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Summary. For a bounded linear operator there is defined a local spectral radius and it is
proved that the local spectral radius is equal to the spectral radius on a set with the 1Ist category
complement. The connection to the local spectral theory is also discussed.
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Let A be a linear bounded operator in a complex Banach space X. Then r(4),
the spectral radius of 4, may be defined as the least number r such that the series

© o A7 A" is convergent for all 4 outside the closed r-circle at 0. Now fix any x
in X. The local spectral radius of 4 at x may be defined as the least number r such
that the series Y ;2o A~ ™"V A"x is convergent for all 1 outside the closed r-circle
at 0, i.e. lim sup |A"x|'/". This leads to

Definition. Let X be a (real or complex) normed linear space, A: X — X a linear
bounded operator and x € X. Define

(4, x) = lim sup |A"x|'/"

and call it the local spectral radius of A at x.
One sees at once that 0 < r{4, x) < r(A4) for any x in X (where r(A4) is defined
by r(4) = lim [|A"]'/* = inf | 4"]*/") and r(4, x) depends only on the norm of
nxz1

sp {A"x: n = 0}. Our main result asserts that r(4, x) = r(A) for all x from a 2nd
category subset of the Banach space X. On the other hand, the limit lim || 4"x['/"

n— oo
does not exist generally and it may happen that L(4, x), the set of limits of all con-
vergent subsequences of the sequence {||A"x|'/"}2,, is the whole segment [0, 7(4)]
for x from a dense subset of X.
In what follows, X will be a normed linear space and 4: X — X a linear bounded
operator.

Lemma 1. .
(1) (a4, bx) = |a| r(A4, x) for all x in X, b # 0 and a a scalar.
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(2) r(4, x + y) < max {r(4, x), r(4, y)} for all x, y in X.

(3) If r(4, x) * r(A, y), then r(4, x + y) = max {r(4, x), r(4, y)}.

(4) r(4,x) =0 iff (A, x + y) = r(4,y) forall y in X.

(5) (A, A*x) = (A, x) for all x in X and all nonnegative integers k.

(6) r(4*, x) = (A, x)* for all x in X and all positive integers k.

(7) If B is a linear bounded operator in X and BA = AB, then r(A + B,x) <
< r(4, x) + r(B) for all x in X.

(8) If Bis as in (7), then r{AB, x) < r(4, x) r(B) for all x in X.

Proof. (1) is trivial.
(2) Lete > 0 be arbitrary. Take m such that |4"x| < (r(4, x) + ¢)"and [|4"y| <
< (r(A4, y) + )" for all n = m. Then

a (—;—y)| < H(r(4, %) + F + (4, p) + o)) <

< max {(r(4, x) + e)", ({4, ) + €)"} =
= (max {r(4, x),7(4,y)} + e)" forall n=m.
Using (1) we obtain r(4, x + y) = r{4, (x + y)[2) < max {r(4, x), r(4, y)} + e for
each e > 0. Hence the result.

(3) Assume r(4, y) < r(4,x) and take any ee(0, }(r(4, x) — r(4, »))). There
are m > 0 and an increasing sequence of positive integers {,} such that [|4"x|'/" —
— r(4, x) and |4"y[|'" < r(4, y) + e for all n 2 m. Let k, be such that n, = m
and ||A™x]||'/™ > r(4, x) — e for all k = k,. Then we have, for k = k,,

[47Cx + p)[m = ([ams] = |amy[)me z [amx]trm (1 = dnytine,
where d = (r(4, ) + ¢)/(r(4, x) — ¢) (0, 1). This implies llm mf 4™(x + )| =

= r(4, x) and hence r(4, x + y) = (4, x). Using (2) we obtam the result. (Let us
point out that we have proved, in fact, a stronger result: if [|4™x|"™ — r(4, x) >
> r(4, y), then [|A™(x + y)||'/™ - (4, x) = r(4, x + ).)

(4) follows easily from (2) and (3), and (5) is trivial.

