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A STUDY OF INDEPENDENCE IN A SET WITH ORTHOGONALITY

JAN HAVRDA, Praha
(Received October 23, 1984)

Summary. We investigate a set with orthogonality (£2, | ) and the corresponding complete
lattice with orthogonality & = (S, <, 1, 2, {0}). We assume that the lattice & is orthomodular
and that it satisfies some natural assumptions. Let us suppose that 0 ¢ 4 — Q and that the set 4
contains at least two points. We then call the set 4 j-independent if N (4 — {xph**+ = {0},

xed

k-independent if Bt C't= {0} whenever 4=BUC, BNC=90, B0+ C, and
l-independent if x¢ (4 — {x})** for all xe A. We call the set A I-independent if each finite
subset of A which contains at least two points is i-independent for (I, i) = (J, j), resp. (I, i) =
= (K, k), resp. (I, i) = (L, /). The article clarifies mutual relations of these concepts.

Keywords: set with orthogonality, orthomodular lattice, i-independent set, I-independent set,

AMS Classification: Primary 06C15, Secondary 81B10.

1. This paper carries on some ideas of [1] and presents three concepts of in-
dependent sets in a set with an orthogonality relation (£, L). It also pays attention
to their interrelations. The motivation comes from the theory of linear spaces.

Let us recall that we call a relation L. = Q x Q an orthogonality relation if 1. L is
symmetric, 2. there is a distinguished element o such that {0} x Q = L and the .
intersection of L with the diagonal is exactly (o, 0). The presence of an orthogonality
relation on the set Q gives rise to a complete lattice ¥ = (S, <, L, Q, {0}) where S
consists of all subsets 4 of Q satisfying A = (A*)*. Here, Q plays the role of the unit
element and {0} plays the role of the nought element.

Throughout the whole paper, we shall assume that the complete lattice & is ortho-
modular and satisfies Axiom A and Axiom P:

Axiom A. For every x€ Q, x # o, {x}** is an atom in &.

Axiom P. If xeQ, AeS, x¢ A, x ¢ AL, then there exist atoms A, = A and
A, = A* such that xe A, v A,.

Let us restate here some equivalent conditions on a lattice with an orthogonality
relation # = (P, <, 1, 1, 0) which we shall use in the sequel.

1.1. 2 is orthomodular.

12. Ifa,beP,a < b,thenb =a v (a* A b).

1.3. Ifa,beP,a < b,a* A b=0,thena = b.

14.Ifa,b,ceP,a<c,b<c' then(a v b) Ac=a.
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2. Let (©, 1) be a given set with an orthogonality relation. By the following defini-
tion we shall introduce three types of independence of subsets of Q.

2.1. Definition. Let A be a subset of Q such that o ¢ A. Let us assume that the set A

contains at least two points. We call the set A j-independent if and only if

N (4 — {x})** = {o}. We call the set 4 k-independent if and only if B'** n C** =
€A

= {0} whenever A = BU C,B * 0 &+ C,Bn C = 0. Wecall the set 4 I-independent
if and only if x ¢ (4 — {x})** for all x € A.

2.2. Lemma. 1. Every j-independent set is k-independent. 2. Every k-independent
set is l-independent.

Proof. 1. Let 4 be a j-independent set. We have {0} = ﬂ (4 - {xh* =
=N(BuC-{xh'*n ﬂ (B vC - {xHHt > cttn B whenever A=BuC,

xeB
BNnC=0,B+0+C.

2. Let A be a k-independent set. It is true that {o} = (4 — {x})** n {x}** for
all x € 4, hence x ¢ (4 — {x})*~.

2.3. Lemma. The following statements are equivalent: 1. The set A is j-in-
dependent. 2. For every element y € A**, y = o, there is an element a,€ A such
that y ¢ (4 — {a,})*".

In addition, we have A** = (4 — {a,})** v {y}** for the elements y and a,
from Statement 2.

Proof. 1 = 2. If such an element a, does not exist, then y e (4 — {x})'* for every
x€ A, hence y e (4 — {x})** = {0} according to above, contrary to our hypo-
xeA

thesis y = o.
2= 1. If (A4 — {x})** * {0}, then there is an element ye () (4 — {x})**,

xeA xeA

y + 0. Hence 0 + ye(4 — {x})** for all xe A — a contradiction.

According to Theorem 2.10 of [2], we have (4 — {a,})** < (4 — {a,})** v
v {a,}** = 4**. Since (4 - {a,)** = (4 — {a,})** v {y}** = 4*', we have
either (4 — {a,})** = (4 — {a,}))** v {y}*t or (4 — {a,})** v {y}** = 4**. But
the first identity is not valid because, in that case, we should have y e (4 — {a,})**,
contrary to our hypothesis. Lemma is proved.

