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INVARIANCE OF THE FREDHOLM RADIUS OF AN OPERATOR
IN POTENTIAL THEORY
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Summary. One of the classical methods of solving the Dirichlet problem in R" is the method
of integral equations. Using this method for a non-smooth regions it is useful to know the
Fredholm radium of an integral operator playing a role in the method. It is shown in the paper
that in the case of a Jordan domain in the plane the Fredhclm radius of that operator does not
change under the conformal mapping of the boundary.
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INTRODUCTION

We shall deal with the plane R% The real plane R? will be identified with the
complex plane C, that is, a point [x, y] € R? will be identified with the point z € C,
z = x + iy; similarly we shall write [£, #] = { = & + in, etc. If f is a real function
defined on a subset of R%, we may consider f as a real function of the complex
variable z, but usually as a real function of two real variables [x, y]. The partial
derivatives of f with respect to the real variables x, y will be denoted by 0.f, 0,f,
respectively. Further, we shall write grad f = [0,f, d,f]. If u is a real function of
two complex variables [z,{], z = x + iy, { = & + in, one can write u(z,{) =
= u(x, y, £,1). By grad, u (grad, u) we mean the gradient of u with respect to z
(with respect to ¢, respectively), that is,

grad, u = [0,u, d,u] (grad;u = [0, u, d,u]).

Let K be a simple closed (i.e. Jordan) oriented curve in R In the following we
denote by G(K) the interior of K (that is, the bounded complementary domain of K)
and by #x the constant value of the index of a point with respect to K on G(K) (that
is, tx = 1if Kis positively (counterclockwise) oriented and ¢, = —1 if K is negatively
(clockwise) orinted). Further, we shall always suppose that K is rectifiable.

Let ¥(K) stand for the Banach space of all real continuous functions on K (equip—
ped with the supremum norm which is denoted by ||. .. |). For any f € 4(K), z € R?,
z ¢ K let us put
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(0.1) Wk f(z) = }t Im j‘ E’% d¢

(Im ... denotes the imaginary part of the complex integral on the right-hand side
of (0.1)). Wyf is called the (logarithmic) double layer potential of the density f on K.
For f € 4(K), { e K let us define Wy f({) by putting

(0.2) Wi £(0) = lim Wy f(2) = wf(0),

zeG(K)

provided the limit on the right-hand side of (0.2) exists and is finite. If for any f € ¢(K)
the potential Wf is uniformly continuous on G/K), then Wyf is defined on K and,
moreover, Wfe %K) for every f e %(K). The operator Wy (Wy: f > Wif, Wy:
%(K) - %(K)) is then a linear bounded operator on %(K) (see, for instance, [6]).

The operator Wy plays a role in solving the Dirichlet problem on G/K) by means
of integral equations. In this connection it is useful to know what is the value of the
Fredholm radius of Wy. The Fredholm radius of the oprator Wy on 4(K) is defined
as the reciprocal value of oWy, where

oWy = inf |Wg — A,

A ranging over all compact (linear) operators acting on ¢(K).

Let D = R? be an open set such that K = D. Suppose that ¥ is a conformal
mapping defined on D, that is ¥: D —» R?, ¥ is one-to-one, and ¥ as a complex-
valued function of the complex variable is holomorphic on D. Let us put

K = ¥(K).

Then, of course, K is a simple closed curve in R?, and if K is rectifiable then K is
rectifiable as well. Thus the double layer potential Wy f (z) for fe %( K) z¢ K can
be defined analogously to (0. 1) Symbols G’K) ig will have the same meaning for K
as the symbols G(K), ¢ for K (we shall assume that K is oriented). Further, we can
define the term Wy £\0) ( € K) analogously to (0.2). If for every f € 4(K) the potential
Wyf is uniformly continuous on G(K), then (similarly to the preceding) Wefe %(K)
for each fe %(K) and the operator Wg (Wg: f— Wi f, Wr: 4(R) » 4(R)) is a linear
bounded operator acting on %(K).

The aim of this paper is to prove the following assertion:

If for each f € 4(K) the potential Wy f is uniformly continuous on G(K) then the
potential Wgf is uniformly continuous on G(K) for each f e (K). If this condition is
fulfilled then the Fredholm radii of the operators Wy, Wy coincide.

