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112 (1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 3, 308—311 

THE CHROMATIC NUMBER OF EXTENDED ODD GRAPHS IS FOUR 

M A R I E S O K O L O V Á , P r a h a 

(Received March 23, 1985) 

Summary. The result is obtained using isomorphism between the extended odd graphs (defined 
by Mulder in [2]) and hypercubes of even dimensions with diagonals. 

Keywords: chromatic number, cube-like graphs, extended odd graph, graph, halfcube, n-
dimensional cube, n-dimensional cube with diagonals. 

The extended odd graphs were introduced by Mulder [2] as follows: for fc = 2, 
the extended odd graph Ek has {A _= {1, ...,2k — 1}; | A | ^ fc - 1} as its vertex 
set, and two vertices A and B are joined by an edge whenever \A A B\ = 1 or 
| A A B\ = 2fc — 2. The small extended odd graphs are the complete graph K4(E2) 
and the Greenwood-Gleason graph (E3). 

Mulder showed that the graph Ek is regular of degree 2fc — 1, is distance-transitive, 
and the smallest odd circuit in Ek has the length 2fc — 1. 

The aim of the present note is to prove 

Theorem. For fc = 2, %(Ek) = 4. 

Here /(G) denotes as usual the chromatic number of G. We shall use V(G) and E(G) 
to denote the vertex set and the edge set of G, respectively. When dealing with 
colourings of G, we shall mean the well-known regular colourings, i.e. mappings 
of V(G) into integers which assign different values to vertices u, v whenever they are 
adjacent. 

In order to prove the theorem we shall establish an isomorphism between the 
extended odd graphs and graphs arising from the n-dimensional cubes by adding 
certain new edges. As usual, we denote the graph of the n-dimensional cube (n = l) 
by Qn, then V(Q„) = {A ^ {1, ...,n}} and for A,BeV(Qn), (A,B)eE(Qn) iff 
\A A B\ = 1. If Ae V(Qn), then A' = {1, ..., n} - A will be called the opposite 
vertex to A in Qn. Let n = 2; the n-dimensional cube with diagonals Qn arises from 
Qn by adding 2n~1 new edges — called diagonals — each of which joins a pair of 
opposite vertices in Qn. Thus V(Qd) = V(Qn) and for A, Be V(Qd

n), (A,B)eE(Qd
n) 

iff \A A B\ = 1 or \A A B\ = n. Cubes with diagonals are a particular case of Lovasz' 
cube-like graphs (cf. Harary [1]). The small cubes with diagonals are KA(Qd

2) and 
K4A(Qd

3). Clearly, Qd
2k+i is bipartite for fc = 1 (in fact, Qd

2k+1 is isomorphic to the 
so called halfcube \Qd

2k+i> s e e E2])-
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Further, Qd
2k_2 *

s isomorphic to Ek, k _% 2. (it is easy to verify that a mapping 
/ : V(Ek) -> V(Qd

2k_2), f(A) = A if 2k-14 A, and f(A) = {1 , . . . , 2k - 1} - A if 
2k — 1 e A, is an isomorphism.) Hence, we have to prove 

(*) for k*l, x(Qik) = 4. 

Since Q\k contains odd circuits, x(Qik) > 2. On the other hand, it is not difficult 
to show that Q2k is 4-colourable. In order to do it choose i e {1, . . . , 2k} and put 
V+ = {AeV(Qik); is A}, V = {AeV(Qd

2k); HA}. Then V(Qd
2k) = V+ u V~, 

V+ n V = 0 . Further, the subgraphs of Q2k induced by V+ and V are isomorphic 
to Qzk-u hence bipartite. Thus Q2k can be coloured by 4 colours (one uses the 
colours 1, 2 for vertices in V+ and the colours 3, 4 for those in V"). Hence, to prove 
the theorem it is sufficient to show that 

(**) for k >= 1, X(Qik) > 3. 

Let c be a colouring of Qn (n _t 2). We say that c fulfils the condition of opposite 
vertices — and write 0(Qn, c) — if there are A, A', B, B' e V(Q„) such that (A, B) e 
e E(Qn), A' is opposite to A, B' is opposite to B (hence also (A', B') e E(Qn)), and 
c(A) = c(B'), C(A') = c(B). For example, if c is a 2-colouring of Qn, then 0(Qn, c) 
holds iff n is odd. 

