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BOOLEAN EMBEDDINGS AND HIDDEN VARIABLES
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Summary. In this paper, two known methods of embedding a quantum logic or more generally
an orthocomplemented poset in a Boolean algebra are considered. Some simplifications in the
proofs are introduced. It is also shown on an elementary example that the existence or non- -
existence of hidden variables depends on the definition of hidden variables and on the space
states which can be realized on the considered system.
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Since the foundation of quantum theory, there has been a search for the description
of quantum theory as a theory of the classical system where a part of the coordinates
is unknown and the behaviour is governed by the laws of probability.

Therefore it is necessary to extend the description of a system with additional
variables. If we take as the basis of the description the set of possible questions (yes —
no experiments), then it is necessary to extend this set to a Boolean alebra which
serves as a basis for the description of a classical system.

In the following, we shall give the survey of two methods which were developed
for the solution of this task. Some simplifications, a slight generalization, and some
corrections are added.

1.

The first method of extending the set of yes — no experiments (briefly the logic)
P to a Boolean algebra is in [ZS]. It is possible to extend this method to a more
general case: the set P can be only a poset with an orthocomplementation — the weak
modularity is unnecessary.

Our assumption is therefore the following:

P is a poset with the least element 0, the greatest element 1, and an involution
x—-x":

xX=x, xLy=>y £x and xA X' =0, xvx' =1.
Let C be a subset which has the following properties:
C1) it is a Boolean algebra with regard to the ordering induced by P and to the

functions of P,
C2)if x,yeC,zeP,thenz A(x v y) =(z A x) v (z A ).
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If P is an orthomodular poset with existence of sup for orthogonal elements,
then the properties Cl1, C2 give that C is a subset of center.

If Q is another poset with the same properties as P, then a function h: P —» Q
is called a homomorphism if

(1) x < y = h(x) < h(y). h(0) = O,

(2) hx') = (h(x)Y,

(3) if x, y € C and h(x) v h(y) exists, then h(x v y) = h(x) v h(y).

Remark. It would be better to speak of a homomorphism of (P, C) in Q. If P is
a Boolean algebra, then we shall suppose that C = P.

An ideal in P (more correctly in (P, C)) is a non-void set I with the properties

(4) xeI and y < x=yel,

B)InI' =0,

(6) if x,yeCn 1, then x v y€el.

We shall suppose that our poset P has more than one element and so 0 & 1. The
kernel h~*(0) of a homomorphism h: P — Q is an ideal.

Lemma 1.1. Every ideal is contained in a maximal ideal.
This follows from Zorn’s lemma.

Lemma 1.2. If X" < x, then x = 1 (or if x + 1, then x" < x does not hold).

Proof If x’ £ x,then1 =x v x’' = x.

Lemma 1.3. If I is an ideal and x' ¢ I, then there is an ideal which contains I and x.

Proof. Let J=E[y|y<x], K=E[z|zSuvv, uelnC, velnC],
I,=IVJUK.

If n < ¢el (J,K resp.), then n el (J, K resp.) and so (4) is satisfied.

Now to (6) Let &, n eI, n C. Then there are substantially six possibilities for the
distribution of é&,ninIn C, Jn C, Kn C. It is an easy consequence of C1, C2 and
(4) that & v nel; n C in all cases.

Now the proof of (5). Let &, &' e€l;. £, ¢ eI u J is impossible. So we have, for
example, £€K, hence ¢ Suvv,uelnC,veJnC. We have u vveKn C,
and u’ A v'eC. Because u' AV S ¢ €ly, s0u’ Av'el, by (4. Itisu vov
v (4’ A v')=1el, by(6). Henceny v n, = 1 withn, eI n C,n, e Jn C(because
1 does not belong to I U J), 1, =13 A 1y < ny.Butny = x" and so x" el — a con-
tradiction.

Lemma 1.4. If y < x does not hold, then there is an ideal which contains x and
does not contain y.

Proof. In Lemma 1.3, we choose I = E[z | z < x]. There is an ideal which con-
tains I and y’, and hence it does not contain y.
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Lemma 1.4'. If x =+ y, then there is an ideal which contains exactly one of the
elements x, y. Hence there is a maximal ideal with this property.