I. AUXILIARY ASSERTIONS
In this part two simple lemmas needed in the sequel will be proved.
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Throughout this section D = R* will be a fixed open set and ¥ a conformal
mapping on D (holomorphic and one-to-one). Let us denote

b =¥D).

If h is a function defined on a subset of D (of D) then we use the term i+ ¥ (h * ¥~1)
for the composition of the functions h, ¥ (h, ¥~'), that is, h* ¥(z) = h(¥(z))
(h = P~ Y(z) = h(¥~'(2)), respectively).

For r = 1,2 we denote by #, the r-dimensional Hausdorff measure on RZ.
M, is supposed to be normalized in such a way that 5, coincides on R? with the
outer 2-dimensional Lebesgue measure while 5#, coincides on the lines in R? with
the outer linear (1-dimensional) Lebesgue measure on those lines.

1.1. Lemma. Let M = D be open and let g, h be (real) functions defined on ¥(M)
possessing continuous first partial derivatives there. Then the integral

(1.1) J. grad [g * ¥] grad [h = ¥] do#,

exists if and only if the iﬁtegral

(1.2) J' grad g grad h do#,
¥(M)
exists. If these integrals exist then

(1.3) J. grad [g = ¥] grad [h = ¥] do#, =J~ grad g grad h d#, .
M Y(M)

Proof. The assertion is nothing else than the theorem on integration by sub-
stituion applied to this special case.

Suppose that ¥ = ¥, + i¥, (¥, ¥, are real functions). For a while let [x, y]
stand for the variables on D and [u, v] for the variables on D; [u, v] = ¥(x, y) =
= [?,(x, y), ¥a(x, y)]. Then we have

grad [g x V] = [0,9 0x¥, + 0,9 0,¥,, 0,9 0,¥, + 0,9 0,7,] ;
similarly for grad [h * ¥]. As ¥ is holomorphic and consequently,
axlIll = ayqlz N ayqll = —axlpz >
we easily obtain that
grad [g = V] grad [h * ¥] = [(0,%,)* + (0,¥,)*] [0.9 0.1 + 8,9 0,h] =
= [(0,%,)* + (0,¥,)*] grad g grad h .

More precisely, we can write

‘ {grad [g » ¥] grad [h * ¥]} (x, ) =
= [(0,¥1)* + (0,%,)*] (x, y) {grad g grad h} (¥,(x, y), ¥,(x, y)).
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Using again the Cauchy-Riemann conditions we find that the Jacobian Jy of ¥
(considered as a real mapping of D to R?) has the form

Jo(x, y) = [(aqul)z + (aywl)z] (x, )

([x, ¥] € D). Since ¥ is one-to-one, we have
(0,1 + (0,7,)> £ 0

on D and the Jacobian Jy-; of ¥ ! on D can be expressed in the form

Ty-i(u, 0) = [J(¥ ', 0)]7" = {[(0:¥1)* + (¥ 2)"] (¥ (w o))} 7"

The theorem on integration by substitution immediately yields

J. grad [g * V] grad [h * ¥] do#, =
- J. [@:¥1)* + (9,#1)*] (x, y) {grad g grad h} (¥(x, y)) d#x(x, y) =
= j {grad g grad h} (u, v) [(6,%,)* +
w(M)

+ (0,%1)%] (¥~ (u, v)) |Tp-1(u, v)| d5#,(u, v) = J. grad g grad h do#, ,

¥(M)

that is, the equality (1.3) holds. At the same time we obtain from the substitution
theorem that the integral (1.1) exists if and only if the integral (1.2) does.

1.2. Notation. For z € R? let h, stand for the function defined on R? such that
h(z) = +oo and

(14) h(©) = Llog
for {e R? — {z}.
1.3. Lemma. There is a function u(z,{) defined on D x D such that u(z, () is

harmonic on D in the variable { for each z € D and u(z, {) is harmonic on D in the
variable z for each { € D and such that for every z,{ € D

(1.5) ho(P(0) = h(0) + u(z,0).

