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INVARIANCE OF THE FREDHOLM RADIUS OF AN OPERATOR 
IN POTENTIAL THEORY 

MIROSLAV DONT, EVA DONTOVA, Praha 

(Received December 19, 1984) 

Summary. One of the classical methods of solving the Dirichlet problem in R" is the method 
of integral equations. Using this method for a non-smooth regions it is useful to know the 
Fredholm radium of an integral operator playing a role in the method. It is shown in the paper 
that in the case of a Jordan domain in the plane the Fredholm radius of that operator does not 
change under the conformal mapping of the boundary. 
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INTRODUCTION 

We shall deal with the plane R2. The real plane R2 will be identified with the 
complex plane C, that is, a point [x, y\ e R2 will be identified with the point z e C, 
z = x + iy; similarly we shall write [£, rf\ = £ = £ + irj, etc. I f / i s a real function 
defined on a subset of R2, we may consider / as a real function of the complex 
variable z, but usually as a real function of two real variables [x, y\. The partial 
derivatives of / with respect to the real variables x, y will be denoted by dxf, dyf, 
respectively. Further, we shall write grad / = [dj, dyf\. If M is a real function of 
two complex variables [z, £], z = x + iy, £ = £ + irj, one can write M(Z, £) = 
= u(x, y, £, rj). By gradz u (grad- M) we mean the gradient of u with respect to z 
(with respect to £, respectively), that is, 

gradz M = [dxu, dyu\ (gradc u = [8^ u, dnu\) . 

Let K be a simple closed (i.e. Jordan) oriented curve in R2. In the following we 
denote by G(K) the interior of K (that is, the bounded complementary domain of K) 
and by iK the constant value of the index of a point with respect to K on G(K) (that 
is, iK = 1 if K is positively (counterclockwise) oriented and iK = — 1 if K is negatively 
(clockwise) orinted). Further, we shall always suppose that K is rectifiable. 

Let ^(K) stand for the Banach space of all real continuous functions on K (equip­
ped with the supremum norm which is denoted by | | . . . ||). For any / e <&(K), z e R2

9 

z £ K let us put 
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(0.1) WKf(z)=X-lm[ -M-dC 

( Im. . . denotes the imaginary part of the complex integral on the right-hand side 
of (0.1)). WKf is called the (logarithmic) double layer potential of the density f on K. 
Forfe <g(K), C e K let us define WKf(Q by putting 

(0.2) WKf(() = lim WKf(z) - iKf(Q, 

zeG(K) 

provided the limit on the right-hand side of (0.2) exists and is finite. If for anyfe #(K) 
the potential WKf is uniformly continuous on G(K), then WKf is defined on K and, 
moreover, WKfe<g(K) for every fe<g(K). The operator WK (WK:f*-+ WKf, WK: 
^(K) -> #(K)) is then a linear bounded operator on #(K) (see, for instance, [6]). 

The operator WK plays a role in solving the Dirichlet problem on G(K) by means 
of integral equations. In this connection it is useful to know what is the value of the 
Fredholm radius of WK. The Fredholm radius of the oprator WK on #(K) is defined 
as the reciprocal value of coWK, where 

co*FK = i n f | | P F K - A | | , 
A 

A ranging over all compact (linear) operators acting on <^(K). 
Let D a R2 be an open set such that K c D. Suppose that ¥ is a conformal 

mapping defined on D, that is W: D -> R2, W is one-to-one, and T as a complex-
valued function of the complex variable is holomorphic on D. Let us put 

K = V(K) . 

Then, of course, R is a simple closed curve in R2, and if K is rectifiable then K is 
rectifiable as well. Thus the double layer potential WRf(z) for fe%>(R), z£K can 
be defined analogously to (0A). Symbols G(K), iK will have the same meaning for K 
as the symbols G(K), iK for K (we shall assume that K is oriented). Further, we can 
define the term H^/vC) (C e fc) analogously to (0.2). If for every fe ^(K) the potential 
WKf is uniformly continuous on G(K), then (similarly to the preceding) WKfe ^(K) 
for each fe <g(R) and the operator WK (WK:fv-* Wj, WK: C€(K) -> <#(£)) is a linear 
bounded operator acting on <£(K). 