2.4. Lemma. The following statements are equivalent: 1. The set A is k-in-
dependent. 2. The identity B** n C** = {0} is valid for every subsets B, C = A,
BNnC=0,B+0+%C.

Proof. 1 = 2. We have B** n C** = B** n (4 — B)** = {o}.
2 = 1. It suffices to put C = A — B.
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2.5. Lemma. The following statements are equivalent: 1. The set A is l-in-
dependent. 2. The inequality B** + A* holds for every subset B = A,0 + B + A.

Proof. 1 = 2. Let us suppose B = 4,0 %+ B + A and B'* = A*L. Then there is
an element xe€ A, x¢ B, hence B < 4 — {x} = A. It follows that B'* <
< (4 — {x})** = 4** which implies xe 4 = A = (4 — {x})** — a contra-
diction.

2= 1. Putting B = 4 — {x} we have (4 — {x})** = A** and (4 — {x})** +
+ A for all xeA. It is true that {0} # (4 — {x})'n At =(4 - {x})'n
A [(4 = {x})** v {x}**] in accordance with Statement 1.3. If the set A is not
l-indepedent, then there is an element x € A such that xe(4 — {x})**, hence
(1 (4 = (W) Weaet {o} # (4 — (1) 0 [(4 — ()" v {x}7] = (4 -
— {x})* n (4 = {x})** = {0} — a contradiction.

2.6. Lemma. If a set A is i-independent, then its every subset, which contains at
least two points, is also i-independent for i = j, k, L.

Proof. i = j. Let B = A and let B contain at least two points. Then {0} =

=NMA-{DY =N[4-B* v (B-{x)"]n () [B*v(4-B-
{x})“JDH(B NI N8 ==

i=k i= l Proofls obvious.

2.7. Lemma. If a set A is i-independent and if a € Q,a % 0,a L A, then AU {a}
is also an i-independent set for i = j, k, L.

Proof. i = j. We have ﬂ( — {x})** = {0}, a L A4, hence {a}** L A It is '
true that ('] (A v {a} — {x})*‘L = A" n (‘ [{a}** v (4 = {x})*"] = N4t~

xeA

N [{a}ll v (A {x)H] = ﬂ (A {x})ll = {o} where the last but one identity

follows from Statement 1.4.

i = k. On the one hand we have 4** n {a}** = {0}, and on the other, if we have
A=BUCBNC=0,B+ 0+ C,thendu {a} =(Bu {a})u Cand(Bu {a})n
A C=0. It is evident that {a}** = ({a}** v B*Y)n({a}** v C**). In accor-
dance with Statements 1.2 and 1.4, we get ({a}** v B*)n ({a}** v C*') =
— (@M v [} n (e v B A ({0} v ] = @} v [{a}* o () v
v B n{a}* n({a}*t v )] = {a}** v (B** A C*) = {a}**. Thus, {a}** =
= ({a}** v B*Ya({a}** v ¢c*) o ({a}** v B*) A C*. Since the equality
{a}** = ({a}** v B**) A C** cannot hold, we see that ({a}** v B**)n C** = {0}
(Axiom A). This completes the proof.

i =1 We have A* = (4 — {x})** v [(4 — {x})* 0 4**] for every xe 4 in
view of Statement 1.2. Let B, be the set (4 — {x})* n A**. Then B, = (4 —
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— {x})*, hence we get A** N BL =[(4 — {x})** v B,]n B} = (4 — {x})** in
virtue of Statement 1.4. If the set A is I-independent and if a # o, a L A4, then
{a}*t < A* = (4 — {x})* " BL <= B:. We have {a}** v (4 — {x})** = {a}** v
v (A4** n B;). Since {a}** = ({a}** v A**) n B} and since A** < {a}*, according
to Statements 1.2 and 1.4 we get ({a}** v A**)n By = {a}** v [{a}* n ({a}** v
v A*) A Bi] = {a}** v (4** A B}). Hence we have {a}*'tv (4 - {x})'* =
= ({a}** v A*Y)n BL. If the relation x e {a}** v (4 — {x})** holds for some
x € 4, it follows that {x}** = {x}** A [{a}** v (4 — {x})**] = {x}** n({a}** v
v A*Y) A Bi < B:.Therefore {x}** = {x}** n 4** = By n 4** = (4 - {x})** -
a contradiction.

2.8. Lemma. An i-independent set A = Q is a maximal i-independent set with
respect to the set inclusion if and only if A** = Q fori =j, k1.