Further, grad, u(z, {)is locally bounded on D x D as a function of two variables,

[z (]

Proof. Fix ze D and for { € D, { % z put
(1.6) u(z, §) = hy(P(0)) — h(¥).
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Then u(z, {) is harmonic in { on D — {z} since h,({) is harmonic in { on R? — {z}
and ¥ is holomorphic and one-to-one on D. It is easy to see that the limit (z fixed)

1 1 1 1
limu(z, ¢) = lim(-log——— — Zlog—— ) =
fimu(= 9 ;'i“z(n 0g|‘[’(z) - Y’(C)] T Pz - §|>
= —l-lim log ‘ 1
T gos Y’(Z) vQ| = ¥

is finite since ¥'(z) & 0 (¥ is one-to-one on D). But singletons are removable
singularities for bounded harmonic functions, from which it follows that u(z, {) is
harmonic in { on D if we put

(z.2) = = log (| 7'(2)|)..

As h,(0) = hy(z) then also u(z, {) = u((, z) and for each { € D the function u(z, {)
is harmonic in z on D.

If z=[x,y], { =[&n], one can write u(z, {) = u(x, y, & ). It is seen from
(1.6) that u as a function of four variables is continuously differentiable on M =
=D x D — {[z,2]; ze D}; especially grad, u = [0, 0,u] is locally bounded
on M as a function of two variables [z, {]. Now it suffices to show that for each
zg € D there are 6 > 0, ke R! such that for any ze D, { € D with lz - zo| <9,
|¢ = zo| < & the inequalities

oz, O S ke, [au(a O] <
are valid.
Given z, € D choose r > 0 such that

c(Q(zo)) = D;

here and in the following Q,(z,) stands for the open disc with centre z, and radius r,
that is

Q(zo) = {{ e R% IC —zo| <1}

(c1(...) denotes the closure of a set).
Since d,u is harmonic on D in the variable ¢, for z € D, { € Q,(z,) we have

(1.7) |oau(z, £)| < sup {|0u(z, Z)| ; £ €09,(z0)}
(6 ... denotes the boundary of a given set). Clearly
Cl (91/2'(20)) X aQ’(Zo) M

and this set is compact. In virtue of the local boundedness of d,u on M there is
a constant k € R! such that

|oau(z, 0)| < k
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for every z € ¢l (2,,2,(2o)), { € 92,(z,). Now it follows from (1.7) that
|0gu(z, Q)] < ke
for any z € Q,,,,(z,), { € 2,(z,). Similarly for 9,u.

II. THE FREDHOLM RADIUS

First let us recall the notion of the cyclic variation which will play the central role
in the following. At the same time we shall introduce the notation which we shall
need.

The term path (or curve) in the plane is taken to mean a continuous mapping
¢: {a, b) — R?, where {a, b) is a compact interval. A simple closed path (Jordan
curve) is a path ¢:<a, b) - R? such that ¢(a) = ¢(b) and ¢(t,) + ¢(t,) for any
ty, t,€<a, by, |t; — t;] < b — a. The variation of the vector-valued (complex-
valued) function ¢ on an interval I = {a, b) is denoted by var [¢;I] (in the same
way the variation of a scalar (real) function is denoted). (See for instance [9] for the
definition and properties of the variation of a vector function, the curvilinear integral,
etc.) The path ¢ is of finite length if var [¢; {a, b>] < .

From now on let {a, b) be a fixed compact interval, ¢: {a, b> — R? a fixed simple
path. Putting

K = ¢{<a, b))

we shall talk also about the curve K. As in the introduction let G(K) stand for the
interior of K and let «x (= +1) be the constant value which the index of a point with
respect to K takes on G(K).

For z € R? let 9, be a single-valued continuous branch of arg [¢ — z] on {a, b) —
— ¢~ (z). For 0 < r £ + oo we denote by 7, the family of all components of the
set

{te<a, b}; 0<|o(t)—z| <r}.
For a € R the number (finite or + c0) of points in
{te<a, b); o(t) — z = |o(t) — z| €, 0 < |p(t) — z| < 7}

is denoted by nX(a, z). The following assertion is valid (see [6], [9]):
For any z € R?, r > 0 the function n¥(a, z) of the variable a € R! is Lebesgue
measurable. If we define

(2.1) oX(2) = J " ik (@, 7) da

4]
then

v¥(z) = Y var[9,;1].

Ieyz,r
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Further, we denote shortly
Yz = y:,w ’ DK(Z) = vi(z) *

The term v¥(z) is called the cyclic variation of the curve K at the point z.