The aim of this paper is to prove the following assertion: 
If for each fe^(K ) the potential JV^fis uniformly continuous on G(K) then the 

potential WKf is uniformly continuous on G(K1) for e a c h / e <£(£). If this condition is 
fulfilled then the Fredholm radii of the operators WK, WK coincide. 

I. AUXILIARY ASSERTIONS 

In this part two simple lemmas needed in the sequel will be proved. 
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Throughout this section D a R2 will be a fixed open set and W a conformal 
mapping on D (holomorphic and one-to-one). Let us denote 

D = W(D) . 

If h is a function defined on a subset of D (of D) then we use the term h * W (h * *F~*) 
for the composition of the functions h, W (h, T'1), that is, h * W(z) = h(xif(z)) 
(h * -P_1(z) = h[Y~l(z))9 respectively). 

For r = 1, 2 we denote by #Fr the r-dimensional Hausdorff measure on R2. 
yfr is supposed to be normalized in such a way that J^2 coincides on R2 with the 
outer 2-dimensional Lebesgue measure while <3f x coincides on the lines in R2 with 
the outer linear (l-dimensional) Lebesgue measure on those lines. 

1.1. Lemma. Let M a D be open and let g, h be (real) functions defined on W(M) 
possessing continuous first partial derivatives there. Then the integral 

(1.1) j grad [g * !P] grad [h * <F] d ^ 2 

J M 

exists if and only if the integral 

(1.2) grad g grad h dJf 2 

JY(M) 

exists. If these integrals exist then 

(1.3) j grad [g * <P] grad [h * <P] d j f 2 = j grad g grad h dJf 2 . 
J M J f(M) 

Proof. The assertion is nothing else than the theorem on integration by sub-
stituion applied to this special case. 

Suppose that W = XF1 -j- \
XF2 (

XF1, W2 are real functions). For a while let [x, y] 
stand for the variables on D and [u, v\ for the variables on D; [u, v\ = !P(x, y) = 
= [^Fi(x, y), W2(x, yjj. Then we have 

grad [g * y ] = [dug dxW, + 3 ^ dxY2, dug d,Vt + 3 ^ 3y<P2] ; 

similarly for grad [h * *P]. As !P is holomorphic and consequently, 

Wi = 3,y2 , a,1?! = -a x !P 2 , 

we easily obtain that 

grad [g * «P] grad [h * «P] = [ ( ^ j ) 2 + (a,*-,)2] [du9 d.h + dvg dvh] = 

= [(d^J2 + (a,!?.)2] grad g grad h . 

More precisely, we can write 

{grad [g * IP] grad [h * <P]} (x, >>) = 

= [(Wi)2 + (^-PO2] (x, y) {grad a grad h] (y . (x, j;), «P2(x, J>)) . 
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Using again the Cauchy-Riemann conditions we find that the Jacobian Jv of V 
(considered as a real mapping of D to R2) has the form 

Mx9y) = [(dxVl)
2 + (dyW1)

21{x9y) 

([*, y] e D). Since !P is one-to-one, we have 

(d^f + (8yWtf * 0 

on D and the Jacobian /p-i of !F -1 on f) can be expressed in the form 

/ , - . (« . o) = W \ u , o))]-1 = { [ ( W + ( W 2 ] ( y - 1 ^ , u))}"1. 

The theorem on integration by substitution immediately yields 

Í 
Jл. 

grád [g * «P] grád [h * 5"] dJř a = 

- f K W 2 + ( W ) 2 ] (x, J) { g ^ «? grád h} ("P(x, >>)) d?ř2(x, y) = 
JM 

= f {grád g grád h} («, o) [ ( d ^ . ) 2 + 
J«P(M) 

( S ^ . ) 2 ] (V-^u, v)) |/,-,(ii, D)| dtf2(«, t>) = f grád a grád h dJť2 
JV{M) 

that is, the equality (1.3) holds. At the same time we obtain from the substitution 
theorem that the integral (1.1) exists if and only if the integral (1.2) does. 