Proposition 1. Let n = 3; if there is a 3-colouring c of Qn for which 0(Qn, c) 
does not hold, then there is a 3-colouring of Qd

n-i. 

Proof. Notice first that Qd^t (n — 3) is isomorphic to the graph Gn defined in the 
following way: V(Gn) = {(A, A'); A, A' e V(Qn), A' is opposite to A}; (A, A') and 
(B, B') are adjacent in Gn whenever (A, B) e E(Qn) or (A, B') e E(Qn) (cf. [2], p. 122). 

Let c be a 3-colouring of Qn, and assume 0(Qn, c) does not hold. Define a mapping 
c; V(G„) -> {1, 2, 3} as follows: 

c((A, A')) = 1 if {c(A), c(A')} = {1, 2} or c(A) = c(A') = 1 , 

2 if {c(A), c(A')} = {2, 3} or c(A) = c(A') = 2 , 

3 if {c(A), c(A')} = {1, 3} or c(A) = c(A') = 3 . 

We are going to show that c is a colouring of Gn. Suppose on the contrary that for 
some (A, A'), (B, B') from V(Gn) which are adjacent in Gn, c((A, A')) = c((B, B')). 
Without loss of generality, let c((A, A')) = 1, c(A) = 1 and (A, B) e E(Qn). Since 
(A, B) e E(Qn), we have (A', B') e E(Qn) as well. Either c(B) = 1 or c(B') = 1, 
hence c(A') =f= 1, therefore c(A') = 2. This yields c(B) = 2, c(B') = 1, which means 
0(Qn, c) and the contradiction proves the proposition. 

Proposition 2. Let n = 1, suppose that for every 3-colouring c of Qn, 0(Qn, c) 
holds. Then there is no 3-colouring of Qn+l. 
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Proof. Assume the contrary, let c be a 3-colouring of QJ[+1. In a similar manner 
as above when proving x(Q\k) = 4, choose i e {1, . . . , n + 1} and put V+ = 
= { -4G7(Q^ + 1 ) ; ieAL}, V" = {.4eV(Q2+1); it A}. The subgraphs induced in 
Qn+1 by V+ and V"~ are isomorphic to Qn; denote them by Q+ and Q~, respectively. 
Let c+ be the colouring of V+ induced by c on V+. We assume that 0(Q+, c) for any 
colouring o of Q+; hence there exist A, B, A', B' e V(Q+) such that (A, B) e E(Q+), 
A' is opposite to A in Q+, B' is opposite to 5 in Q+, and c+(A) = c+(B') * c+(B) = 
= c+(A'). Denote by .4" and B" the vertex opposite to A and £, respectively, in Qn + V 

Consider the subgraph of Qd
n+i induced by {A, A', A",B,B',B"}. A" is adjacent 

to both A and A!, B" is adjacent to both B and B'. Consequently, c(A") = c(B") 
which contradicts (AT, 5") e E(Qd

+l). 

Proposition 3. For n = 2, if x(Qd
n) > 3, then x(Qd

n+i) > 3. 

Proof. Use Propositions 2 and 1. From x(Qd
n+2) = 3 it would follow that there 

is a 3-colouring c of Qn+1 such that 0(Q„+i, c) does not hold, hence x(Qi) = 3. 

Proof of Theorem. Since Q2 is K4 and therefore z(Ql) = 4, Proposition 3 proves 
(**) from which the theorem follows. 

Remark: Proposition 1 and (**) immediately imply that for every 3-colouring c 
of Q2*+i (k = 1), 0(Q2k+l, c) holds. 

Acknowledgement. The author wishes to express her thank to J. Matousek for 
formulating the problem and to Dr. I. Havel for his help in preparing the manuscript. 
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Souhrn 

CHROMATICKÉ ČÍSLO ROZŠÍŘENÝCH LICHÝCH GRAFŮ JE ČTYŘI 

MARIE SOKOLOVÁ 

Dokazuje se (pomocí tzv. krychlí s diagonálami), že chromatické číslo rozšířených lichých 
grafů definovaných Mulderem v [2] je 4. 
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Резюме 

ХРОМАТИЧЕСКОЕ ЧИСЛО РАСШИРЕННЫХ НЕЧЕТНЫХ ГРАФОВ 
РАВНО ЧЕТЫРЕМ 

МАШЕ ЗОКОЬОУА 

Доказывается (с помощью т.н. кубов с диагоналями), что хроматическое число расширен­
ных нечетных графов, определенных в [2], равно 4. 
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