Lemma 1.5. 4An ideal I is maximal iff U1’ = P,

Lemma 1.6. The kernel of a homomorphism P — Z, is a maximal ideal. For
x * 0 there is a homomorphism @: P — Z, such that ¢(x) = 1.

Proof. Because h(x') = (h(x))’, the kernel is an ideal and by Lemma 1.5 it is
a maximal ideal. If we set h(x) = O for x € I (I a maximal ideal) and h(x) = 1 other-
wise, then h is a homomorphism P — Z,.

Theorem 1.1. Let P be given. There is a Boolean algebra A and a homomorphism
o: P — A that for a homomorphism B: P — B, B a Boolean algebra, there is a unique
factorization B = yoa, x is a homomorphism A — B. If o(x) < o(y), then x < y
and so a is injective.

Proof. For x € P, let E, be the set of maximal ideals which do not contain x-
Let A be the Boolean algebra generated by all E, in the set of all maximal ideals-
Let « be defined by «(x) = E,. Then a satisfies (1) and (2). If x, ye C, thenx v y 2
= x,y,and so E,,, 2 E, U E,. If a maximal ideal I is in E,,,, then it does not
contain x v y, hence it cannot contain x, y simultaneously. It is, therefore, in
E.orE,andsooa(x v y) = E,UE,.

o is, therefore, a homomorphism from P to A.

Let B be another Boolean algebra and f: P — B a given homomorphism.

Every element of 4 is of the form & = ) () a(x;)), x;; € P. We set x(&) = V AB(x;)-

i k i k

If
(*) U O“(xi,i) = U ﬂa(yu)
and ¢ = V/\B(xu) + VAﬁ(yk,) = 7, then there is a homomorphism h: B - Z,

such that, ‘for example, h(f) =0, h(n) = 1.
Because h is a homomorphism, we have \ Ah(B(x;;)) = 0. If I is the kernel of

tJ
the hompmorphism / o B: P — Z,, then for every i there is such j(i) that h(B(x;;;)) =
= 0. Hence x;;¢; €I, and I ¢ o(x; ;). I does not belong to the right-hand side in (*).
Therefore, for every k there is I(k) such that yuu €I, and hence h(V A(B(ywr))) =
k1

= 0 — a contradiction. We can set x(U ﬂoz(x,,)) = V /\B( ;) and y is uniquely
determined on all 4. The rest follows from Lemma 1. 4

Remarks.
1. If o is considered as a functor from the category P to the category A4, then «
is full and it is faithful because there are no two distinct morphisms from x to y in P.
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2. We have supposed that x — x'is an orthocomplementation. If C = (0, 1), then the
assumption x v x" = 1 is used only for the proof of Lemma 1.2. Hence we can
suppose that the involution x — x’ satisfies this lemma only.

However, this is necessary. If x" < x # 1, then there is no maximal ideal not
containing x” which contains x.

2.

We shall now describe the second method which is given in [M]. The method
depends on a subset S of the given orthocoomplemented set P.

Let P be a poset with orthocomplementation x — x’ and let S be a subset of P.
For a set M < S, let M, be the set of minimal elements from M. We set M * N =
=(Mu N), for M,N = S. Let © be the family of finite subsets M = S which
contain minimal elements only. € with the multiplication * is an abelian idempotent
semigroup whose unit element is 0.

Let A,(S) (or A, when S is fixed) be the space of functions from & to Z, that have
finite support. For M < S let M be also the element from A, whose support is
exactly M. '

The multiplication * can be extended from & to A, by the distributive law. The
unit 1, for this multiplication is the function which has the value 1 (e Z,) forPpe S
and the value 0 otherwise.

With this multiplication, 4, is a Boolean ring and we can introduce the lattice
operations there:

XSyeSXx*xy=xX, XAYy=X%Yy,

xvy=x+y+(xxy)),
and the orthogonel complement x’ = 1 + x.

We have the following lemmas.

Lemma 2.1. If M,N;,N,,...€ S and M < Y'N,, then M £ N, for some i.

