no maximal ideal not 
containing x' which contains x. 

2. 

We shall now describe the second method which is given in [M]. The method 
depends on a subset S of the given orthocoomplemented set P. 

Let P be a poset with orthocomplementation x -> x' and let S be a subset of P. 
For a set M c S, let M r be the set of minimal elements from M. We set M * N = 
= (M u N)r for M , i Y c 8 . Let S be the family of finite subsets M c= S which 
contain minimal elements only. S with the multiplication * is an abelian idempotent 
semigroup whose unit element is 0. 

Let -4i(S) (or A1 when S is fixed) be the space of functions from S to Z2 that have 
finite support. For M c S let M be also the element from A1 whose support is 
exactly M. 

The multiplication * can be extended from S to A1 by the distributive law. The 
unit 1A for this multiplication is the function which has the value 1 (e Z2) for 0 e S 
and the value 0 otherwise. 

With this multiplication, A1 is a Boolean ring and we can introduce the lattice 
operations there: 

x ^ y ox* y = x , x A y = x * y , 

xvy = x + y + (x*y), 

and the orthogonel complement x' = 1 + x. 
We have the following lemmas. 

Lemma 2.1. IfM, Nl9 N2,... e S and M ^ £Nk , then M g Nt for some i. 

Proof. We can suppose that all the right-hand side terms are distinct. M ^ £Nk 

means M = £ M * Nk and hence on the right-hand side there is a term, say M * Ni9 

equal to M. But M *Nt = M yields M g Nt. 

Lemma 2.2. If M, Nl9 N2,... e S and M ^ \/Nk, then M S Ni9 for some i. 

Proof. \/Nk = £Nfc + X Nkl*Nk2 + . . . and so M = Nkl *N* 2 . . . for some 
k ki<k2 

indices kt < k2 < . . . . Therefore M <; Nki,Nk29.... 

Lemma 2.3. If WMk = Wi> M*> -V, e S, f/zen for everj Mk there is such Nm 

that Mk = Nuky 
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Proof. We have Mk S V-^/ f°r every fc. 
Up to now, we have used only the fact that P is a poset. Now, we shall reconsider 

the situation in Section 1, i.e., P is an orthocomplemented poset with the greatest 
element 1P (or 1) and the least element 0P (or 0) and with the orthocomplementation 
x -> x' as in 1. We set S' = E[x | x' e S], 

If S contains 1P, then there is the function (1P) in Ai and this function is covered 
by the function 0. If we omit this function (that is, we consider only non-void sets in S), 
then the function (1P) becomes the unit element in A±. 

A similar situation occurs for the least element 0P; the function (0P) e Ax covers 
the zero-function eAt and is the least element in Ax after omitting this function. 
This would be inconvenient because we need the zero-function and so we shall 
suppose that 0P £ S. 

In the following, we shall suppose that 1P€ S (in the terminology of [M]: S is 
unitary). 

As we have selected a subset S in P, we must modify the notion of homorphism. 
A function h defined on S u S' to a Boolean algebra B will be called a homo-

morphism iff 
(1) x, y e S and x _̂  y => h(x) S h(y)> 

(2) x, x' e S => h(x') = (*(*))'• 
There is no loss of generality if we suppose that h(lP) = 1B. 
If we set ax(M) = M for M e S, then at is an order-preserving function from S 

to Ax. We can extend at by setting cct(x') = (1P) + (x) if x e S and x' <£ S. 
We shall denote by I the ideal in At that is generated by all expressions (1P) + 

+ (x) + (x') for x, x' e S. Let n be the canonical projection Ax -> A^I = A2 and 
a 2 = 7i o a 1 . 

Lemma 2.4. a2 is defined for x e S u S' and has the following properties 

(3) x, y e S and x _ y => a2(x) _̂  %2(y), 
(4) x e S => a2(x') = (a2(x))'. 

Proof. (3) follows from the fact that x = x * y in Ax is preserved in A2. 
If x e S and x' <£ S, then (4) is valid due to the definition of at. 
If x, x' e S, then (4) follows from the definition of I. 
From now on, we shall suppose that S is a base, that is, S u Sf = P. Hence 

au a2 are defined on the whole P. 

Lemma 2.5. If Sl9 S2 are two bases and St c S2, then A2(S2) is a homomorphic 
image of A2(S1). 

Proof. There are homomorphisms A^S^ -> At(S2) -> ^2(^2)- The first is given 
by the inclusion St c: S2. If x, x' e Sl9 then x, x' e S2 and hence every generator 
(1P) + (x) + (x') of I(Sj) is in I(S2) and hence we have a homomorphism A2(SX) -> 
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-* A.2(S2). On t u e other hand, every element of At(S2) can be transformed to an 
element of AX(S2) mod I(S2) and so A^Sx) -» A2(S2) is onto. 

