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Summary. A simple proof is given of the fact that the complete lift of a simply connected
generalized symmetric pseudo-Riemannian space to its tangent bundle is a generalized symmetric
pseudo-Riemannian space.
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The theory of generalized symmetric spaces and regular s-manifolds was studied
many authors (see, for example, [1]—[4], [6]—[10]). A useful tool for this study
by the algebraic characterization of regular s-manifolds established by O. Kowalski
[6]- M. Toomanian [9] found a construction how to lift the structure of a regular
pseudo-Riemannian s-manifold to its tangent bundle. The result is a pseudo-
Riemannian regular s-structure on the tangent bundle. His method is analytic, and
the calculations involved are rather complicated.

In this paper we give a simple and more algebraic proof of the Toomanian’s result
in the case when the base manifold is simply connected. We are using only basic
facts from the paper [11] by K. Yano and S. Kobayashi and those from the book [6]
by O. Kowalski.

Section 1 is a summary of concepts about lifting operations from a base manifold
to its tangent bundle. Section 2 deals with the theory of regular s-manifolds. In these
first two sections, we restrict ourselves to the facts which are needed in Section 3.
Finally, in Section 3 we prove our main theorem.

I would like to express my sincer gratitude to Professor O. Kowalski for suggesting
this problem to me, for several useful discussions and for his encouragement. I would
like to thank also the Department of Mathematical Analysis, Charles University
in Prague, which provided convenience for my research stay in Prague.

1. TANGENT BUNDLES

In this section we give a brief survey on prolongations of tensor fields and con-
nections of manifold to its tangent bundle. We refer to Yano-Kobayashi [11] for
more details. '
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Let M be a smooth manifold of dimension n. Let ¥(M) be the Lie algebra of all
smooth vector fields on M and T(M) the tensor algebra of all smooth tensor fields
on M. For any smooth mapping ¢ of M into a smooth manifold N, let ¢, denote the
differential of ¢, ¢* its dual mapping.

Further, let M, be the tangent space of M at a point x in M and TM = (J M, the
tangent bundle over M with the natural projection 7. xeM

Given a system of local coordinates (x', x%, ..., x") in M, we denote by (x*, x?,

., X" u', u?, ..., u") the system of local coordinates in TM determined as follows:
If x" = Y'b¥(0/0x"), € M, and x is a point with the coordinates (a', a?, ..., a") with
respect to (x!, x2, ..., x"), then x’ has the coordinates (a', a?, ..., a", b', b%, ..., b")
with respect to (x*, x%, ..., x", u', u?, ..., u").

For a function f on M, the function n*f on TM induced by the projection =« is
denoted by f* and is called the vertical lift of the function f from M to TM. Any
1-form w on M may be regarded, in a natural way, as a function on TM. We denote
this function by ww. The value of the function (w at a point (x, Xx) in TM is
(o) (x, X,) = w(X,), where X, is a tangent vector of M at a point x in M. For any
vector field Y on M we define a vector field Y* on TM by Y’(1w) = (o(Y))" for all
1-forms w on M. We call Y’ the vertical lift of the vector field Y from M to TM. For
any function f on M we denote by df the differential of f. df is a 1-form on M. We
define the vertical lift of a 1-form df on M by (df)’ = d{f*) for all functions f on M.
We define the vertical lift of an arbitrary 1-form w on M by @’ = Y (w,)” (dx?)",
where o = Y w; dx’. We extend the vertical lifts defined above to a unique linear
mapping of the tensor algebra I(M) on M to the tensor algebra I(TM) on TM
under the condition (T ® S)” = T® @ S’ for all tensor fields Tand S on M.

For a function f on M we put f¢ = ¢ df and call the function f° on TM the complete
lift of the function f from M to TM. For a vector field Y on M we define a vector
field Y on TM by Y°f¢ = (Yf)° for all functions f on M. We call Y° the complete
lift of the vector field Yfrom M to TM. Given a 1-form w on M we define a 1-form o°
on TM by o(Y*) = (o(Y))* for all vector fields Y on M. We call o the complete lift
of the 1-form w from M to TM. We extend the complete lifts defined above to a
unique linear mapping of the tensor algebra T(M ) on M to the tensor algebra ‘I(TM)
on T Munder the condition (T® S)° = T*® S” + T° ® S° for all tensor fields T
and S on M.

