Casopis pro péstovani matematiky

Marie Sokolova
The chromatic number of extended odd graphs is four

Casopis pro péstovdni matematiky, Vol. 112 (1987), No. 3, 308--311

Persistent URL: http://dml.cz/dmlcz/118312

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/118312
http://project.dml.cz

112 (1987) CASOPIS PRO PESTOVANI MATEMATIKY No. 3, 308—311

THE CHROMATIC NUMBER OF EXTENDED ODD GRAPHS IS FOUR

MARIE SOKOLOVA, Praha

(Received March 23, 1985)

Summary. The result is obtained using isomorphism between the extended odd graphs (defined
by Mulder in [2]) and hypercubes of even dimensions with diagonals.
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The extended odd graphs were introduced by Mulder [2] as follows: for k = 2,
the extended odd graph E, has {4 = {1,...,2k — 1}; |4| £ k — 1} as its vertex
set, and two vertices A and B are joined by an edge whenever |4 A B| =1 or
|4 & B| = 2k — 2. The small extended odd graphs are the complete graph K,(E,)
and the Greenwood-Gleason graph (E;).

Mulder showed that the graph E, is regular of degree 2k — 1, is distance-transitive,
and the smallest odd circuit in E, has the length 2k — 1.

The aim of the present note is to prove

Theorem. For k > 2, y(E,) = 4.

Here x(G) denotes as usual the chromatic number of G. We shall use ¥(G) and E(G)
to denote the vertex set and the edge set of G, respectively. When dealing with
colourings of G, we shall mean the well-known regular colourings, i.e. mappings
of V(G) into integers which assign different values to vertices u, v whenever they are
adjacent.

In order to prove the theorem we shall establish an isomorphism between the
extended odd graphs and graphs arising from the n-dimensional cubes by adding
certain new edges. As usual, we denote the graph of the n-dimensional cube (n = 1)
by Q,; then ¥(Q,)={4<{1,...,n}} and for 4, BeV(Q,), (4, B)e E(Q,) iff
|4 A B|=1 If AeV(Q,), then 4’ = {1,...,n} — A will be called the opposite
vertexto Ain Q,. Let n = 2; the n-dimensional cube with diagonals Q,’l arises from
Q, by adding 2"~ ! new edges — called diagonals — each of which joins a pair of
opposite vertices in Q,. Thus V(Q%) = V(Q,) and for A4, Be V(Q3), (4, B) € E(Q%)
iff |4 A B| =lor|da B| = n. Cubes with diagonals are a particular case of Lovdsz’
cube-like graphs (cf. Harary [1]). The small cubes with diagonals are K,(Q3) and
K, 4(Q%). Clearly, 0%, is bipartite for k = 1 (in fact, Q3. is isomorphic to the

so called halfcube $Q%;+2» see [2])-.
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Further, Q%,_, is isomorphic to E,, k = 2. (It is easy to verify that a mapping
fV(E) > V(Q%-2), f(A) = A if 2k — 1¢ A, and f(4) = {1,...,2k — 1} — A if
2k — 1€ A,isan isomorphism.) Hence, we have to prove

(*) for k21, X(ng) =4

Since Q4, contains odd circuits, x(Q3,) > 2. On the other hand, it is not difficult

to show that Q%, is 4-colourable. In order to do it choose i e {1, ..., 2k} and put

={AeV(Q3); ied}, V- ={AeV(Q%); i¢ A}. Then V(Q3)=V*u V",

V* n V™ = 0. Further, the subgraphs of Q%, induced by V* and V'~ are isomorphic

to Q,;—1, hence bipartite. Thus Q3, can be coloured by 4 colours (one uses the

colours 1, 2 for vertices in ¥'* and the colours 3, 4 for those in ¥ ). Hence, to prove
the theorem it is sufficient to show that

(x#) for k = 1, %(Q3,) > 3.

Let ¢ be a colouring of @, (n = 2). We say that ¢ fulfils the condition of opposite
vertices — and write 0(Q,, ¢) — if there are 4, A’, B, B’ € V(Q,) such that (4, B) €
€ E(Q,), A’ is opposite to A4, B’ is opposite to B (hence also (4’, B’) € E(Q,)), and

c(A) = ¢(B’), c(A") = ¢(B). For example, if ¢ is a 2-colouring of Q,, then 0(Q,, ¢)
holds iff n is odd.