(6) Clearly, r(4*, x) < r(A, x)*. For any integer n let m(n) be the integral part of
nlk, and r(n) = n — k m{n). Set M = max {||4*]|:0 < s < k — 1}. Then, for all
nz=k,

s 5 Lo s <
S Mi/n(H(Ak)m(n)xllllm(n))(l/k).(km(n)/n) .
As lim k m(n)[n = 1 and lim sup [[(4F)mmx ]| 2imem = hm sup (45" x| ™ = r(4Y, x),
we have r(4, x) < lim M”"r(A" x)Vk < r(4Y, x)',

(7) Let e > 0 be given and take an m such that
4| < (r(4,x) + e)" and- ||B"| < (r(B) + e)" forall nz=m.
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Take any n = 2m. Then

(4 + By'x = Y, '(Z) B %4 + Y12 <k) B A + Y s (Z) Bk Akx

and hence

Jea + 8y <] = 5228 () 4 008) + o+
5128 (1) 68) + 77 (004, 9)+ € + Khrars (3) 157 (4,0 + o =
= (18) + 1, 2) + 267 + 3253 (1) (4] = (4, 3) + ) (8) + 7 +
# Sheawen (§) (87 = 018) + (4 0) + o =
= 090 0,0 20 (10 i () L A0

((B) + e)*

N ([ ELLED &

(r{4,x) + e"*
< (r(B) + (4, x) + 2¢)" (1 + c,(n) 5"),

where ¢,(n) is a polynomial in n of order m — 1 and s = (max {r(B), r(4, x)} +
+ ¢)/(r(B) + (4, x) + 2¢). As se(0,1), we have r(4 + B,x) < lim(r(B) +
+ {4, x) + 2¢) (1 + c,(n)s")""" = r(B) + r(4, x) + 2e. This gives our asser-
tion because e > 0 was arbitrary.

(8) is trivial.

Lemma 2. Let N be a subset of X. Then
(1) sup {r(4, x): x e N} = sup {r(4, x): x e sp(N)};
(2) if X is complete and X = sp(N), then

r(4) = max {r(4, x): xe N}

(so that r(A) is equal to r(A, x) for at least one x in X; we shall see later that r(4) =
= 1(4, x) for “almost” all x in X).

Proof. (1) Let M = sp(N). Clearly, sup {r(4, x): x e N} < sup {r(4, x): xe M}.
Let x in M be given. Then x = ) 7., t;x; with x; in N. By (1) and (2) of Lemma 1,
r(4, x) £ max r(4,tx;) < max r(A x;) < sup {r(A y):yeN}.

(2) First we show that
©®) r(4) = max {r(4, x): xe X} .

By (1) in Lemma 1 we may assume that r(4) = 1 (the case r(4) = 0 being trivial).
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Assume (§) is false. Then for each x in X we can take some r(x) € (r(4, x), 1). For
each x in X there exists n(x) such that

[4"x|| < r(x)* forall n
Fix any A with |1 = 1. We have
52 s A | = T [A°5] S T Y <

[\

n(x) .

and hence
“ o |(A7*4)" x| < o0 foreach x in X .

For any m define a linear bounded operator T,, in X by
T (x) =27ty o (A714)" x .
We have shown above that
sup {| T,,(x)||: m = 0} < oo for each x in X .

By the Banach-Steinhaus Theorem we conclude that the operator T: X — X (well-)
defined by T(x) = lim T,,(x) is a linear bounded operator. We will show that

(A—A)T=T(A — A) =1 Let x in X be given. Then
(88) (A= A) TMx) = T, (A — A) x = x — (A7 14" 1x

for each m. But |[(A7'4)"*! x| < r(x)™*" for all m = n(x), so that, taking limit
in (§), we obtain (A — A) Tx = T(A — A)x = x. Thus (A — A) T=T(A — 4) =
= I. This implies that each A with |l| = 1 is in the resolvent set of A4, which contra-
dicts the fact that 1 = r(4) = max |o(4)|. Hence (§) holds.
As X = sp(N), we have by (§) and (1)
r(4) = max {r(4, x): xe X} = sup {r(4, x): xe N} .

To show that “sup” on the right hand side can be replaced by “max”, it is sufficient
to show that for each y in X there exists some x in N with (4, y) < r(4, x). Let y
in X be given. Then y = Y"_, t;x; with x; in N. We have shown in the proof of (1)
that r(4, y) < max r(4, x;). Hence for at least one x; we have r(4, y) < r(4, x;).
Corollary 1. Let N be a subset of X. Then
sup {r(4, x): xe N} = sup {r(4,x): xe M},
where M = sp{Ai‘x: xeN, k = 0}.

Proof follows from (5) of Lemma 1 and (1) in Lemma 2.

Corollary 2. Let N be a finite subset of X and let M be defined as in Corollary 1.
Then

max {r(4, x): x e N} = max {r(4, x): xe M} .

180



Corollary 3. Let X be complete, N a subset of X, and let M be defined as in Corol-
lary 1. If X = M, then
r(A) = max {r(4, x): xe N} .

