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ON REPRESENTATIONS OF BAIRE FUNCTIONS
IN A GIVEN FAMILY AS SUMS OF BAIRE DARBOUX FUNCTIONS
WITH A COMMON SUMMAND

H. W. Pu, H. H. Pu, College Station
(Received September 3, 1984)

Summary. The authors show that MiSik’s result on representation of Baire a-functions (x > 1)
from a given family as sums of Baire Darboux functions with a common summand can be
extended to the case o = 1 provided the family considered is finite, and give a counterexample
if the family is infinite.
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1. In 1967 [5], Misik proved the following theorem.

Theorem M. If «f is a countable family of Baire o functions and « > 1, then
there exists a Baire o function f such that f + g has the Darboux property for
every ge sf.

In other words, if o is a countable family of Baire « functions and a > 1, then the
functions in &/ can be represented as sums of two Darboux Baire « functions with
a common summand. Naturally we want to know whether Theorem M is still true
if & = 1. This question has been raised by Ceder and Pearson [3]. In this paper,
an example is given to show that a common summand cannot be expected for the
case @ = 1 if & is infinite. Furthermore, we prove that if & is finite, then the con-
clusion of Theorem M remains valid even if a = 1.

Throughout this paper, we shall use R to denote the real line, 4, the family of
Baire 1 functions, 9 the family of Darboux functions and 24, the family #, n 9.

2. In the proof of our theorem, a result from [2] proved by Bruckner, Ceder and
Keston will be used. We staté their lemma and some facts from its proof as a lemma
here.

Lemma. Let D be a first category set in R, (a, b) an open interval (—o0 < a <
<b < +m), 0 <A< +. Then there exist an he DB, on (a, b) and a first
category subset P of (a,b) such that Pn D =0, the closure P = P U {a, b},
|h(x)| < 4 for every x €(a, b), {x: h(x) + 0} = P and
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lim h/x) =lim h{x) = —1,

x—a+ x—=b—-
Tm h'x) =lim h(x) = 4.
x—a+ x—=b—

Moreover, let x, = y, be a fixed point in (a, b), let {x,}>-, and {y,}=_, be strictly
monotone sequences such that x, ~ a and y, 2 b, I, = [x,,x,-,] and J, =

= Va1 ¥a] for n=1,2,.... If {4}, is a sequence of positive real numbers
such that A, » A, then h can be chosen such that

sup h(I,) = sup h(J,) = A, if niseven,
inf h{l,) =inf h(J,) = —4, ifnisodd.

Also, we shall use the following criterions for a function in %, to be Darboux.
They were proved by Young, Sen and Massera (see [1], p. 9).
Let he #,. Then

(1) he2 if and only if for each x, there exist sequences {x,} and {x,} such that
X, N X, Xo 2 x, and

lim h(x,) = lim h!x)) = h'x).

(2) he2 if and only if for each x, we have

lim h(f) < h(x) <Tim k)
tox+ t-ox+
and

lim h(t) < h(x) <Tim h't).

t—+x— tox—

3. First we give the example mentioned in § 1. Let g be defined as follows:

g(x) = 0 if x is irrational ,

=1 ifx =0,
1 . D. .

= — ifx = = is a nonzero rational
q q

number in reduced form with g > 0.

Letg, = ngforn = 1,2, ... . Clearly lim g,(t) = O for every n and every x, and &/ =

t—=x
= {g,}. is a countable family of Baire 1 functions. Suppose that f is a function such
that f + g, is Darboux for every n. We now show that f ¢ 4,.
Since f + g, € 2, we have, for every x,

lim (f + g,) (1) < f(x) + g,(x) < Eﬁx(f + g.) (1) -

t—=x
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In particular, since lim g,(t) = 0, we have, for x = rla,

t—x

Tim /(1) = 1@ (£ + 9) () 2503 + =

t—=x

This holds for every n. Thus [im f(t) = + o for every x. It follows that f is not

t—=x

continuous at any point. Consequently, ¢ %,.

Theorem. Let o/ be a finite family of Baire 1 functions. Then there exists a Baire
1 function f such that f + g is Darboux for every g € .

Proof. We use /g, x) to denote the oscillation of a function g at a point x. For
each positive integer i, let D,(g) = {x: wg, x) = 27%} and D, = Y{D/g): g € &}.
Since & is finite and &/ = #,, each D, is a nowhere dense closed set. It follows that

[+ o]
D = |J D; is a first category set.
i=1

Similar to the proof of Proposition 1 in [2], we shall use induction to construct
a series of functions and prove that the sum is the desired function f. Since we need
to modify their construction and we do not use the theorem appearing on p. 294
of Kuratowski [4] that is used in [2], we present the construction here.