Proposition 1. Let n = 3; if there is a 3-colouring ¢ of Q, for which O(Q,,, c)
does not hold, then there is a 3-colouring of Q%_,

Proof. Notice first that Q%_, (n = 3) is isomorphic to the graph G, defined in the
following way: V(G,) = {(4, 4); A, A’ e V(Q,), A’ is opposite to 4}; (4, A") and
(B, B) are adjacent in G, whenever (4, B) € E(Q,) or (4, B') € E(Q,) (cf. [2], p. 122).

Let ¢ be a 3-colouring of Q,, and assume 0(Q,, c) does not hold. Define a mapping
¢ V(G,) = {1, 2, 3} as follows:

d(4,4) =1 if {c(A),c(4)} ={1,2} or c¢(d)=c4)=1,

if {c(A), (A} ={2,3} or c¢(4) =c4)=2,

if {c(4),c(4)} = {1,3} or ¢(4) =c(4")=3.
We are going to show that ¢ is a colouring of G,. Suppose on the contrary that for
some (4, 4’), (B, B) from V(G,) which are adjacent in G,, &(4, 4')) = &(B, B")).
Without loss of generality, let &((4, 4')) = 1, ¢(4) = 1 and (4, B) € E(Q,). Since
(4, B)e E(Q,), we have (A4’, B')e E(Q,) as well. Either ¢(B) =1 or ¢(B’) =1,

hence ¢(4’) + 1, therefore ¢(A’) = 2. This yields ¢(B) = 2, ¢(B’) = 1, which means
0(Q, ¢) and the contradiction proves the proposition.

Proposition 2. Let n = 1, suppose that for every 3-colouring ¢ of Q,, O(Q,,, c)
holds. Then there is no 3-colouring of Q¢,,.
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Proof. Assume the contrary, let ¢ be a 3-colouring of Q¢, ,. In a similar manner
as above when proving x(Q%) < 4, choose ie{l,...,n + 1} and put V* =
={AeV(Qi,)); ieA}, V- ={AeV(Qi,,); i¢ A}. The subgraphs induced in
Q%,, by V* and V™ are isomorphic to Q,; denote them by Q) and Q, respectively.
Let ¢* be the colouring of ¥* induced by ¢ on V*. We assume that O(Q,, ¢) for any
colouring ¢ of Q}; hence there exist 4, B, A’, B'€ V(Q}") such that (4, B) € E(Q}),
A’ is opposite to A in Q) , B is opposite to Bin Q;, and ¢*(4) = ¢*(B’) + ¢*(B) =
= ¢*(A4’). Denote by A" and B” the vertex opposite to A and B, respectively, in Q, ;.
Consider the subgraph of Q% induced by {4, A’, A", B, B’, B"}. A" is adjacent
to both 4 and A’, B” is adjacent to both B and B'. Consequently, &(4") = &(B")
which contradicts (4”, B") € E(Q4, ,).

Proposition 3. For n = 2, if x(Q%) > 3, then x(Q4,,) > 3.

Proof. Use Propositions 2 and 1. From (Q%,,) < 3 it would follow that there
is a 3-colouring ¢ of Q,+1 such that 0(Q,+ 1, ¢) does not hold, hence x(Q3) < 3.

Proof of Theorem. Since Q3 is K, and therefore x(Q3) = 4, Proposition 3 proves
(**) from which the theorem follows.

Remark: Proposition 1 and (x*) immediately imply that for every 3-colouring ¢
of Qz+1 (k 2 1), 0(Qzk+1, ¢) holds.
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Souhrn
CHROMATICKE CiSLO ROZSIRENYCH LICHYCH GRAFU JE CTYRI

MARIE SOKOLOVA

Dokazuje se (pomoci tzv. krychli s diagonalami), Ze chromatické &islo rozSitenych lich§ch
grafu definovanych Mulderem v [2] je 4.
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Pe3soMme

XPOMATHUYECKOE YUCJIO PACHIMPEHHLIX HEYETHBIX I'PA®OB
PABHO YETBHIPEM

MARIE SOKOLOVA

Joka3sBaercs (C HOMOIObIO T.H. KyOOB C JHArOHANSIMH), YTO XPOMATHYECKOE YMCJIO paCIIMpPEeH-
HBIX HEYETHBIX rpadoB, onpeneneHHbX B [2], paBHo 4.
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