Proof follows from (2) in Lemma 2 and Corollary 1.

Lemma 3. Let X(<r)={xeX:r(4,x) <r} (r>0) and X(=r)={xeX:
r(4,x) £ r} (r 2 0). Then
(1) X(<r) is a F, linear subspace of X for each r > 0 and X(<r) is a F linear
subspace of X for eachr = 0;
(2) X(<r) = X(<R) = X(<R) for each 0 <r < R, and X(<r) = X(<R) for
each 0 £ r £ R;
(3) if X is complete, then X(<r) is of the 1st category in X for each r € (0, r(4)].

Proof. (1) Let X(n,r) = {xe X: |A"x|| £ "} (n 2 0, r 2 0). Each set X n, r)
is closed in X. As X(<r) = Ui, Ug=o N X(n, r — 1/k) and X(<7r) =
= N, X(<r + 1/k), we have that X(<r) is F, and X(<r) is F,5in X. The linearity
of both these sets follows from (1), (2) in Lemma 1.

(2) is trivial.

(3) Let Y(k, m) = N>, X(n,r — 1/k). Since each Y(k, m) is closed and X(<r) =
= U UZ-o Y(k, m), it is sufficient to show that int (Y(k, m)) + @ for some k
and m leads to a contradiction. So assume that int (Y(k, m)) + @ for some k, m.
Then

sup {r(4, x): x e Y(k, m)} < r — 1]k < r(4) — 1[k.

As int (Y(k, m)) + 0, we have X = sp(Y(k, m)) and, by (2) in Lemma 2,
r(4) = max {r(4, x): x € Y(k, m)}
which by the preceding inequality leads to r(4) < r(4) — 1/k, a contradiction.
Theorem. Let X be a Banach space and S a countable set of linear bounded

operators in X. Then there exists a F, 1st category subset F of X such that

r(A,x) = r(A) for eachxin X\F andeach AinS.

Proof. Set F = (J{X(<r(A4)): 4 € S} and use Lemma 3, part (3).
Using the technique of the local spectral theory for self-adjoint operators we have
proved also that r(4, x) = lim |4"x|['/" for any normal operator 4 on a Hilbert

space X and each x in X. As this technique is closely related to iterative processes
in Hilbert spaces, we have decided not to develop it here and the reader is referred
to [1]. Since r(4, x) = r{A) for “almost” all x, we may use the sequence {|4"x|'/"}
for computing r(A) for some classes of operators A. But it should be pointed out
that the (respective) convergence of this sequence is very bad.
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Proposition 1. Let X be a Banach space, A: X — X a linear bounded operator such
that o(A) n S(0, r(A)) = {4y, ..., 4.} is a finite isolated subset of a(A) (S(0, r(A))
denotes the spectral circle of A) and the resolvent R(A, A) has a pole at A; of a finite
order, for each i = 1,2,...,m. Let E, = E(A, {2, ..., A,}) and let x in X be such
that E,x # 0. Then the limit lim | A"x|'/" exists and equals r(A) (= r(4, x)).

Proof. Let 6 = o(4)\ {4y, ..., 4,}, E; = E(4, {4}), X; = E(X)fori =1,...,m
and E, = E(4,0), X, = E(X). ThenX = X; ® ... ® X,, ® X, and each of X4, ...
«ees Xy X, is invariant under 4. Without loss of generality we may assume that

r(A) = 1 and x|y = max {|Ex]|x,, ..., |En*]x, [Ee*|x,} for each x in X. Let x
in X be such that E,x # 0, and set x, = Ex (i = 1,...,m) and x, = E,x. Then
X=X+ ...+ x,+x, and the set J = {ie{l,.. m} x; & 0} is nonempty
(because E, =E, + ... + E,).Let R(4, 2) have a pole at A;of order p; (i = 1, ..., m).
Take any i e J and let n; be the largest integer such that (1; — A)™ x; # 0; clearly
0 < n; < p; (note that X; = {x e X: (4; — A)" x = 0}). Then we have, for n = n,,

= (= (= A 5= e (<0 () 2200 = A1

It is easy to see that there exist a;, b; > 0 such that

a,-(:i) < ||4m] < b (:‘) for large n .

Therefore, for large n we have

max {a,-(:‘) tie J} < |4, < max {b,. (::) tie J} .

This implies that lim ||4"x,|"" = r(4,x,) = 1. From this equality and from

(4, x,) < r{4,) < r(A) = 1 (where A4, denotes the restriction of 4 to X,) we con-
clude that the limit llm [4"x[|'" exists and equals r(4, x,) = r(4, x) = r(4) = 1

(see Lemma 1, (3) and its proof).