The implication (3) can be reversed. 

Lemma 2.6. If a2vx) = a2(j) for x, y e S, then x = y. 

Proof. If x ^ y does not hold, then there is a maximal ideal I in P which contains >> 
and does not contain x (see Lemma 1.4). Let <p be the homomorphism P -> Z2 with 
the kernel I. 

If { G S and £ = (xx) * ... * (xk), then we set <p(£) = <p(xi) ... (p(xk). 
If £ _ *7, £, >7 e ®, then <p(£) = <p(£). </>(>?): if <p(£) = 1, then <p(*?) = 1 too, and 

if (p(£) = 0 then both sides vanish. Hence (p(£ * tj) = <?>(£)• <K*i)- Therefore 9 can 
be extended on At(S). If & {' e 5, then <K(1F) + (£) + (£')) = 1 + <P{Z) + <KO = 
= 0, and so <p is defined on A2 = AX\I. We have q>(<x2(x)) = 1 and <p(a2(y)) = 0, 
and so a2(y) _ a2(x) cannot hold. 

We shall show that Lemma 2.1 is not valid in A2(S). P is the poset in Fig. 1. 

Fig. 1 

We choose S = (a, b, bf, 1P). In A2(S) we have (b) + (bf) = (1P) and therefore 
(a) _ (b) + (bf). Let <p be P -+ Z2 such that <p(lP) = <p(a) = <p(bf) = 1, p(a') = 
= cp(b) = </>(0P) = 0. (p is a homomorphism with (p(a) > q>(b) but not (a) S (b). 
Similarly, (a) ^ (bf) does not hold. 

Theorem 2.1. Let B be a Boolean algebra and h: P -> B a homomorphism. Then 
there is a unique homomorphism x' A2(S) -» B such that h = % o a2. 

289 



Proof. We set *((x)) = h(x) for x e S. If M = (xx) * ... * (xfc), we set *(M) = 
= h(xx) A ... A h(x*). x is defined on S and if (x) = (y) * (z), then x((x)) = h(x) = 
= h(y) A h(z) = x((y) * (^))- We can extend x t o ^i(S) by linearity. 

If x, x' G S9 then h((lP) + (x) + (x')) = 1B + h(x) + (h(x'))' = 0, and therefore x 
is 0 on I. x is defined on A2(S) = A^I and is unique. 

Corollary. If S = P (or P — (0)), fhe/i _42(S) /rom Theorem 2.1 is isomorphic 
with A from Theorem 1.1. 

This is because the algebras A(2(S) and A have the same property of universality. 
Another proof of Lemma 2.6. Let S be a base, . x j e S and a2(x) ^ a2(>>) in 

-42(S). Now, A2(P — (0)) is a homomorphic image of A2(S) and therefore a2(x) ^ 
1= a2(y) in A2(P — (0)). Theorem 1.1 yields that x ^ y. 

A special case occurs when S n S' = 0; then /42 = Ax and Lemma 2.3 is valid. 
In this case, the homomorphism a2(= ax) has the weakest property (l). This is 

compensated by the possibility of extending the monotone functions on P to a mea­
sure on _42. This is demonstrated in [M] (for states on P, but see Remark 15 in [M]). 
It seems to us that there is a gap in the proof and so we shall give the proof in detail. 

Theorem 2.2. Let S be a base, S n S' = 0 and let jn be a non-negative function 
on P which is monotonic and jti(lp) = 1. Then there exists a measure on A2 which 
is an extension of fi\s. 

The proof is based on the following theorem of Horn and Tarski: 
If M is a subset in Boolean algebra B, 1B e M, and if JJ, is a non-negative function 

on M with fi(lB) = 1, then there is a measure on B which is an extension of fi if the 
following condition is satisfied: 

if (ai9..., am)9 (bl9..., bn) are two sequences of elements from M and if 

(5) V ( A K > " . , 0 ) = V (A(6yi...-,6J) 
<.i....,.k) Ui Jk) 

for every k = 1,..., m, then 

iMziflbj). 
. = 1 J = l 

Remark. This condition is also necessary, but we shall need only this sufficiency. 

Proof. We shall apply this theorem to M = cc2(S) c A2\ al9 ..., bi9... will be 
the element of the form a2(ai),..., a2(b1),... and we shall omit a2. 

If (5) is satisfied, then for every sequence ail9...9aik there is such a sequence 
bjl9...9bJk that every bJs is ^ an element aire(ail9..., aik). This is Lemma 2.3 
applied to Mt = (ah9..., aik)9 Nj = (bJl9..., bjk). 