Let us note that the cylic variation can be also defined by means of the notion of
the so-called hits on a set (the cyclic variation is then defined for much more general
sets than for domains bounded by a Jordan curve). Let G = R? be a Borel set,
z € R% For a € R! put

H(e, z) = {z + te'*; t > 0} .
A point ¢ € H(x, z) is termed a hit of H(, z) on G if for every r > 0
H[H(x,z) n Gn Q)] >0

and at the same time

H[(H(o z) — G)n 2,0)] > 0.

For0 < r £ 400, a € R* denote by N%(a, z) the total number of hits of H(, z) on G
lying in ©,(z). Then Nf(«, z) is a Lebesgue measurable function of « € R* (see [4],
[5]). Define

2n
Vi(z) = J. N&(a, z) dx .
o]

It is easily seen that in the case G = G(K) (or G = R? — cl(G(K))) N&(a, z) <
< nX(«, z) and it may happen that N%(«, z) % nX(a, z). However, we have in this

case (see [2])
Ve(e) = o5(2).

The notion of hits in the definition of the cyclic variation is used, for example, in

(4], [5]-
Let z € R? be such that v¥(z) < co0. Then for fe %(K) the (logarithmic) double
layer potential Wy f(z) at z is defined by the equality

(22) Wef(d) == 3 [ 0(0) 45,00

€z Jr

If var [¢; <a, b)] < oo (that is, K is of finite length) then v*(z) < oo for every
ze R* — K and for such z we have

(23) Wef(2) = Lm J SO 4
T kC—z
(cf. {0.1)). It is known (see [6], [9], or [4], [5]) that Wyf is uniformly continuous

on G'K) (or on R? — cl(G(K))) for each f e ¢(K) if and only if

sup o¥({) < 0.
ek
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Let us briefly recall the notion of the perimeter of a set and some properties of
sets with finite perimeter we shall need later.

92 will stand for the family of all real infinitely differentiable functions with
compact support in R%. The support of g € 9 is denoted by spt g and the supremum
norm of g is denoted by ||g||. If G = R? is a Borel set then we put

2(G) = supf divwdA,,
G

w

where w = [wy, w,] ranges over all vector-valued functions with components
wy, W, € 2 such that |w|?> = w} + w} < 1. 2(G) is called the perimeter of G.
If G = G(K) (or G = R? — cl1(G(K))) then (see [11])

2(G) = var [¢; {a, b)] = #(K).

The term n*(z) is used in the following to denote the exterior normal in Federer’s
sense of G(K) at z € R? (for the definition of the normal in Federer’s sense see, for
example, [4]). The following assertion is valid (divergence theorem):

Suppose that #(G(K)) < co. If w = [w,, w,]|, where wy, w, are continuously
differentiable functions on a neighbourhood of c1(G/K)), then

j w(l) n*(0) d#4(0) = .[ div w(z) d#,(z) .
K G(K)

We shall use this assertion in the following situation. Let g € & and let u be a har-
monic function on a neighbourhood of

c(G(K))nsptg.
Then clearly
div (g grad u) = grad g grad u

(on R?) and by divergence theorem we obtain that (under the assumption 2(G(K)) <
< o)

(2.9) j. grad g grad u ds#, = J' g(0) n*(¢) grad u(0) do#,(0) .
G(K) K
If ze R?, g € 9, z ¢ spt g then, in particular,

J‘ grad g grad h, do#, = J. 9(¢) n*({) grad, h.(¢) do#(¢) .
G(K) .

K

Recall that for z € R? the quantity v¥(z) can be expressed in the (provided 2(G(K)) <
< o)

Kz) = = '[ |n5(0) grad; h(0)] d#4(0)

In the following let D = R? be a fixed open set such that K = D, ¥ a conformal
mapping (that is, holomorphic and one-to-one) on D. We shall suppose that D is
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connected (we may consider only that component of D which contains K). As in the
introduction, let

K = ¥(K).
Then K is also a Jordan curve. We shall suppose that ¢ is a parametrization of K
defined again on the interval <a, b) (one can put, for example, ¢(r) = ¥(o(t))).
The terms G(K), v¥, Wy f(z) (f € #(K)), etc. have the same meaning for K as the
terms G(K), v¥(z), Wx f(z) (f € 4(K)), etc. have for K.

2.1. Propeosition. If

(2.5) var [¢; <a, b)] < o0

then also

(2.6) var [¢; (a, bY] < 0,

and for every z € K the implication

(2.7) v¥(z) < o0 = v’(¥(z)) < 0

is valid. Suppose that

(2.8) sup v¥(¢) < 0.