1.2. Notation. For zeR2 let hz stand for the function defined on JR2 such that 
hz(z) = +oo and 

(1.4) ^(C) = -log l 

n |C - z| 
for CeR2 - {z}. 

1.3. Lemma. There is a function u(z, Q defined on D x D such that u(z, £) is 
harmonic on D in the variable (.for each z e D and «(z, £) is harmonic on D in the 
variable z for each £ e D and such that for every z,£,eD 

(i.5) V*)WO) = K(0 + u(z, c). 

Further, grad^ u(z, £)is locally bounded on D x D as a function of two variables9 

[*.£] 
Proof. Fix zeD and for £ e D, £ =# z put 

(i.6) <z, o = h^eno) -hj(v). 
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Then M(Z, 0 is harmonic in £ on D — {z} since hz(C) is harmonic in £ on R2 — {z} 
and !F is holomorphic and one-to-one on D. It is easy to see that the limit (z fixed) 

lim M(Z, £) = lim ( - log log ) = 
.... ^ ^\%

 g |y( z ) _ 5/(C)| „ 8 | z - C | j 

= - lim log 
TÍ{->- |y ( - ) - !P(Ç) 

= - log • 
n \r(z)\ 

is finite since ^'(z) #= 0 (!F is one-to-one on D). But singletons are removable 
singularities for bounded harmonic functions, from which it follows that M(Z, £) is 
harmonic in £ on D if we put 

u(z, z)=! log ( |r(z)n. 
71 

As hz(C) = h^(z) then also M(Z, 0 = w(£, z) and for each £ e D the function M(Z, 0 
is harmonic in z on D. 

If z = [x, y], £ = [£, rj], one can write M(Z, 0 = u(x, y, £, rj). It is seen from 
(1.6) that M as a function of four variables is continuously differentiable on M = 
= D x D — {[z, z] ; z e D } ; especially gradc M = \dgi, dnu~] is locally bounded 
on M as a function of two variables [z, £]. Now it suffices to show that for each 
z0 e D there are 8 > 0, fc e K1 such that for any z e D, £ e D with \z — z0 | < 5, 
|£ — z0 | < 5 the inequalities 

|GV<z,o| = fc, M*>0l = fe 

are valid. 
Given z0e D choose r > 0 such that 

cl(;Qr(z0))c: D; 

here and in the following Qr(z0) stands for the open disc with centre z0 and radius r, 
that is 

Qr(z0) = {t;eR2; |£ - z0| < r} 

(cl ( . . . ) denotes the closure of a set). 
Since d^u is harmonic on D in the variable £, for z e D, £ e ^r(Z0) we have 

(1.7) |OV(z, £)| = sup {|o>(z, 0 | ; £ e dQr(z0)} 

(d ... denotes the boundary of a given set). Clearly 

cl (Q1/2r(zo)) x dQ&o) c Af 

and this set is compact. In virtue of the local boundedness of d^u on M there is 
a constant ke Rl such that 

M-. 01 = fc 
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for every z e cl (Q1/2r(z0)), I e dQr(z0). Now it follows from (1.7) that 

|O>(z, C)| = k 

for any z e Qi/2r(z0), C e -2r(Z0)- Similarly for dnu. 

II. THE FREDHOLM RADIUS 

First let us recall the notion of the cyclic variation which will play the central role 
in the following. At the same time we shall introduce the notation which we shall 
need. 