The construction involves a sequence of open residual sets {G,}> . Each G, has
components {(a,;, b;,)}; (j runs from 1 to oo or to a certain integer depending on k).
Let A, = +o0 and 4, = 27%"2 if k > 2. We take D as above, (a, b) = (a,;, b;),
A = A. By Lemma, there exist h,; € 2%, on (a;, b;;) and a first category set P,;
in (a,;, by;) such that

(i) Pyn D=0,
(ii) Py = Py L {ay;, by}
(iii) |hey(x)| < 4 for every x € (ay;, by;),
(iv) {x: hy(x) + 0} = Py, ’
(v) lim hyx) = Lim h,(x) = —4, and

x—+aij+ x—+bj—
HE hkj(x) = HE hk-’(x) = Ak‘
x=*ayj+ x—+byj—

For the case k = 1, we require more from each h,;. This will be made clear later.
For each k, we define h, on R by

h(x) = hj(x) if xe€(ay, by;) forsomej,
' =0 if x¢G,,
k
and set P, = (J (JPy;. Clearly h, € #, and Py is a first category set disjoint from D.
i=1j .

Moreover, by Eii),
(ii+) UPy = (UPy) U (R — G,) foreach k.
j i
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Also, since each G, is an open residual set, the sets {a,;}; and {b,;}, are dense in
R — G,. Using (v), we can easily show
(v+) lim hy(f) = lim h,(t) = —4, and

t=>x+ tox—

im h(t) = Tim h,(t) = A, ateach xeR — G,.

t=x+ tx—

Let G; = R — D, and a component (a,;, b, ;) be fixed. Let the intervals (ay;, b,;),
I, Jj (n=1,2,...)correspond to (a, b), I, J, in Lemma. For each n, (I;, U J;,) 0
N Dy =0, and hence w(g, x) < % for every xe€l;, U J;, and every g € &. Since
each I;, U J,, is a compact set, there exists M}, > 0 such that |g(x)| < M, for every
xel;, U J;, and every g € o. With no loss of generality, we assume that M;; <
S M;, =....Let 4y = 400, 4j, = 2M;, + n correspond to A and 4, in Lemma.
Then h,; can be chosen to satisfy the conditions (i)—(v) (for k = 1) and

inf hy(I;,) =inf h,(J;) = —2;,, ifnisodd.

By (ii+), P, < PyU(R— G;)=P,uD; and hence D;UP; =D, uUP, is
closed.

We now proceed with the induction step. Assume that for some k = 1, we have
constructed an open residual set G, the associated functions h,; (j runs through the
enumeration of the components of G,) and h, the associated first category sets P,;
and P, such that D, U P, is closed. Clearly D,., U P, is a closed first category set.
We take G,y = R — (D41 U P,). The associated functions and sets are as described
above. To complete the induction, we need to show that D,,; U P, is closed.
By (ii+) and the choice of G, 4,

m: < (qu+1,j)U (Dis1 VU P) = Dy U Pryy
J J

Since D, U P, is closed, D,,, U P, = D4, U P, = D,,, U P,. Consequently,

Dyyy WPy 2 Dpyy OUPLOUPsy ;= Dy U Pryy .
j

This implies that D, ,; U P, ., is closed. Thus we have constructed the series

2 h(x)
k=1
by induction.

It can be easily seen from the definition of h, and (iii) that this series converges
uniformly on R. Therefore we can define a function f on R by letting

f(x) = ¥ hlx)
) k=1
and claim that fe 4,.
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Now we show that fe€ 9. This will be used later. From the construction, we see
that the sets P,; are mutually disjoint. Thus, owing to (iv), we have

f(x) = hy{x) if xeP, forsome k and somej,

=O if xéU Uij.

k=1 j
Since | UP,; is a first category set, {x: f(x) = 0} is dense in R. For x such that
k=1 j
Sf(x) = 0, there are clearly sequences {x/} and {x]} such that x, \ x, x, » x and

(1p) lim f(x;) = lim f(x}) = f(x).

If x is given such thatf(x) + 0, then x € P,; for some k and some j. Since h,; € 94,
on(a;, by;), by (1), there exist sequences {x,} and {x]} such that x, \ x, x, / x and
lim h,‘l(x,") = llm hkj(x:) = hkl(x) .

Now h,(x) = f(x) + 0. We may assume that h,;(x) + 0 + h,/(x) for every n.
Then, in view of (iv), the sequences {x,} and {x;} are in P,; and hence f(x,) =
= h,(x;)and f(x;) = h(x}) for every n. Thus (1) also holds for this case and, by (1),

fea.