Then also -

(2.9) sup v¥({) < o0,

and the equality e

(2.10) lim sup v¥(¢) = lim sup v5(¢)
r>0+ ek r>0+ [eK

holds.

Proof. Since D is connected then either ¥(G(K) n D) = G(K) or ¥(G(K) n D) <
< R? — cl(G(K)). Put G = G(R) in the case ¥(G(K)n D)< G(K) and G =
= R? — c1(G(K)) in the other case.

It follows from [4], Corollary 1.11 that for ze R?, r > 0,

vX(z) = msup {I gradg grad h, do#5; g€ 9, |g| £ 1, sptg = Q(z) — {z}}
G(K)
and similarly

ok = nsup{j grad g grad h, do# ,;9€ 9, |lg| < 1, sptg = Qz) — {z}}
G

For any g,, g, € 2 such that g, = g, on K, g,(z) = g,(2) (z € R? fixed) we have

J grad g, grad h, d#, =J grad g, grad h, d#,
G(K) G(K)
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(see [4], lemma 2.1); similarly for the integrals over G. Let us denote

Dy ={geD; sptg = D}, 24 ={geP; sptg = ¥(D)}
and
S=GK)nD, S$=¥0S)=G6nY¥D).

Then it follows from the preceding that for every z e R?, r > 0,

(2.11) vX¥(z) =
= 1 sup {J. grad g grad h, d#,; g€ Dy, ||g| < 1, sptg = 2(z) — {z}} ,
(2.12) vf(z) =

=n sup{"- grad g grad h, d#,; ge 23, |lg]| £ 1, sptg = Q(z) — {z}}
s

If z € D then in particular,
(2.13) o*(¥(z)) =

= 7 sup {J grad g grad hy(,y d#s; ge Dy, ||g| < 1, P(z) éspt g} .
s

Let u be the function from Lemma 1.3. Using Lemma 1.1 we obtain for z e D,
g € Dy with ¥(z) ¢spt g,

(2.14) f grad g grad hy(,, dot, = j grad (g * ¥) grad (hy,,, * ¥) dA#’, =
3 s

== J‘ grad (g * ¥) grad h, do#, + j grad (g * ¥) (¢) grad, u(z, {) d#,(0) .
s

S
If we put

(2.15) ¢, = sup |grad; u(z, {)|
ek

then, of course, ¢, < 0. Suppose that the condition (2.5) is fulfilled. If g € 93
then clearly g * ¥ € 9 (defining g * ¥(z) = 0 for z ¢ D) and if, in addition, ||g| < 1,
¥(z) ¢sptg then [[g* ¥| < 1, z¢spt(g = ¥). Now it is seen (using the equality
(2.4)) that

(2.16)
sup {f grad (g * ¥) ({) grad, u(z, {) d#,(0); g€ 2y, |lg| S 1, P(z) ¢ spt g} =

= sup {f g * ¥({) n*({) grad, u(z, {) do#,(L); g € D3, lgll < 1, ¥(z) ¢ spt g} <
< ¢, var [¢; {a, b)] .
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Further,

sup {J' grad (g + V) grad h, d#,; ge 93, [|g| £ 1, ¥(z) ¢ spt g} =
s

= sup {J grad g grad h, do#y; g€ Dy, 9] £ 1, z ¢spt g} =1 v%(z).
s n

From the last equality and from (2.16), (2.14), (2.13) we obtain
(2.17) v’(¥(2)) < v¥(2) + me, var [¢; <a, b)]
(z € D). Thus the implication (2.7) is valid (even for any z € D). If ze D — K then
(provided (2.5)) v%(z) < oo (see, for instance, [6], [4], [9]) and it is now seen that
v®(z) < oo for every z € ¥(D), z ¢ K. However, by [4], Theorem 2.12 this means
that (2.6) is fulfilled (note that the fact that (2.5) implies (2.6) can be proved much
more simply by using only the definition of variation and the smoothness of the
mapping ).

As grad; u(z, {) is locally bounded on D x D as a function of two variables
[z, {] (Lemma 1.3), we have

(2.18) c=supc, < ©

zeK

(c, is defined by (2.15)). Now it follows immediately from (2.17) that
(2.19) sup v%({) < sup v*({) + nc var [¢; <a, b)],
LeR ek

so that (2.8) implies (2.9).