Proof. We can suppose that all the right-hand side terms are distinct. M < ) N,
means M = ) M = N, and hence on the right-hand side there is a term, say M * N,
equal to M. But M «x N; = M yields M £ N,.

Lemma 2.2. If M, N,, N,,...€ G and M < \VN,, then M £ N, for some i.

Proof. VNi = YN, + Y N, *N,, + ... and so M < N;, * N, ... for some
k ki<ka

indices k, < k; < .... Therefore M < Ny, Nigs +- «

Lemma 2.3- If VMk < VN, M,,N,€ S, then for every M, there is such N,
that M, £ Ny '
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Proof. We have M, < VN, for every k.

Up to now, we have used only the fact that P is a poset. Now, we shall reconsider
the situation in Section 1, i.e., P is an orthocomplemented poset with the greatest
element 1, (or 1) and the least element 0 (or 0) and with the orthocomplementation
x - x"asin 1. We set S’ = E[x | x’ e S].

If S contains 1p, then there is the function (1p) in 4, and this function is covered
by the function 0. If we omit this function (that is, we consider only non-void setsin &),
then the function (1 p) becomes the unit element in 4.

A similar situation occurs for the least element Op; the function (OP) € A, covers
the zero-function € 4; and is the least element in A4, after omitting this function.
This would be inconvenient because we need the zero-function and so we shall
suppose that Op ¢ S.

In the following, we shall suppose that 1, € S (in the terminology of [M]: S is
unitary).

As we have selected a subset S in P, we must modify the notion of homorphism.

A function h defined on S U S’ to a Boolean algebra B will be called a homo-
morphism iff

(1) x,ye S and x < y = h(x) < h(y),

(2) x,x" € S = h(x') = (h(x))".

There is no loss of generality if we suppose that h(1p) = 1p.

If we set a,(M) = M for M € S, then «, is an order-preserving function from S
to A;. We can extend a, by setting «,(x") = (1p) + (x) if xe S and x" ¢ S.

We shall denote by I the ideal in A, that is generated by all expressions (1) +
+ (x) + (x') for x, x" € S. Let © be the canonical projection 4; - A,/I = A, and
0y = T o0y,

Lemma 2.4. o, is defined for x € S U S’ and has the following properties
(3) x,yeS and x £ y = a,(x) £ ay(y),

(4) x €S = ay(x) = (ay(x))".

Proof. (3) follows from the fact that x = x *x y in A4 is preserved in 4,.
If x € S and x’ ¢ S, then (4) is valid due to the definition of ;.

If x, x" € S, then (4) follows from the definition of I.

From now on, we shall suppose that S is a base, that is, SuU S’ = P. Hence
oy, &, are defined on the whole P.

Lemma 2.5. If S, S, are two bases and S; = S,, then A,(S,) is a homomorphic
image of A,(S,).

Proof. There are homomorphisms 4,(S;) > 44(S,) = A,(S;). The first is given
by the inclusion S; = S,. If x, x" € S;, then x, x" € S, and hence every generator
(1p) + (x) + (x") of I(S,) is in I(S,) and hence we have a homomorphism 4,(S,) —
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— A,(S,). On the other hand, every element of A,(S,) can be transformed to an
element of 4,(S,) mod I(S,) and so 4,(S,) — A4,(S,) is onto.
The implication (3) can be reversed.

Lemma 2.6. If a,(x) < a,(y) for x,y €S, then x £ y.

Proof. If x £ y does not hold, then there is a maximal ideal I in P which contains y
and does not contain x (see Lemma 1.4). Let ¢ be the homomorphism P — Z, with
the kernel 1.

If £€ S and & = (x;) * ... % (x;), then we set ¢(&) = ¢(x,) ... ¢(x;).

If £ <1, & ne S, then ¢(&) = @{&). on): if ¢(£) = 1, then ¢(n) = 1 too, and
if @(&) = 0 then both sides vanish. Hence ¢(& * 1) = ¢(&). ¢(n). Therefore ¢ can
be extended on 4,(S). If £, ¢’ € S, then ¢((1p) + (&) + (&) = 1 + (&) + ¢(&) =
= 0, and so ¢ is defined on 4, = 4,[I. We have ¢(a,(x)) = 1 and ¢(a,(y)) = 0,
and so a,(y) = a,(x) cannot hold.