For k =s 1, there is a non-void set Bt c (bl9..., bn) for every 1 which contains 
those elements bl9.*. which are ^ . , We shall show that for every k elements 
ail9..., aik the set Biv u ... u Bik has at least k elements. 
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For example, if we take (al9..., ak), there are such fc elements (bJl9..., b,k) that 
every bJs is ^ an element G (a l 9 . . . , a*). Therefore Bt u ... u Bk contains bJl9..., by/c 

and so I^ u ... u Bk has cardinality at least fc. 
By a known theorem [HV], there is an injection <p: (al9...)-» (bl9...) such that 

<Kai) = bmeBr 
We divide the sum ]TKb/) in two parts: the first over bj{i) and the second over 

the other bj. From the monotonicity we have 

XXft1(o) = EK^O 
i i 

and the second part _0 as /x is non-negative. The assumption of the Horn-Tarski 
theorem is satisfied and so \i has an extension to a measure on A2. 

Remark. 1) In [M] the theorem of [HT] is applied for fc = 1 and fc = m only. 
However, this does not suffice as the following example shows. 
We have m = n = 3 and the elements (al9 a2, a3)9 (bi9 bl9 b3) are ordered as 

shown in Fig. 2. 

Fig. 2 

If the function \i is such that 

^(bi), ii(a2)9 n(a3) are great 

and 
//(ai), //(bt)> n(b2)

 a r e small, 

then we cannot conclude that J]Kad = E^(^y)' ^n despite of the fact that (5) is 
satisfied for fc = 1, 3. 
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2) In [M], such a Hilbert space H(S) is constructed that every x e P is represented 
by a one-dimensional projector. The construction depends on the base S and the space 
H(S) is rather the space of Hilbert-Schmidt operators of the usual (von Neumann) 
formulation. This is similar to Gudder's construction in [G]. 

It would be desirable to have, in H(S), a multiplication so that H(S) becomes 
a Hilbert algebra. Then it may be possible to find von Neumann's formulation of [M]. 

3. 

The problem of hidden variables for a system is to extend the description so it 
becomes a description of a classical system. 

For von Neumann's description with a Hilbert space, such an extension is im­
possible. For the description through a quantum logic, this problem was solved 
by Jauch and Piron [JP]. They excluded the introduction of hidden variables, too. 
But there is a discussion by Bohm and Bubb [BB] which was followed by a remark 
of Gudder. 

The problem with hidden variables is that it is not exactly stated what should 
be done and von Neumann's proof is rejected as not solving problem proper. 

We shall present a simple example and show the situations which can occur. 
The basis for the description will be a set of yes-no experiments L which is a poset 

with orthocomplementation as was P in 1. But the description must contain also 
the set of states. We must make a difference between the set of all states — functions 
from Lto <0, 1> — and the set of states which can be observed. The latter set can 
be smaller. This set of realizable states S must fulfill some conditions connected with 
the order in L. The strongest condition is that the set S of possible states is strictly 
order determining: (s(a) = 1 => s(b) = 1 for all s e S) => a g b. This implies that S 
is order determining [P] (or full in [ZS]), hence S is separating and L is weakly 
modular. Further, there is a state se S such that s(a) = 1 if a =f= 0. We shall suppose 
that S is full, and that there exists a state s with s(a) = 1 for a 4= 0, and that S is 
convex. 

The pair (L, S) will be called a system. 
The existence of hidden variables means: 
1) there is a Boolean algebra B and a homomorphism <p: L -> B, 
2) every state se S can be extended from cp(L) to a probability on B, 
3) the algebra B and the extended states form a system. 

Lemma. Let B be a Boolean algebra and S a set of states on B. (B, S) is a system 
iff for every a 4= 0 there is a state such that s(a) = 1. 

Proof. We have to show that S is full. Let a,beB and not a ^ b. Then x = 
= a A b' =t= 0. There exists a state a e S such that <r(x) = 1, and we have a(a) = 1, 
a(b) = 0. Therefore s(a) = s(b) does not hold for se S. 
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We have seen that there exists a Boolean algebra A and a homomorphism a: L -> A, 
and that a is mono. By [ZS], every state s which can be extended to B can be extended 
to A. The solution is given by the theorem of Horn and Tarski [HT]. 