In terms of the system of local coordinates, we easily obtain that

Ye =YY 9[ox! + Yu(0Y[ox") o)ou’
for all vector fields Y = ) Y?0/0x' on M. From this formula for Y° we get the fol-
lowing lemma (cf. Yano-Kobayashi [11], Remark in Section 5).

Lemma. Let x' be a point in TM which is not in the zero-section of TM. Then
the set {Yg € (TM),. | Ye X(M)} is the whole tangent space (TM),..
Yano and Kobayashi [11] have derived a number of properties of the lifting
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operations. We sum up here only those which will be used later (see Proposition A
to Proposition F below).

Proposition A. For any tensor field T of type (p, q) on M, we have
T(YS, Y5, ..., YO) = (T(Y;, Y, .., Y))F
forallY,e ¥(M) (i = 1,2,...,9).

Proposition B. Let g be a pseudo-Riemannian metric on M. Then the complete
lift g€ of g is a pseudo-Riemannian metric on TM with n positive and n negative
signs.

Let V be an affine connection on M. Then there exists a unique affine connection V¢
on TM which satisfies

Vi Yo = (V4 Y)°

for all X, Ye X(M). We call the connection V* the complete lift of the connection V
from M to TM. Now we have

Proposition C. If R and T are the curvature tensor field and the torsion tensor
field for V, then R® and T¢ are the curvature tensor field and the torsion tensor
field for V©.

Proposition D. If M is complete with respect to an affine connection V, then TM
is complete with respect to V¢, and vice versa.

Proposition D is an immediate consequence of a result from [11], saying that
a Jacobi vector field along a geodesic in (M, V) considered as a curve in (TM, V¥)
is a geodesic, and vice versa. :

Proposition E. IfV is the Riemannian connection of M with respect to a pseudo-
Riemannian metric g, then V¢ is the Riemannian connection of TM with respect
to the pseudo-Riemannian metric g°.

Proposition F. Let R and T be the curvature tensor field and the torsion tensor
field of an affine connection of M. AccordingasR =0,VR =0, T=00r VT =0,
we have R° = 0, V'R = 0, T = 0 or V°T° = 0.

2. AFFINE REDUCTIVE SPACES AND REGULAR s-MANIFOLDS

We shall give some preliminaries which can be found in the book [6] by Kowalski.

First of all we shall recall some elementary properties of the reductive homogeneous
spaces.

Let K be a connected Lie group and H its closed subgroup. Consider the homo-
geneous manifold K/H. Let T o I be the Lie algebras of K and H, respectively.
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Suppose that there is a subspace m < ¥ such that ¥ = b + m (direct sum of vector
spaces) and ad(h) m = m for all h e H. Then the homogeneous space K/H is said
to be reductive with respect to the decomposition t = §) + m. Let V be the canonical
connection of the reductive homogeneous space K/H. Then the curvature tensor
field R and the torsion tensor field T are parallel, that is, VR = VT = 0 (see, for
example, [5] Theorem 2.6, p. 193).

Further, we need the concept of the affine reductive space.

Let (M, V) be a connected manifold with an affine connection. The group of all
affine transformations of M preserving each holonomy subbundle of the frame bundle
&(M) is called the group of transvections of (M, V). It will be denoted by Tr(M, V).
Now (M, V) is called an affine reductive space if the group Tr(M, V) acts transitively
on each holonomy bundle. It is known [6, Theorem 1.25] that a connected manifold
(M, V) with an affine connection is an affine reductive space if and only if M can
be expressed as a reductive homogeneous space K /H with respect to a decomposition
f =1 + m, where K is effective on M, and V is the canonical connection of K/H.
The following is essentially due to K. Nomizu (cf. [6, Theorem 1.40]):

Proposition G. Let (M, V) be a connected and simply connected manifold with
a complete affine connection such that YR = VT = 0. Then (M, V) is an affine
reductive space.

Next, we concentrate on the pseudo-Riemannian regular s-manifolds. All defini-
tions and theorems below are slight modifications of those for the Riemannian case
given in Kowalski [6]. We also refer to Cerny-Kowalski [1].

Let (M, g) be a smooth pseudo-Riemannian manifold. An s-structure on (M, g)
is a family {s, | x € M} of isometries of (M, g) (called symmetries) such that each
s, has the point x as an isolated fixed point. An s-structure {s.} on (M, g) is said
to be regular if
(i) the mapping (x, )+ s(y) of M x M into M is smooth,

(ii) for every pair of points x, y e M we have s, 05, = s, 0 5,, Where z = 5,(y).