We shall show that Lemma 2.1 is not valid in 4,(S). P is the poset in Fig. 1.

Fig. 1

We choose S = (a, b, b, 15). In A,(S) we have (b) + (b') = (1) and therefore
(a) = (b) + (b'). Let @ be P — Z, such that ¢(1p) = ¢(a) = ¢(b') = 1, ¢(a’) =
= ¢(b) = ¢(0p) = 0. ¢ is a homomorphism with ¢(a) > ¢(b) but not (a) < (b).
Similarly, (a) < (b’) does not hold.

Theorem 2.1. Let B be a Boolean algebra and h: P - B a homomorphism. Then
there is a unique homomorphism x: A,(S) — B such that h = y o a,.
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Proof. We set x((x)) = h(x) for xeS. If M = (x,) *... *(x;), we set y(M) =
= h(x;) A ... A h(x,). x is defined on & and if (x) = (y) * (2), then x((x)) = h(x) =
= h(y) A h(z) = 2((») * (2)). We can extend x to 4,(S) by linearity.

If x, x’ € S, then h((15) + (x) + (x)) = 15 + h(x) + (h(x"))" = 0, and therefore
is 0 on I. x is defined on A,(S) = A,/I and is unique.

Corollary. If S = P (or P — (0)), then A,(S) from Theorem 2.1 is isomorphic
with A from Theorem 1.1.

This is because the algebras 4,(S) and 4 have the same property of universality.

Another proof of Lemma 2.6. Let S be a base, x, y€ S and a,(x) < a,(y) in
A,(S). Now, 4,(P — (0)) is a homomorphic image of 4,(S) and therefore a,(x) <
< ,(y) in A,(P — (0)). Theorem 1.1 yields that x < y.

A special case occurs when SN S’ = 0; then 4, = A, and Lemma 2.3 is valid.

In this case, the homomorphism a,(= «,) has the weakest property (1). This is
compensated by the possibility of extending the monotone functions on P to a mea-
sure on A,. This is demonstrated in [M] (for states on P, but see Remark 15 in [M]).
It seems to us that there is a gap in the proof and so we shall give the proof in detail.

Theorem 2.2. Let S be a base, SN S’ = 0 and let u be a non-negative function
on P which is monotonic and p(1p) = 1. Then there exists a measure on A, which
is an extension of ﬂls-

The proof is based on the following theorem of Horn and Tarski:

If M is a subset in Boolean algebra B, 13 € M, and if u is a non-negative function
on M with u(15) = 1, then there is a measure on B which is an extension of y if the
following condition is satisfied:

if (ay, ..., am), (by, ..., b,) are two sequences of elements from M and if

(%) V (A, - ,a.k))< V(Ao b))

(1yeeeyin) (J1seeerd)

for every k = 1, ..., m, then

lai) S 3 u(b).

Ms

i=1

Remark. This condition is also necessary, but we shall need only this sufficiency.

Proof. We shall apply this theorem to M = a,(S) = A4,; ay, ..., by, ... will be
the element of the form a,(a,), ..., #,(b,), ... and we shall omit a,.

If (5) is satisfied, then for every sequence a;,, ..., a;, there is such a sequence
b, ..., by, that every b, is = an element a; €(a;, ..., a;). This is Lemma 2.3
applied to M; = (ay,, ..., a;), N; = (bj,, ..., b},).

For k = 1, there is a non-void set B; < (b,, ..., b,) for every i which contains
those elements by, ... which are >a,  We shall show that for every k elements
a, ..., a; the set B;, U ... U B, has at least k elements.
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For example, if we take (ay, ..., a,), there are such k elements (b,, ..., b;,) that
every b;, is 2 an element € (ay, ..., ;). Therefore B; U ... U B, contains bj..., b
and so By U ... U B, has cardinality at least k.