Proof. 1. Let A be an i-indepedent set for i = j, k, I and let A** + Q. Hence
A* + {0} and there exists a € A*, a + o. It is true that a L A. The set Ay {a} is
also an i-independent set according to Lemma 2.7 for i = j, k, I.

2. Let A be an i-independent set for i = j,k,l and let A** = Q.If A = B, A + B,
where the set Bis also i-independent for i = j, k, I, then the set A4 as well as the set B
are l-indepedent in accordance with Lemma 2.2. It follows that Q = A** = B,
At & B according to Lemma 2.5 However, this contradicts our hypothesis.
Hence A is a maximal i-independent set for i = j, k, I.

2.9. Theorem. Every i-independent set A = Q is a subset of maximal i-in-
dependent set fori = j, k, I.

Proof. First, we shall prove the following statement: If A€ S, 4 + {o}, then
A =V {a;}** where a; + 0, a; L a; for i * j, i,jel. Indeed, let {C,: ke K} be

iel
a chain of orthogonal sets (i.e. when x, y € C;, x # y, then x L y) such that C;* = 4
for all k e K. Hence |J C, = C is an orthogonal set. Moreover, C** = (J C)** =

keK keK

=V Cit < A. Tt follows that there are maximal orthogonal sets D < A. Then
keK

D** = A.If not, then D** = A, D** % A. Hence D* n A + {0} in virtue of State-
ment 1.3. Consequently, there is ae D* N 4, a + o. We have (Du {a})** = 4
and the set D U {a} is an orthogonal set, therefore the set D is not maximal. Our
assertion is proved.

Now, let 4 be an i-independent set. If A** = Q, then A4 is a maximal i-independent
set in view of Lemma 2.8 for i = j, k, I. If A** + Q, then in accordance with our

assertion above, A* =V {a,}'* where a, + 0, a, L a, for g + h, g,hel. Let B
hel
stand for the set {a,: h eI}. The set AU B has the property (4 U B)** = A** v
v V{a}*t = 4** v A* = Q. We shall prove that 4 U B is an i-independent set
hel

for i =j,k,I.
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i = j. It is true that (A uB - {x})t = ﬂ [4t v (4 = xPDH]n
nN[4*t v (B - {x})“] We have ﬂ [Al v (A {xPH] o 4t v
v N (4 = {x})**. According to Statement 1.4, we get A* N [ ﬂ (4-{=xPDH]n
ARTAL v (A= ()41 = [ (4~ (DT 0 A a [V (4= ()4 =
= [ NA - {xD"]n ﬂ(A {x})ll {o}. Hence in view of Statement 1.3,

we have N[4* v (4 - {x})“] At v ﬂ (A4 — {x})**. Furthermore, ) [A** v
xeB

v (B - {;})“] oAt v ﬂ (B {x})“L Agam in accordance with Statement 1.4,
we get 440 [ (B ) N[ v (B = {HPH]=[NB - {HH7 T
NN (B - {x}) “ = {0}. Hence, in v1rtue of Statement 1.3, we have ) [A'* v

xeB xeB

v (B—{x})**]=4"v ﬂ (B — {x})**. Summarizing, we have er‘B(A UB—
it =t v N4 - A fat v NE -] =4"n
n[Aatt v ﬂ (4t n {a )] = Atn[4att v (Al N A*)] = {o} according to State-

ment 1.4,

i = k. Let us consider C< 4,0 + C+ A and let D = (4 — C)uU B. 1t is true
that C** A D" =CHA[(A-C)** v B c At A4 - C)tt v 4] =
= (A — C)** as a consequence of Statement 1.4. Since C** n D** = C** we have
C*tn D' < C*n (4 - C)* = {0}. Now suppose that D = B where® & D + B
and let C = AU{B— D). It follows that C**n D't =[4'* v (B — D)**] n
n D** = {0} as a consequence of [4'' v (B — D)**] L D*‘. Finally, let A =
= A, UAdy, AynAdy =0, A, + 0+ A,, B=B,UB,, B,AnB, =0, B, + 0 +
+ B,. Let us denote C = A, UB,, D= A, UB,. We have C'*n D' =
= (A1* v B{*)n (43' v B3') = (4* v BiY) n (43* v Bit) = A3Y where the
last identity follows from Statement 1.4 because A3* = A*! v Bi* and Bit c
c (4** v B{*)' = A4* A B}. In a similar way, we can prove that C'* n D** <

c (At v BiY)n(Att v B“) = A{*. Hence C'* n D** < A1t n 431 = {o}.