If we define the tangent tensor field S of type (1,1) of {s,} by S, = (5,)«x for each
x € M, we can see that {s,} is regular if and only if the tensor field S is smooth and
invariant with respect to all symmetries s,.

A generalized symmetric pseudo-Riemannian space is a connected pseudo-
Riemannian manifold (M , g) admitting at least one regular s-structure. Every
generalized symmetric pseudo-Riemannian space is a homogeneous pseudo-
Riemannian manifold.

Let (M, g) be a generalized pseudo-Riemannian space and {s,} a fixed regular
s-structure on (M, g). Then the triplet (M, g, {s}) will be called a pseudo-Riemannian
regular s-manifold. Let now V denote the Riemannian connection of (M, g) and
let S be the tangent tensor field of {s,}. Following [3], we introduce a new linear
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connection V by the formula
v)’Z = VYZ - (V([_S)-IYS) (S—IZ)

for all Y, Z € X(M). We call this connection the canonical connection of (M, g, {s})-
The basic properties of the affine manifold (M, V) are given in [3], [6]. In particular,
(M, V) is always an affine reductive space [6, Corollary I1.27]:

Proposition H. The canonical connection of a connected pseudo-Riemannian
regular s-manifold (M, g, {s.}) is always complete and satisfies VR = VT = 0,
Vg = VS = 0. Also (M, V) is an affine reductive space.

The next proposition gives sufficient conditions for an affine reductive space to
become a pseudo-Riemannian regular s-manifold. It can be easily compiled from
Propositions V.3 and V.4 in [6].

Proposition 1. Let (M, V) be a simply connected affine reductive space, and
0 € M a fixed point. Let g be a pseudo-Riemannian metric on M such that Vg = 0.
Finally, let Sq: My > M, be a non-singular linear transformation.

Suppose that the following conditions hold:

(i) I, — So is a non-singular transformation of M,
(i) Ro(SoY, SoZ) SoW = SoRo(Y, Z) W and To(SoY, SoZ) = SoTo(Y, Z) for all
Y,Z, We M,,
(iii) Ro(SoY, SoZ) = Ry(Y, Z) for all Y, Z e M,,
(iv) 9o(SoYs SoZ) = go(Y, Z) for all Y, Z e M,,.
Then the space (M, g) admits a unique pseudo-Riemannian regular s-structure {s,}

such that (So)xo = So-
The converse is also true for the arbitrary choice of the origin o.

3. LIFTED s-STRUCTURES

In this section we show that the structure of a simply connected pseudo-Riemannian
regular s-manifold can be lifted to its tangent bundle. We shall start with

Proposition 1. Let (M, V) be a simply connected affine reductive space, and V°
the complete lift of the affine connection V from M to its tangent bundle TM.
Then (TM, V°) is an (simply connected) affine reductive space.

Proof. Let R and 7' be the curvature tensor field and the torsion field of the con-
nection V on M. Then VR = VT = 0 since (M, V) is an affine reductive space.
Now let K¢ and 7% be the complete lifts of R and T from M to TM, respectively.
By Proposition C, K¢ is the curvature tensor field and 7* the torsion tensor field of V<.
Further, V°R° = VT = 0 holds in virtue of VR = VT'= 0 and Proposition F.
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Since the connection V is complete, the connection V¢ is also complete by Proposition
D. Hence Proposition 1 follows from Proposition G.
Now we prove the main theorem of this paper.

Theorem. Let (M, g) be a connected and simply connected pseudo-Riemannian
manifold admitting a regular s-structure {sx}. Further, let TM be the tangent
bundle over M and g° the complete lift of g from M to TM. Then the pseudo-
Riemannian manifold (TM, g°) admits a regular s-structure {s,.}. In other words,
the complete lift of a simply connected generalized symmetric pseudo-Riemannian
space to its tangent bundle is a generalized symmetric pseudo-Riemannian space.

Proof. Let V be the canonical connection of the pseudo-Riemannian regular
s-manifold (M, g, {s,}). Then (M, V) is an affine reductive space and Vg = 0. Hence,
by Proposition 1, (TM, V) is a simply connected affine reductive space. Moreover,
V¢g° = 0. Here V¢ is the complete lift of V to TM.