The term path (or curve) in the plane is taken to mean a continuous mapping 
<p: <a, b> -> R2, where <a, b> is a compact interval. A simple closed path (Jordan 
curve) is a path <p: <a, b> -+ R2 such that <p(a) = <p(b) and <p(ti) =1= (p(t2) for any 
tl9t2e(a, b>, |t! — t2\ < b — a. The variation of the vector-valued (complex-
valued) function <p on an interval / c <a, b> is denoted by var [<p;I] (in the same 
way the variation of a scalar (real) function is denoted). (See for instance [9] for the 
definition and properties of the variation of a vector function, the curvilinear integral, 
etc.) The path <p is of finite length if var [cp; <a, b>] < oo. 

From now on let <a, b> be a fixed compact interval, cp: <a, b> -> R2 a fixed simple 
path. Putting 

K = <p((a, b» 

we shall talk also about the curve K. As in the introduction let G(K) stand for the 
interior of K and let iK (= ± 1) be the constant value which the index of a point with 
respect to K takes on G(K). 

For z e R2 let 9Z be a single-valued continuous branch of arg \_<p — z] on <a, b> — 
— <p~x(z). For 0 < r = + oo we denote by yZtf the family of all components of the 
set 

{te<[a, by, 0 < \(p(t)~ z\<r} . 

For a e R1 the number (finite or + oo) of points in 

{/ G <a, b>; <p(t) - z = \<p(t) - z\ eia, 0 < \cp(t) - z\ < r] 

is denoted by nf(a, z). The following assertion is valid (see [6], [9]): 
For any zeR2, r > 0 the function nf(oc, z) of the variable a e K 1 is Lebesgue 

measurable. If we define 

(2.1) v?(z)= f 2 > ( a , z ) d a ( 

then 

if(-)= ~ var [a , ; / ] . 
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Further, we denote shortly 

lz = Vz.co , VK(z) = VK(z) . 

The term vK(z) is called the cyclic variation of the curve K at the point z. 
Let us note that the cylic variation can be also defined by means of the notion of 

the so-called hits on a set (the cyclic variation is then defined for much more general 
sets than for domains bounded by a Jordan curve). Let G c R 2 be a Borel set, 
zeR2. For a e K 1 put 

H(a, z) = {z + teia; t > 0} . 

A point C e H(a, z) is termed a hit of H(a, z) on G if for every r > 0 

^ 1 [ H ( a , z ) n G n Q r ( C ) ] > 0 

and at the same time 

^ [ ( H ( a , z ) - G)nQr(Cj\ > 0 . 

For 0 < r = + oo, a e K1 denote by N^a, z) the total number of hits of H(a, z) on G 
lying in Qr(z). Then Nf(a, z) is a Lebesgue measurable function of a e Rl (see [4], 
[5]). Define 

V?(z) = I N?(*, z) da . 
5(z) = ГЧc(«.-). 

It is easily seen that in the case G = G(K) (or G = R2 - cl (G(K))) Nf(a, Z) = 

g nK(a, z) and it may happen that Nf(a, z) =t= nK(a, z). However, we have in this 
case (see [2]) 

V?(z) = «tfz). 

The notion of hits in the definition of the cyclic variation is used, for example, in 

W, [5]-
Let zeR2 be such that vK(z) < oo. Then for fe ^(K) the (logarithmic) double 

layer potential WKf(z) at z is defined by the equality 

(2.2) WKf(z) = -^ [Mt))d9J(t). 
K Ieyx J j 

If var [cp; <a, b>] < oo (that is, K is of finite length) then vK(z) < oo for every 
zeR2 — K and for such z we have 

(2.3) ^f(z) = i lmf M-dZ 
* J K C - z 

(cf. (0.1)). It is known (see [6], [9], or [4], [5]) that WKf is uniformly continuous 
on G{K) (or on R2 - cl (G(K))) for eachfe <g(K) if and only if 

sup vK(C) < oo . 
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Let us briefly recall the notion of the perimeter of a set and some properties of 
sets with finite perimeter we shall need later. 