It remains to show that f + g € 9 for every g € &. Let g € & and x € R be given.
We want to establish the inequalities in (2) with h replaced by f + g. We shall prove
the inequalities in which ¢ — x+ is involved. The others can be proved analogously.
There are two cases.

Case 1: x ¢ D, g is continuous at x and hence

lim ( + ) (1) = lim f{7) + g(x).

t=x+

Im (f + g) (1) = Tim f(t) + g(x) .
tox+ t=x+
From this and the fact that f € 24, the desired inequalities follow. That is,
(2+9) lim (f + g) (1) < f(x) + 9(x) = Tm (f + 9) (1) .
t=x+ tox+

Case 2: x € D, there is a first integer n, such that xe D,,,.
If ny > 1, then x ¢ D, .and (g, x) < 27~V This implies

o0) s ) ) % 60 +
2"0_1 oxt oxt 2"0—1

Also, xe D,, = R — G,,. By (v+), there are sequences {x,} and {y,} decreasing
to x such that
1

- 2no—2

lim h,f(x,) = -2, =

n—=wo
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and

lim hog(3) = Ay = —

n= oo 2”0-2

Clearly we can assume that h,(x,) # 0 * h,(y,) for every n. Thus x, and y, are
in the set JP,,; and f(x,) = h,(x,), f(¥n) = hy(¥,) for every n. The above equalities

J
imply that

‘]_.L:Lf(t) é - 2"0-2 and t-x+
Now
lim (f + g) (¢) < lim f(1) + hm g(t)
t—=x+ t—=x+
< —
- 2no—2
Im (f + g) () = T'_f(t) + hm g(t)
2 o Tl > g(x) .

By (i), x ¢ U UPy; and hence f(x) = 0. The inequalities (2, ) follow.
k=1 j

If ny = 1, then xe D; = R — G,. It should be noted that for each j (such that
(ayj, by;) is a component of G,), 4;, > M,, + n. By (vi) and the way we have defined

hy, there exists ¢;, € I;, such that

hy(ti) > Mj, +n if niseven,
hy(t;) < =M, — n ifnisodd.

Clearly t;, € P,; for each j, each n, and hence h, in the above inequalities can be
replaced by f. Since D, = R — G, is a nowhere dense closed set, there exists a se-
quence {ay; },~, such that a,; = a,;, = ... and limay; = x. (If x = a,;, for

n— o

some jo, then j, = j, = ... = j,.) Let x, = t;,, where ¢t;, are as chosen above.

Then |g(x,)| < M;,, and hence .

f(x) +4g(x) > n ifniseven,

f(x,) + g(x,) < —n ifnisodd.
Consequently, lim (f + g)(f) = —co and Tim (f + g)(f) = +o0. Again, (2¢+4)
follows. The prtg(;tf+ is completed. o

Remark. In the above construction, the sets P,; can be chosen null in the sense
of Lebesgue. Then the function f equals zero except on a first category set of Lebesgue
measure zero.
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Souhrn
REPRESENTACE BAIROVYCH FUNKCI Z DANE MNOZINY

VE TVARU SOUCTU BAIRE-DARBOUXOVYCH FUNKC{
SE SPOLECNYM CLENEM

H. W. Pu, H. H. Pu

Autoti dokazuji, Ze MiSikuv vysledek o reprezentaci Bairovych a-funkci (o« > 1) z dané mno-
Ziny ve tvaru soudtu Baire-Darbouxovych funkci se spoleénym &lenem muZe byt rozSifen na
ptipad « = 1, jestliZe uvaZ?ovana mnoZina je konecna, a udavaji protipriklad, je-1i tato mnoZina
nekonecna.

Pe3ome
MPEOCTABJIEHUE ®VHKIIVI BEOPA U3 JAHHOI'O MHOXECTBA
B BUAE CYMMBI ®VHKIIUI BAPA-IAPBY C OBIINM YJIEHOM

H. W. Pu, H. H. Pu

ABTOpBI JOKa3BIBAIOT, YTO pe3ysibTaT Mumuka o npeacrasiienun o-bynkuuii Bapa (¢ > 1) u3
JAaHHOTO MHOXECTBa B BuAe CyMmbl ¢yHkum#i Bapa-Hapby ¢ o6muM wieHOM MOXHO pacopocTpa-
HATDb Ha Cydalf o = 1, €SI PacCMaTpPHBAEMOE MHOXECTBO KOHEYHO, M IPHBOIST KOHTPIIpHMED
B IIPOTHBONOJIOXXHOM Clly4ae.
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