Theorem. If al9..., am9 bl9..., bn are elements from L, se S and 

(*) U («(«,,) n . . . n o ( a J ) s U M tV) n ... n «(6yJ) 
(«1 -k) (11 Jk) 

for every k = 1, ..., m, fhen fhe rc.s.c. for the existence of an extension to a state 
on A is 

m n 

£s(a^Is(b;). 
i = l j = \ 

The condition (*) means that at every homomorphism L -> Z2 which has the value 
1 on k elements a,.,..., aik has the value 1 on some k elements bJt,..., bjk as well. 

This solution is only theoretical. It is possible to establish some consequences. 
For example: 

If for elements al9 a2, blyb2 every homomorphism L-> Z2 which has the value 1 
on a! and a2 has the value 1 on b1 and b2 and s(at) + s(a2) > s(bt) + s(b2), then s 
cannot be extended. 

The condition 3) in the definition of extension is necessary because some elements 
in B would be non-identifiable without this condition. 

Now, we shall consider the logic form Fig. 1. Every state s on Lis determined by 
two numbers s(a), s(b) which are from <0, 1>. Because we suppose that S is full, 
the numbers s(a) (s(b)) fill the whole interval <0, 1>. 

The couples (x, y) = (s(a), s(b)) form a convex set in the unit square Q. 
There are four homomorphism L-> Z2, viz hll9 h12, h21, h22, corresponding to 

four pair (a, b), (a, b'), (ar, b), (a', b'), such that hu(a) = hu(b) = 1 and so on. 
So a: L-> A satisfies 

a(a) = (hlu h12), 

cc(a') = (h21, h22), 

oc(b) = (hlu h21), 

a(ft') = (h12, h22). 

A is the algebra of the subsets of the set ( h u , h12, h21, h22). 
Every state on A is determined by four numbers ^ u , ^1 2 , fi21, fi22. If this state 

should be an extension of the state s on L, then 

x = fllt + fl12, 

y = A^n + ."21 , 

1 ~ x = \i21 + \i22 , 

1 - y = i"l2 + ^22 . 
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One solution is fitl = xy, \xY2 = x(l - y),fi2l = (1 - x) y, [i22 = (1 - *)(1 " >0-
After subtracting this solution, we obtain a homogeneous system which has this 
solution 

."12 = /*21 = " r i l l ; A*22 = ^ n -

The complete solution is 

/ i n = x>> + v, JU12 = x(l - y) - v , 

/i21 = (1 - x) y - v , /L22 = (1 - x) (1 - y) + v 

with v restricted by the conditions 

0 = 1Jn,/z12,... = 1. 

If all states are realizable then the solution is complete. 
Another situation occurs when 5 contains only states with x + y ^ 1. Then 

2fi11 + [i12 + ii2i = 1 + (pin ~~ ^22) = 1- Hence \i22 _ \in and the extended 
states have not the value 1 on (h±1), and so we do not have a system. 

This case can be interpreted in the following way. In three-dimensional (real) 
space, we measure spin in two orthogonal directions. For this interpretation, there 
is no Boolean extension. 

Nonetheless, we can have the following extension for the original system: 
the algebra B is generated by three elements Q, a, T and if s is a state on L, then the 

prolongation s on B is 

if s(a) = 1, s(b) = 0, then S(Q) = 1 , s(a) = S(T) = 0 , 

if s(a) = 0 , s(b) = 1, then S(Q) = 0 , s(a) = 1 , s(x) = 0 , 

if s(a) = s(b) = 0, then S(Q) = s(<r) = 0 , s(z) = 1, 

if s is a linear combination of the preceding states, then s is the same combination. 
The both cases differ by the presence or absence of further irreducible states. 
Similar situation occurs when S is the set of states with x 4- y = 1. But now the 

both cases have a Boolean extension. 
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Souhrn 

BOOLSKÉ VNOŘENÍ A SKRYTÉ PARAMETRY 

VÁCLAV ALDA 

V článku je dáno srovnání dvou metod vnoření orthokomplementární uspořádané množiny 
do Booleovy algebry. Dále na jednoduchém příkladu je ukázáno, že existence či neexistence 
skrytých parametrů závisí jednak na definici skrytých parametrů, jednak na prostoru fyzikálně 
realizovatelných stavů. 

Резюме 

БУЛЕВЫ ВЛОЖЕНИЯ И СКРЫТЫЕ ПАРАМЕТРЫ 

VЛс̂ АV А^^А , 

В статье сравниваются два метода вложения ортокомплементарного упорядоченного 
множества в булеву алгебру. Кроме того на простом примере показывается, что существо­
вание или несуществование скрытых параметров зависит как от их определения, так и от 
пространства физически реализуемых состояний. 

АигНог'з а^гезз: Магетайску йзгау С8АУ, 2лта 25, 115 67 РгаЬа 1. 
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