3f will stand for the family of all real infinitely differentiable functions with 
compact support in R2. The support of g e 3) is denoted by spt g and the supremum 
norm of g is denoted by [laII. If G c= R2 is a Borel set then we put 

&(G) = sup div w dЖ2 , 
w JG 

where w = [w1? w2] ranges over all vector-valued functions with components 
wuw2e@ such that ||w||2 = w\ + w2 ^ 1. ^(G) is called the perimeter of G. 
If G = G(K) (or G = R2 - cl(G(K))) then (see [11]) 

9{G) = var [>; <a, 6>] = #t(K) . 

The term nK(z) is used in the following to denote the exterior normal in Federer's 
sense of G(K) at Z e R2 (for the definition of the normal in Federer's sense see, for 
example, [4]). The following assertion is valid (divergence theorem): 

Suppose that 0>(G(K)) < oo. If w = [wl9 w2], where wuw2 are continuously 
differentiable functions on a neighbourhood of cl (G(K)), then 

f w(C) nK(Q <!*&) = f div w(Z) dJf2(z) . 
JK J G(K) 

We shall use this assertion in the following situation. Let g e 3 and let u be a har­
monic function on a neighbourhood of 

cl (G(K)) n spt a . 
Then clearly 

div (g grad u) = grad g grad u 

(on R2) and by divergence theorem we obtain that (under the assumption 0>(G(K)) < 
< oo) 

(2.4) f grad g grad u dtf2 = f g(C) n*(C) grad u(C) dJf^C). 
J G W JX 

If z e .R2, a e 3, z £ spt a then, in particular, 

f grad g grad h2 d ^ 2 = f a(C) n^C) grad, fc,(C) dJfx(C). 
J G(X) J K 

Recall that for z e R2 the quantity y^(z) can be expressed in the (provided 0>(G(K)) < 
< oo) 

v*(z) = n f |»K(0 gradc hz(C)| áJf^f) 

In the following let Z) cz R2 be a fixed open set such that K cz D, W a conformal 
mapping (that is, holomorphic and one-to-one) on D. We shall suppose that D is 
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connected (we may consider only that component of D which contains K). As in the 
introduction, let 

Ř = W(K) . 

Then ft is also a Jordán curve. We shall suppose that <p is a parametrization of Ř 
defined again on the interval <a, b} (one can put, for example, (p(t) = W(<p(t))). 
The terms G(Ě), vR, W^f{z) (fe^(Ř)), etc. háve the samé meaning for Ř as the 
terms G(K), vK(z), WKf(z) (fe V(K))9 etc. háve for K. 

2.1. Proposition. If 

(2.5) var [cp\ <a, fc>] < oo 

then also 

(2.6) var [cp; <<?, ř>>] < oo , 

and for every z eK the implication 

(2.7) vK(z) < oo => vz(¥(z)) < oo 

is valid. Suppose that 

(2.8) sup vK(C) < oo . 

Then also 

(2.9) sup vŘ(C) < oo , 

and the equality 
(2.10) lim sup if (C) = lim sup vf(() 

ř->0+Ce£ r-*0 + &K 
holds. 

Proof. Since D is connected then either W(G(K) n D) c G(K) or ÍF(G(K) n D) c 
c # 2 - cl (G(£)). Put <S = G(K) in the čase !F(G(JK:) n D) <= G(£) and 6 = 
= # 2 - cl (G(X)) in the other čase. 

It follows from [4], Corollary 1.11 that for zeR2
9r > O, 

vf(z) = TU sup i grád gr grád hz dJť2; ge@, \g\ S 1, spt g c flř(z) - {z}i 

and similarly 

vf = 7u sup i grád # grád /iz djť 2;g e @9 \\g\\ <> 1, spt # <= Qr{z) - {z} l . 

For any gí9 g2e3) such that ^ = g2 on K, 0x(z) = g2(z) (z e JR2 ťixed) we háve 

grád gt grád hz d3ť2 = grád g2 grád /z2 d^f2 

J G(K) J G(K) 
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(see [4], lemma 2.1); similarly for the integrals over 6. Let us denote 

9v = {ge 9; spt g c D}, 9* = {g e 9; spt g c <F(D)} 
and 

5 = G(K) n D , S = !P(S) = 6 n 5P(/>). 