Now it suffices to prove the equality (2.10). Since ¥'(z) & 0 for ze D, K = D
is compact, one can easily find that for each » > 0 there are r,, r, > 0 such that for
every z€e K,

Q2,,(z) € YY(2(¥(2) = 2.(2),

where r, can be chosen in such a way that r, » 0+ for r — 0+. If (2.8) is fulfilled
then by [4], Corollary 2.17 there is a k € R* such that

#1(2(z2) " K) < kr

for every z e K, r > 0. This implies

(2.20) fim sup j |n5(¢) grad; u(z, 0)] oty () = O
Kn2r(z)

r—+0+ zeK

since

J. |n*(0) grad; u(z )] do#4(0) < ¢ #4(2(z) 0 K)
KnRr(z)

by the preceding.
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Let zeK. If ge 9y |g|| =1, sptg < Q(¥(2)) — {¥(2)} then g* ¥ e Dy,
lg = ¥| =1, spt(g * ¥) = ,(z) — {z}. This together with (2.11), (2.12), (2.14)
and (2.4) yields

221)  oX(¥(2) £ v(2) + 1 J |n%(0) grad, u(z, 0)] d#,(0)

KnQra(z)
If ge9y is such that g+ ¥| <1, spt(g*¥) < Q(z) — {z} then sptg =
< Q,(¥(z)) — {¥(z)}. Combining this result again with (2.11), (2.12), (2.14) and
(2.4) we conclude that

(2.22) VK (2) — J In¥(0) grad; u(z, )] d#4(0) < o5(¥(2)).
. KnQri(z)

Since r; = 0+, r, —» 0+ for r - 0+, the equality (2.10) now follows immediately
from (2.21), (2.22) and (2.20).

Now we are in position to prove the following assertion. Note only that the terms
Wyf, Wef have the same meaning as in the introduction, that is, Wy f({) for { e K
is defined by (0.2) and analogously for W f(¢) (¢ € K).

2.2. Theorem. Suppose that var [¢; a, b)] < 0. Then Wif is uniformly con-
tinuous on G(K) for each f € 4(K) if and only if Wy f is uniformly continuous on
G(K) for each fe %(K). If this condition is fulfilled then Wg: 4(K) - 4(K)
(Wy: f > Wyf) and We: 4(R) - C(R) (Wg: fro Wif) are bounded linear opera-
tors and the Fredholm radii of Wy and Wy coincide.

Proof. It suffices to note that Wyf is uniformly continuous on G(K) for each
fe¥(K) if and only if (2.8) is fulfilled, and Wgf is uniformly continuous on G(K)
for each fe %(R) if and only if (2.9) takes place (see, for instance, [6], [4], [9]).
By Proposition 2.1 the condition (2.9) follows from (2.8). The converse implication
is evident by the symmetry (one can replace K by K and ¥ by ¥~?).

Further, it suffices to note that by [7] (see also [4], [5], [10]), under the condition
(2.8) the operator Wy on %(K) is bounded (and linear) and the Fredholm radius
of Wy is equal to the reciprocal value of

oWy = 1 lim sup vX(¢),
Tr-0+ LeK

and that under the condition (2.9) the operator W on %(K) is bounded (and linear)
and the Fredholm radius of Wy is equal to the reciprocal value of

oWy = 1 lim sup v%(() .
Tr-0+ ek

Thus the equality between the Fredholm radii of Wy and Wy follows from (2.10).
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2.3. Remark. Let us consider the simple case when the curve K consists of simple
arcs of the class ¥2 and has only some corner points. As ¥ is conformal, K has the
same property. It is known that then W, Wy are bounded linear operators and the
equivalence relation between the conditions on the uniform continuity of Wy, Wy
(on G(K), G{R), respectively) is clear in this case. But it is also clear in this case that
the Fredholm radii of W, Wy coincide since then the Fredholm radius is determined
by the angles between the right-hand and left-hand half-tangents at the corner
points (see, for example, [12], [7]), and the conformal mapping does not vary the
angles. Now it is further seen that in order to ensure the invariance of the Fredholm
radius it is natural to require the conformality of .