By a known theorem [HV], there is an injection ¢: (ay, ...) = (by, ...) such that
@(a)) = b € B

We divide the sum Y u(b;) in two parts: the first over bj;, and the second over
the other b;. From the monotonicity we have

Zi:#(bj(i)) = ;#(a i)

and the second part =0 as u is non-negative. The assumption of the Horn-Tarski
theorem is satisfied and so u has an extension to a measure on A,.

k

Remark. 1) In [M] the theorem of [HT] is applied for k = 1 and k = m only.

However, this does not suffice as the following example shows.

We have m = n = 3 and the elements (a,, a, as), (by, by, b;) are ordered as
shown in Fig. 2.

b, b, b,

q

a, a, a,
Fig. 2

If the function u is such that
w(by), u(az), p(as) are great
and
w(ay), u(by), w(b,) are small,

then we cannot conclude that Y'u(a;) < Y u(b;), in despite of the fact that (5) is
satisfied for k = 1, 3.
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2) In [M], such a Hilbert space H(S) is constructed that every x € P is represented
by a one-dimensional projector. The construction depends on the base S and the space
H(S) is rather the space of Hilbert-Schmidt operators of the usual (von Neumann)
formulation. This is similar to Gudder’s construction in [G]. '

It would be desirable to have, in H(S), a multiplication so that H(S) becomes
a Hilbert algebra. Then it may be possible to find von Neumann’s formulation of [M].

3.

The problem of hidden variables for a system is to extend the description so it
becomes a description of a classical system.

For von Neumann’s description with a Hilbert space, such an extension is im-
possible. For the description through a quantum logic, this problem was solved
by Jauch and Piron [JP]. They excluded the introduction of hidden variables, too.
But there is a discussion by Bohm and Bubb [BB] which was followed by a remark
of Gudder.

The problem with hidden variables is that it is not exactly stated what should
be done and von Neumann’s proof is rejected as not solving problem proper.

We shall present a simple example and show the situations which can occur.

The basis for the description will be a set of yes-no experiments L which is a poset
with orthocomplementation as was P in 1. But the description must contain also
the set of states. We must make a difference between the set of all states — functions
from Lto {0, 1> — and the set of states which can be observed. The latter set can
be smaller. This set of realizable states S must fulfill some conditions connected with
the order in L. The strongest condition is that the set S of possible states is strictly
order determining: (s(a) = 1 = s(b) = 1 for all se S) = a < b. This implies that S
is order determining [P] (or full in [ZS]), hence S is separating and L is weakly
modular. Further, there is a state s € S such that s(a) = 1 if a + 0. We shall suppose
that S is full, and that there exists a state s with s(a) = 1 for a % 0, and that S is
convex.

The pair (L, S) will be called a system.

The existence of hidden variables means:

1) there is a Boolean algebra B and a homomorphism ¢: L — B,

2) every state s € S can be extended from ¢(L) to a probability on B,

3) the algebra B and the extended states form a system.

Lemma. Let B be a Boolean algebra and S a set of states on B. (B, S) is a system
iff for every a + O there is a state such that s(a) = 1.

Proof. We have to show that S is full. Let a, be B and not a £ b. Then x =
= a A b’ #+ 0. There exists a state o € S such that o(x) = 1, and we have o(a) = 1,
o(b) = 0. Therefore s(a) < s(b) does not hold for s € S.
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We have seen that there exists a Boolean algebra 4 and a homomorphism a: L — A4,
and that « is mono. By [ZS], every state s which can be extended to B can be extended
to A. The solution is given by the theorem of Horn and Tarski [HT].

Theorem. If a,, ..., a,, by, ..., b, are elements from L, se S and
(*) (_ U . )(a(ah) N...Nn rx(aik)) = . U . )(“(b.il) Nn...n a(b.ik))
Tlgeeesylic JlseeesJk

for every k =1, ..., m, then the n.s.c. for the existence of an extension to a state
on A is

M=

i=1

s(a) < 50,).

The condition (*) means that at every homomorphism L — Z, which has the value
1 on k elements a;, ..., a;, has the value 1 on some k elements b; , ..., b; as well.