Then it follows from the preceding that for every z e R2, r > 0, 

(2.11) vf(z) = 

= 7t sup J grad a grad hz djf2; a e Q)Vi \g\ g 1, spt g c Qr(z) - {z}l, 

(2.12) tf(z) = 

= 7c sup J grad a grad hz djf 2; ge9*9 ||g|| ̂  1, spt a c J2r(z) - {z} I . 

If ze D then in particular, 
(2.13) v\W(z)) = 

= 7i sup i grad g grad h^(z) d^f2; ge9*9 \\g\\ = 1, <F(z) £ spt g I . 

Let u be the function from Lemma 1.3. Using Lemma 1.1 we obtain for z e D, 
ge9£ with W(z) $ spt g, 

(2.14) I grad g grad hnz) dtf2 = | grad (g * !P) grad (fcy(s) * W) dtf2 = 
Js Js 

= f grad (g * y) g r a d ftz d ^ 2 + f g r a d („ * y) (r) g radc M(z, C) d-tf2(C) . 

If we put 
(2A5) cz = sup |gradc u(z9 C)| 

then, of course, cz < oo. Suppose that the condition (2.5) is fulfilled. If g e 9£ 
then clearly g * !P e 9V (defining g * !F(z) = 0 for z £ D) and if, in addition, |[g|| g 1, 
!P(z) £ spt g then ||g * *P|| _1 1, z £ spt (g * W). Now it is seen (using the equality 
(2.4)) that 

(2.16) 

sup j f grad (g * V) (C) grad, ii(z, C) d^2(C); g e 9*, \g\ = 1, V(z) t spt g\ = 

= sup | f g * y(Q **(C) gradc u(z9 C) d^(C); g e 9$, |[g|| = 1, V(z) * spt gl = 

= c2 var [>; <a, fe>] . 
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Further, 

sup J f grad (g * V) grad h2 dtf2; ge9£, |g | | = 1, W(z) £ spt gj = 

= sup J grad g grad hz dj^2; g e ̂ , ||g|| ̂  1, z £ spt gi = - yK(z). 

From the last equality and from (2.16), (2.14), (2.13) we obtain 

(2.17) AHZ)) = »K(z) + nc* v a r 0 - <"> b>1 

(z e D). Thus the implication (2.7) is valid (even for any z e D). If z e D - K then 
(provided (2.5)) vK(z) < oo (see, for instance, [6], [4], [9]) and it is now seen that 
v\z) < oo for every ze Y(D), z$fc. However, by [4], Theorem 2.12 this means 
that (2.6) is fulfilled (note that the fact that (2.5) implies (2.6) can be proved much 
more simply by using only the definition of variation and the smoothness of the 
mapping W). 

As gradc u(z, () is locally bounded on D x D as a function of two variables 
[z, £] (Lemma 1.3), we have 

(2.18) c = supcz < oo 
zeK 

(cz is defined by (2.15)). Now it follows immediately from (2.17) that 

(2.19) sup vK(£) = sup vK(C) + nc var [<p; <a, b>] , 

so that (2.8) implies (2.9). 
Now it suffices to prove the equality (2.10). Since Y'(z) 4= 0 for z e D, K c D 

is compact, one can easily find that for each r > 0 there are rl9 r2 > 0 such that for 
every zeK, 

Qri(z)<=¥-\Qr(W(z)))^Qri(z), 

where r2 can be chosen in such a way that r2 -> 0+ for r -» 0 + . If (2.8) is fulfilled 
then by [4], Corollary 2.17 there is a k e R1 such that 

je^afe) nK) = kr 

for every z e K, r > 0. This implies 

(2.20) lim sup f \nK(C) grad, w(z, Q| d-rt^C) = 0 
r^O+zeK JKnDriz) 

since 

L \nK(C) grad; u(z 0 | d^.(C) g c ^ . ( f l / - ) n K) 
I Knflr(z) 

by the preceding. 
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Let zeK. If a e £ ? £ \\g\\ £ 1, spt a c Qr(V(z)) - {V(z)} then g* Te®v, 
\\g * y | | g 1, spt (a • !P) c G,2(z) - {z}. This together with (2.11), (2.12), (2.14) 
and (2.4) yields 