A natural question arises whether the conformality of ¥ is necessary to ensure
the equivalence of the conditions (2.8), (2.9). J. Krdl has formulated the following
conjecture:

Let the condition (2.5) be fulfilled and let ¥ be a diffeomorphism of the class €2
(defined on an open set which contains K). Then the conditions (2.8), (2.9) are equi-
valent to each other.

2.4. Remark. An analogue of Theorem 2.2 can be proved also in the case of
a multiply connected region with a boundary consisting of finitely many Jordan
curves. We shall not formulate it precisely here but let us sketch one of the possible
versions.

Let G = R? be a bounded region, B the boundary of G and suppose that

B=K,uK;u...uK,,

where Ko, Ky, ..., K, are Jordan curves, K; " K; = § for i # j. Let D = R® be an
open set such that B = D (D is not supposed to be connected), let ¥: D — R? be
holomorphic on D (as a complex function of the complex variable) and suppose
that ¥ is one-to-one on each component of D. Further, suppose that ¥(K;) n
N Y(K;) = @ fori + jand that there is a bounded region G = R* with a boundary B
such that

B =YKy ¥K)uU...u ¥K,.

(Note that the boundedness of G, G is not necessary in the assertion; similarly one
can take R* — cl(G(K)) or R* — cl(G(K)) instead of G(K) or G(K) in the preceding.)

Suppose that the curves K, Ky, ..., K, are of finite lengths. Similarly to the de-
finition of Wy for f € 4(K) one can define the double layer potentials Wyf for f € %(B)
and Wpf for fe %(B) (some natural conditions concerning the orientation of bound-
ary curves should be imposed). Then, similarly to the preceding, the operator Wy
on %(B) (or Wy on %(B)) can be defined provided Wyf (Wsf) is uniformly continuous
on G for each f € 4(B) (on G for each f e %(B), respectively). Since Wyf is uniformly
continuous on G for each f € %(B) if and only if (see [6])

max {sup uK‘(C)} < ®©

i=0,1,...,n {eK;
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(and similarly for Wpf on G), Proposition 2.1 yields that Wy is uniformly continuous
on G for each fe %(B) if and only if for each f € ¥(B) the same holds for Wyf on G.
If this condition is fulfilled then Wy, W are bounded linear operators (on ¢(B) and.
%(B), respectively) with coinciding Fredholm radii. The last assertion follows from
(2.10) and from the fact that the Fredholm radius of Wy (of W) is equal to the reci-
procal value of (see [7])

Ti=0,1,...,n {r=0+ leK;

1 max { lim sup vf'(C)}
(to the reciprocal value of

1 max {lim sup v:."("")({)},

. Ti=0,1,...,n {r20+ Ze¥(K:)
respectively).
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Souhrn

INVARIANCE FREDHOLMOVA POLOMERU OPERATORU
V TEORII POTENCIALU

MirosLAY DoNT, EvA DoNTOVA

Mezi klasické metody fe¥eni Dirichletbvy ulohy v R" patti metoda integralnich rovnic. V sou-
vislosti s uZitim této metody pro nehladké oblasti je G&elné znat Fredholmuv polom¥r integralniho
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operatoru, se kterym se v této metod& pracuje. V &lanku se ukazuje, Ze v pfipad& rovinné Jorda-
novy oblasti se Fredholmiv polomé&r tohoto operatru neméni pti konformnim zobrazeni hranice

dané oblasti.

Pe3ome

MHBAPNAHTHOCTb PAINYCA OPEAI'OJIBMA OIIEPATOPA
B TEOPHU ITOTEHLIMAJIA

MirosLAv DoNT, EvA DoNTOVA

MeToa MHTErpanbHbIX YPAaBHEHHHA — 3TO OJUH M3 KJIACCHMYECKMX METONOB pelleHus mpobraeMbl
Jupnxne. ITpa HCNOIB30BaHMK 3TOrO METOAA A1 06JIacTeli ¢ HeperyAPHBLIMHU IPAHUIIAMM SIBIISAETCS
11I0JIE3HBIM H3yYaTh paguyc PpearonbMa HHTErpajbHOTO OlepaTopa BXOOSMIErO B 3TOT METOQ.
B cratee moka3aHo, YTo B Ciyyae uiockoit obaactu XKopaana paguyc ®dpearossma 3TOro omnepa-
TOpa HE MEHSETCS IPH KOHHOPMHOM OTOOpakeHHH TPaHHUIIBL 3TOM 06nacTH.
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