1 = 1. Let xe A. Then x ¢(4 — {x})ll According to Statement 1.2, we have

=A-{PDHrvA-EDP At =4 - {xh)H v 4, where A4, =

= (A — {x})* n A**. This implies 4, = (4 — {x})* and 4, = A**. In accordance
with Statement 1.4, it is true that A'*n A4} =[(4 — {x}))** v 4,]n 4} =
= (4 — {x})**. Further, we get 4, = (4 — {x})** v 4, = 4** = B! or B'* c
c A}. Hence (4 — {x})** v Bt c A}. Suppose xe(4 — {x})** v B** which
yields x € A;. But then x e {x}'* = A** " AL = (4 — {x})** — a contradiction.
Further, let xe B = {a,: hel}. It is true that {x}*!* = 4* or A** < {x}*. If
xe At v (B - {x})** = 4 v (B A {x}') = {x}* then xe{x}' or x=o0.
This is an evident contradiction and it completes the proof of our assertion.

The following theorem is a generalization of Lemma 2.7.
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2.10. Theorem. If the set A is i-independent and if a ¢ A**, then A L {a} is also
an i-independent set for i = j, k, .

Proof. i = j. We have (A u{a} — {x)t* = 4t n ﬂ [{a}*t v
VA=)t =natto (o)™ v (4 - ()] = N4 v (4= ]
n[B,v(4- {x})“]} where A4, = (4 — {x})' n A and B.=(A-{x})'n
N [{a}** v (4 — {x})**]. Evidently, A, L (A4 — {x})** and B, 1 (4 — {x})*~.
Applying Statement 1.4 we get (4 — {x})** v [(4 — {x})' n A%] = A+ and

— {xh** v [(4 = {x})* n Bf] = B;. Applying again Statement 1.4 we have
(45 v B (A — ) = {(4 = (s v [(A ~ ()0 45 v [(4 — ()t
ABAn(A-{x})'=[4—-{x})'nA4;] v [(A-x})' nB]or(4,nB,) v
v (4= {xh* =T[4, v (4-{=}D"]n[B, v (4 - {x})"]. Therefore,

N (Au{a} - x)t* = XDA[(A,‘ N B,) v (A4 — {x})**]. In accordance with

xeAu{a}

Theorem 2.10 of [2] A, and B, are atoms in the lattice &. If A, = B,, then a €
e{ag* vA-{xPD"*r =B, vA-{x})"*" =4, v(A-{PHt={tv
— {x})** = A** — a contradiction. Thus, 4, n B, = {0} and we have

N (4o{a} = {xh* = N4 - P = {o}.

xeAu{a}

i=k. Let A=BuC, Bn C =0, B+ 04+ C. Using Statement 1.2 we have
(B* v {a}*Y)n CH < (B v {a}) n (B v CH) = (B v B)n (B v Cp)
where B, = B! n (Bt v {a}*!) and C5 = B n (B** v C*'). Since B, L B** and
Cy L B, it is true that (B** v B,) n (B** v Cg) = B** v (B, n Cy) which can
be proved in a similar way as in the first part of this proof. According to Theorem
2.10 of [2], B, is an atom. If B, Cy % {0}, then B, = B,n Cp = B,n A**. It
follows that aeB't v {a}'* = B** v B, = B** v (B,n A**) = B* v 4** —
a contradiction. Therefore B,n Cy = {0}, hence (B** v {a}**)n C'' = B~
Since (B** v {a}**) n C** = C** we have (B*' v {a}**)n C* = B n CH =
= {o}. :

i = I. Proof of the statement 001n01des with the proof of Theorem 2.10 of [1].
The theorem is proved.

Let us introduce the following axiom.

AxiomI. If A = Q is an l-independent set, A= BuUC,B+ 0+ C,BnC =0,
then (4 — {x})** = B~

xeC

In accordance with Theorem 2.12 of [1] Axiom I is satisfied when C is a finite

set. Let us now suppose that A is an orthogonal set. Then ﬂ (B uC—{xhtt =
=N[B* v (C-{x)"]=B"*v ﬂ (c = {x}h** because B*n[B* v

xeC

v (C = {x})**] = (C — {x})** for all x € C according to Statement 1.4. Hence
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applying again Statement 1.4 we have B*nV(C — {x})* =B*nV{B'*v
VB AC— (D) = B By VB @ - W =

= V [B* A (C — {x})*] which gives Bt v ﬂ (C—={xh* =

= ﬂ [Bt v (C — {x})**]. Further, we have (C - {xhH = ¢ n {x}* as a con-
sequence of Statement 1.4 which implies ﬂ (C {xht = ﬂ (cHn{x}h) =
=C*nN{x}t=Cc*nct={o} Therefore we have () (B vC—{x})H =

xeC xeC
= B!L. Thus we see that Axiom I is also satisfied when A is an orthogonal set.