This solution is only theoretical. It is possible to establish some consequences.
For example:

If for elements a,, a,, by, b, every homomorphism L — Z, which has the value 1
on a, and a, has the value 1 on b, and b, and s(a,) + s(a,) > s(b,) + s(b,), then s
cannot be extended. ' '

The condition 3) in the definition of extension is necessary because some elements
in B would be non-identifiable without this condition.

Now, we shall consider the logic form Fig. 1. Every state s on Lis determined by
two numbers s(a), s(b) which are from <0, 1). Because we suppose that S is full,
the numbers s(a) (s(b)) fill the whole interval <0, 1.

The couples (x, y) = (s(a), s(b)) form a convex set in the unit square Q. .
There are four homomorphism L - Z,, viz hyy, hy,, hy4, ha,, corresponding to
four pair (a, b), (a, b'), (@', b), (a’, b'), such that hy,(a) = hyy(b) = 1 and so on.

So a: L— A satisfies

oc(a) = (hu, hlz),
w(a’) = (hyy, hay),
“(b) = (hu: hzx),
a(b’) = (hya, hyy).
A is the algebra of the subsets of the set (hyy, hyz, fiyy, ha3).

Every state on 4 is determined by four numbers py,, ft12, U2y, 422 If this state
should be an extension of the state s on L, then

X = 1y + W12,
Y=l + Uy,
1 —x=py1 + p2z,
L=y=ypy+p,.
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One solutionis pyy = xy, fyz = X(1 — ¥), 2y = (1 = x) y, oy = (1 = x)(1 = y).
After subtracting this solution, we obtain a homogeneous system which has this
solution

Biz = U213 = —Hy1 5 Ha2 = Hyg -

The complete solution is

By =Xy +V, [112=x(1—y)—v,
Py =1 =%x)y—=v, ma=01=-x)1=-y)+v
with v restricted by the conditions

0 = pyy, Mgz S 1.

If all states are realizable then the solution is complete.

Another situation occurs when S contains only states with x + y < 1. Then
243 + Myz + 2y = 1+ (#y4 — p25) S 1. Hence py, 2 gy and the extended
states have not the value 1 on (hy,), and so we do not have a system.

This case can be interpreted in the following way. In three-dimensional (real)
space, we measure spin in two orthogonal directions. For this interpretation, there
is no Boolean extension.

Nonetheless, we can have the following extension for the original system:

the algebra B is generated by three elements g, o, T and if s is a state on L, then the
prolongation § on B is

if s(@)=1, s(b)=0, then ) =1, 350)=35(t)=0,
if s(a)=0, s(b)=1, then 5()=0, 5o)=1, st)=0,
if s(a) =s(b) =0, then 35(g) =35(c)=0, 5t)=1,

if s is a linear combination of the preceding states, then § is the same combination.
The both cases differ by the presence or absence of further irreducible states.
Similar situation occurs when S is the set of states with x + y = 1. But now the
both cases have a Boolean extension.
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Souhrn

BOOLSKE VNOREN{ A SKRYTE PARAMETRY

VAcLAV ALpA

V é&lanku je dano srovnani dvou metod vnofeni orthokomplementarni uspofddané mnoZiny
do Booleovy algebry. Dale na jednoduchém prikladu je ukazino, %e existence & neexistence

skrytych parametri zavisi jednak na definici skrytych parametri, jednak na prostoru fyzikalnd
realizovatelnych stavi.

Pesome

BVJIEBBI BJIOXXEHUS U CKPBITHIE [TAPAMETPBI

VACLAV ALDA

1

B crathe CpaBHMBAIOTCS OBA METOJA BIIOXKEHHS OPTOKOMIUIEMEHTAPHOIO YMOPSAOYEHHOTO
MHOXeCTBa B GyneBy anre6py. Kpome Toro Ha mpocToM mpuMepe MOKa3bIBAeTCH, YTO CYIIECTBO-
BaHME MM HECYIIECTBOBAHME CKPHITHIX MAPAaMETPOB 3aBHCHT KaK OT MX ONpedeNeHws, Tak M OT
TIPOCTPAaHCTBA (HH3MYECKH PEAM3YEMBIX COCTOSIHMM.
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