Next, we prove that the space (TM, ¢°) has a regular s-structure. Let o’ be a fixed
point which is in TM but not in the zero-section of TM, and let 0 = n(0") € M. It is
sufficient to prove the conditions (i)—(iv) of Proposition I for S¢., RS, TS and g¢.,
using the validity of (i)—(iv) for S, R, T and g at o, and also at any other point
xeM.

Since S, is non-singular, the set {S,Y, I Y, € M,} is the whole tangent space M.
Here Y, denotes the value of a vector field Y at o. By Proposition 4, S2. Y., = (SY)S,
holds for all Ye ¥(M). Therefore, by Lemma in Section 1, the set {SZ.Y:,| Ye ¥(M)}
is the whole tangent space (TM),. at o' € TM. This implies that S¢, is non-singular.
In a similar way it is proved that I, — S¢, is non-singular. Hence the condition (i) of
Proposition I is valid. The calculations for (ii)—(iv) are straightforward. For example,
we show the proof of the formula (iii) R&.(SS.Y’, SS.Z2") = R(Y', Z') for all Y/, Z' €
€ (TM),.. By Lemma in Section 1, it is sufficient to show this for vectors Y’ = Y,
and Z' = Z¢, which are the values of the complete lifts Y and Z¢ of any vector fields Y
and Z on M. Using Proposition A, we see that

Re(S5. Yz S525) We. = (R(SY, S2) W), = (R(Y, 2) W), = Re(Y5, Z5) W
for all W¢, e (TM),,, where W< is the complete lift of some We ¥(M). Hence, using
Lemma in Section 1 again, we get RS(SS.YS, S¢.Z¢) = RE(YS,, Z2).

This completes the proof of the theorem.

Remark 1. This theorem is a generalization, for the simply connected case, of the
following result which has been stated without proof in [11]: If M is a pseudo-
Riemannian (or affine) symmetric space with a metric g (or a connection V), then TM
is also a pseudo-Riemannian (affine) symmetric space with a metric g° (a con-
nection V¢, respectively).

Remark 2. As mentioned at the beginning of this paper, Toomanian [9] con-
structed a pseudo-Riemannian regular s-structure on the tangent bundle over
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a Riemannian regular s-manifold wihout restriction to the simply connected case.
To do this, he first defined transformations s,., x' € TM, on TM as follows: Let {s,}
be the regular s-structure on (M, g). Further, let ¥, x € M, be the mapping of the
Lie group K of transformations on M to M defined by y,(a) = ax for all a €K,
and let T,, y € M, be the mapping of M to K defined by Tj(x) = s;l o s, for all
x € M. Now let, for any x’ = (x, X,) and y’ = (y, Y,) in TM, :

s.v,c’(y’) = (Sx(y)’ (sx)* Yy + (.ps::(}'))* ad(sx) Xe) ’

where a > ad(a) is the adjoint representation of K on its Lie algebra, and X, =
= (T,)x X,. Next, he proved that (TM, g%, {s..}) is a pseudo-Riemannian regular
s-manifold [9, Theorem 3.2]. Finally, he showed that the tangent tensor field S’
of {s;.} is the complete lift of the tangent tensor field S of {s,} [9, Theorem 3.3].
Therefore, we see that, for each x’ e TM and x = n(x’), the following diagram is
commutative:

™ —= ™

Foo L

M—>= M
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Souhrn

LIFTY ZOBECNENYCH SYMETRICKYCH PROSTORU
NA TECNE FIBROVANE PROSTORY

MASAMI SEKIZAWA
Je podan jednoduchy dukaz tvrzeni, Ze uplny lift jednoduS$e souvislého zobecn&ného symetric-

kého pseudoriemannovského prostoru na jeho teény fibrovany prostor je op&t zobecn&ny sy-
metricky pseudoriemannovsky prostor.

Pesrome

INOABEMBI OBOBIIEHBIX CUMMETPUYECKUX TIPOCTPAHCTB
H KACATEJIBHBIE PACCJIOEHUA

MASAMI SEKIZAWA
IIpUBOAMTCA MPOCTOE AOKA3ATEILCTBO TOTO, YTO HOJIHBIA MOABEM OAHOCBA3ZHOTO 0000IEHHOrO

IICCBAOPMMAHOBA NMPOCTPAHCTBA B KACATCJIBHOC PACCIIOCHHUE SABIACTCA TOXE 0606 1IeHHBIM CHMMe-
TPHYECKUM NICEBAOPHMAHOBBIM IIPOCTPAHCTBOM.
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