2.11. Lemma. If A is an l-independent set and if the lattice & satisfies Axiom I
then A is also j-independent.

Proof. For an element ae 4 we have (4 — {x})'* = (4 — {a})** n
0 N (4= {hH =4 = {a})" n{a}™ = {o}.

xcA —{a}

2.12. Definition. Let @ + 4 = Q, 0 ¢ A and let us assume that the set A contains
at least two points. We shall say that the set A is J-independent if and only if its
every finite subset which contains at least two points is j-independent. We shall say
that the set A is K-independent if and only if its every finite subset which contains
at least two points is k-independent. We shall say that the set A is L-independent
if and only if its every finite subset which contains at least two points is l-independent.

2.13. Theorem. Let ) += A = Q, 0 ¢ A and let us suppose that the set A contains’
at least two points. Then the following statements are equivalent. 1. The set A
is J-independent. 2. The set A is K-independent. 3. The set A is L-independent.

Proof follows from Lemma 2.2, Theorem 2.12 of [1] and Lemma 2.11.

Let us note that, according to Lemma 2.6, every j-independent set is J-independent,
every k-independent set is K-independent and every l-independent set is L-in-
dependent.

Let 0 # a € Q and let the set A = {a}** — {0} contain at least two points. Then
for all x e A we have (4 — {x})** = {a}**. IfA=BUC,BNnC=0,B+ 0+ C,
hence (Bu C — {x})** = {a}** = B*!. This example shows that the assertion

xeC

of Axiom I may be satisfied even when the set 4 is not l-independent.
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Souhrn

STUDIE NEZAVISLOSTI V MNOZINE S ORTOGONALITOU

JAN HAVRDA

UvaZuje se mnoZina s ortogonalitou (£, ) a ji odpovidajici uplny svaz s ortogonalitou & =
= (S, <,1,9, {o}). Predpoklada se, Ze svaz & je ortomodularni a spliiuje n&které dalsi pfed-
poklady. Necht o ¢ 4 = 2, A obsahuje alespoii dva prvky. PodmnoZina 4 se nazyva j-nezivisla,
kdyz () (4 — {x)** = {0}, nazyva se k-nezavisla, kdyz B'*n C*t = {0}, kdykoliv 4 =

xeA

=BUC, B+ 0+ C, BNC=0, nazjva se I-nezavisla, kdyZ x¢ (4 — {x})J'l pro viechna
x € A. PodmnoZina A4 se nazyva I-nezavisla, kdyZ kaZda jeji kone¢na podmnoZina, kterd obsahuje
alespofi dva prvky, je i-nezavisla, kde (I, i) = (7, /), (K, k), (L, I). Clanek se zabjva vlastnostmi
t&chto pojmu a vztahy mezi nimi.

Pe3ome

MN3VYEHNE HE3ABUCHUMOCTH B MHOXECTBE C OPTOI'OHAJIBHOCTBIO

JAN HAVRDA

PaccmaTpuBaeTCsi MHOXECTBO C OTHOIIEHHEM OPTOrOHAJNBHOCTHA (€2, | ) M NMOPOXIOEHHAS MM
NOJIHAs pelIeTKka ¢ OPTOroHaibHocTIO & = (S, <, |, 2, {o}). IIpennonarecics, 4To pemerka &
OpTOMOAYJISIPHA M YIOBJIETBOPAET HEKOTOPEIM JajbHeHmuM mpeanonoxeHusm. ITyctb o¢ 4 < 2,
rae B A no kpaiiHeit mepe nBa 3neMeHTa. MHOXECTBO A Ha3bIBaCTCH j-HE3aBHCHMBIM, €CIIH

n 4-— {x})J‘l = {o}; k-ne3asucambiM, ecx BLL N ctl= {o}, Kak Toneko A = B U C, B %
xed

%+ 0 =& C, BN C = 0; l-ne3asucumeim, ecmit x¢ (4 — {xp'* ana Bcex xe 4. Muoxectso 4
Ha3blBaeTCsA J-HE3aBUCHMMBIM, €CNIH KaX[0e KOHEYHOE IIOAMHOXECTBO, B KOTOPOM IO KpaiHel Mepe
nBa 3nemMenTa, i-uezasucumo, (I, i) = (J,j), (K, k) , (L,/). CraTesa 3aHMMAaeTCsi B3aMMHBIMH
OTHOILECHUSIMM MEX]Y 3TAMM NOHATHSIMH.
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