(2.21) vfCF(z)) tz tf2(z) + n f |»K(C) gradc «(z, C)| dJT.(C) . 
J .Kn.Qr2(z) 

If ^ e @ ; is such that \\g * y | | = 1, spt (g * !F) c Ori(z) - {z} then spt # c 
c ^ r(^(z)) - {-P(z)}. Combining this result again with ([2.11), (2.12), (2.14) and 
(2.4) we conclude that 

(2.22) -,«;(-) - f |nK(C) grad? «(z, C)| d#.(C) ^ if (!P(-)) • 
JXnfiri(z) 

Since rx -> 0 + , r2 -> 0 + for r -> 0-f-, the equality (2A0) now follows immediately 
from (2.21), (2.22) and (2.20). 

Now we are in position to prove the following assertion. Note only that the terms 
WKf, WKf have the same meaning as in the introduction, that is, JV*f(C) for C e K 
is defined by (0.2) and analogously for WKf(C) (C e K). 

2.2. Theorem. Suppose that var [cp; <a, b>] < oo. Then WRf is uniformly con­
tinuous on G(R) for each f e ^(K) if and only if WKf is uniformly continuous on 
G(K) for each feV(K). If this condition is fulfilled then WK: V(K) -• <S(K) 
(WK:f*-» WKf) and WK: #(.£) -> C(K) (WK:fv-+ WRf) are bounded linear opera­
tors and the Fredholm radii of WK and WK coincide. 

Proof. It suffices to note that WKf is uniformly continuous on G(K) for each 
fe %>(K) if and only if (2.8) is fulfilled, and JV*/is uniformly continuous on G(R) 
for each fe<&(R) if and only if (2.9) takes place (see, for instance, [6], [4], [9]). 
By Proposition 2.1 the condition (2.9) follows from (2.8). The converse implication 
is evident by the symmetry (one can replace K by £ and W by IF"1). 

Further, it suffices to note that by [7] (see also [4], [5], [10]), under the condition 
(2.8) the operator WK on ^(K) is bounded (and linear) and the Fredholm radius 
of WK is equal to the reciprocal value of 

coWK = - lim sup v*(C) , 
7Cr-0+ &K 

and that under the condition (2.9) the operator WK on ^(R) is bounded (and linear) 
and the Fredholm radius of WK is equal to the reciprocal value of 

coWK = - lim sup v?(C) . 
7t r->0 + £eR 

Thus the equality between the Fredholm radii of WK and WK follows from (2.10). 
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2.3. Remark. Let us consider the simple case when the curve K consists of simple 
arcs of the class # 2 and has only some corner points. As W is conformal, £ has the 
same property. It is known that then WK, WK are bounded linear operators and the 
equivalence relation between the conditions on the uniform continuity of WK, WK 

(on G(K), G(fc), respectively) is clear in this case. But it is also clear in this case that 
the Fredholm radii of WK, WK coincide since then the Fredholm radius is determined 
by the angles between the right-hand and left-hand half-tangents at the corner 
points (see, for example, [12], [7]), and the conformal mapping does not vary the 
angles. Now it is further seen that in order to ensure the invariance of the Fredholm 
radius it is natural to require the conformality of W. 

A natural question arises whether the conformality of W is necessary to ensure 
the equivalence of the conditions (2.8), (2.9). J. Krai has formulated the following 
conjecture: 

Let the condition (2.5) be fulfilled and let W be a diffeomorphism of the class ^ 2 

(defined on an open set which contains K). Then the conditions (2.8), (2.9) are equi­
valent to each other. 

2.4. Remark. An analogue of Theorem 2.2 can be proved also in the case of 
a multiply connected region with a boundary consisting of finitely many Jordan 
curves. We shall not formulate it precisely here but let us sketch one of the possible 
versions. 

Let G c R2 be a bounded region, B the boundary of G and suppose that 

B = K0 u K! u .. . u Kn, 

where K0, Kl9 ...,Kn are Jordan curves, Kt n Kj = 0 for i #= j . Let D cz R2 be an 
open set such that B cz D (D is not supposed to be connected), let W: D -> R2 be 
holomorphic on D (as a complex function of the complex variable) and suppose 
that ¥ is one-to-one on each component of D. Further, suppose that *F(Kf) n 
n ¥(Kj) = 0 for i #= j and that there is a bounded region G cz K2 with a boundary B 
such that 

B= P ( K 0 ) u ! P ( X 1 ) u . . . u P ( i : B ) . 

(Note that the boundedness of G, 0 is not necessary in the assertion; similarly one 
can take R2 - cl (G(K)) or R2 - cl (G(K)) instead of G(K) or G(K) in the preceding.) 

Suppose that the curves K0,Kl5 ...,K„ are of finite lengths. Similarly to the de­
finition of WK forfe ^(K) one can define the double layer potentials WBf for fe ^(B) 
and WBf for fe <%(&) (some natural conditions concerning the orientation of bound­
ary curves should be imposed). Then, similarly to the preceding, the operator WB 

on %>(B) (or WB on %(&)) can be defined provided WBf(WBf) is uniformly continuous 
on G for eachfe <£(B) (on Q for e a c h / e ^(S), respectively). Since WBfis uniformly 
continuous on G for each fe ^(B) if and only if (see [6]) 

max <supvк,(£)> 
ř = 0,1 я l&Ki J 

< 00 
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(and similarly for WBf on G), Proposition 2.1 yields that Wsfis uniformly continuous 
on (J for each/e ^(B) if and only if for eachfe <g(B) the same holds for WBf on G. 
If this condition is fulfilled then WB, WB are bounded linear operators (on ^(B) and 
^(Š)9 respectively) with coinciding Fredholm radii. The last assertion follows from 
(2.10) and from the fact that the Fredholm radius of WB (of WB) is equal to the reci­
procal value of (see [7]) 

- max ) lim supivfř(C)> 
7C i = 0,l,...,n ^r->0+ CeKi J 

(to the reciprocal value of 

- max i lim sup vJ{Kt)(C)\ 9 
7Ci = 0,l n [r-+0+ refCXi) J 

respectively). 
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Souhrn 

INVARIANCE FREL}HOLMOVA POLOMĚRU OPERÁTORU 
V TEORII POTENCIÁLU 

MIROSLAV DONT, EVA DONTOVÁ 

Mezi klasické metody řešení Dirichletóvy úlohy v Rn patří metoda integrálních rovnic. V sou­
vislosti s užitím této metody pro nehladké oblasti je účelné znát Fredholmův poloměr integrálního 
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operátoru, se kterým se v této metodě pracuje. V článku se ukazuje, že v případě rovinné Jordá­
novy oblasti se Fredholmův poloměr tohoto operátru nemění při konformním zobrazení hranice 
dané oblasti. 

Резюме 

ИНВАРИАНТНОСТЬ РАДИУСА ФРЕДГОЛЬМА ОПЕРАТОРА 
В ТЕОРИИ ПОТЕНЦИАЛА 

МШОЗЬАУ ^ О N Т , ЕVА О о ^ О У А 

Метод интегральных уравнений —• это один из классических методов решения проблемы 
Дирихле. При использовании этого метода для областей с нерегулярными границами является 
полезным изучать радиус Фредгольма интегрального оператора входящего в этот метод. 
В статье показано, что в случае плоской области Жордана радиус Фредгольма этого опера­
тора не меняется при конформном отображении границы этой области. 

Ашкогз' аМгезз: Ка!еага та1ета1гку РЕЕ СЛ^Т, 8исЬЬаIагоVа 2, 166 27 РгаЬа 6 - ^е^V^се 
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