Corollary 1. Let X be a Banach space and A: X — X a linear compact operator.
Then r(4, x) = hm ”A"x””" for each x in X.

In Proposmon 1 and its corollary, the set {x e X: r(4, x) < r(4)} is a proper
closed linear subspace of X. Corollary 1 extends a result of [3, § 9.1].

Proposition 2. Let X be a normed linear space and A: X — X a linear operator.
Assume that at least one of the following conditions is satisfied:
(1) A is bounded,
(2) A is one-to-one and A™*: R(A) — X is bounded.
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Then, for each x in X, the set L( A, x) of limits of all convergent subsequences of
the sequence {||A"x||'""}=., is a closed segment in [0, oo].

Proof. Let x in X be given. It is clear that the set L(4, x) is closed in [0, c0].
Assume that L{4, x) is not a segment, i.e. not connected. Then there exist nonnegative
numbers u and v such that < v and L(4, x) n [u, v] = {u, v}. Take two numbers a
and b such that u < a < b < v and set ¢ = bfa (> 1). Define two sets R and S
of positive integers by R = {n: [A"x||'" < a} and S = {n: |A"x||"" = b}. Tt is
clear that R 1 S = 0 and the set of positive integers outside the set R U S is finite,
and hence there exists n, such that each integer n = n, is either in R or in S. As both
sets R and S are infinite, one can easily construct two sequences n; < n, < ...
. <m<..and my <my, <...<m<.. such that n,eR, n, + 1€S and
m, €S, m, + 1€R for all k. Then

] S @, At 2 b, [dm] 2 b, At 5 et
for all k. Set x, = A™x and y, = A™x. Then
4% ]/|x] = be™ and || Ap]|/||yi]| £ ac™™  for all k,

and hence neither (1) nor (2) is satisfied, a contradiction.
This proposition also shows that the claim in the proof of the second part of
Lemma 2.2 in [2] is false.

Proposition 3. Let H be a Hilbert space with an orthonormal basis {e,},, and
0=<a = b=r. Then there exists a weighted shift operator A in H such that
r(A) = r and L{A, x) = [a, b] for all nonzero x in Hg, = sp {e,, e,,...}.

Proof. We may restrict ourselves to the case r(4) = 1 only. We shall consider
five cases:

(i) 0=a<b=1;
(ii0<a<b=1;
(i) 0=a<b<1;
(ivy0<a<b<1;and
Wo0ga=bs1

In cases (i)—(iv) we take ¢ € (0, 1) and define (N denotes the set of nonnegative
integers):
(a) a function f: N — N such that, for some m, 2 0, i > j = m, implies f(i) > f(j)

and f(m + 1) — f(m) - o0 as m - oo;

(b) a number M(n) € N, for n = f(m;), by the condition

fM(n)) < n < f(M(n) + 1) ;

(c) a nondecreasing function s: N n [my, ©) = R*;
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(d) a function e: N - R* by

s(m) — s(m;) if n=f(m), mz2m;+1,
e(n) = {s(my) if n=f(my),
0 otherwise ;
() a sequence {a,}2, by a, = ¢*™; and
(f) a weighted shift operator A: H — H by Ae, = a,e,+, (n 2 1).

If x = Y¥_, x.e, € Hyyy, then we have, for n 2 f(m)),

n, _ \u k+n-1 — \u Ti=xktn=1e(i) _
A'x = Zk=l Hi=k Ailyp = Zk=l XxC Crin =

— Z;‘u=1 xkcs(M(k+n—l))—):"|=1 e(i) Coip -

Assume x # 0 and define g = min {|x,|: x; + 0} and h = max {|x|:i = 1,...,u}.
Then
”A"x” < h max cS(M(n))—Z"i=1 e(i) < hesMm) ==y e(i)

k=1,....u
and hence
) drx] < g™ for n = f(m,),

—3u

where g = he™¥t=1()_ Similarly one obtains

® L] 2 g for 2 fmy).

Case (i). Define f(m) = m! (then m; = 1) and s(m) = (m + 1)"/2 f(m). If
n(m) = f(m) (m = 1), then M(n(m)) = m and, by (§), |4"™x| < gc*™, so that
”An(m)xnl/n(m) < qlln(m)c(m+ 1)1/2 >0 as m-— .

If we set n(m) = f(m) — u for large m, then M(u + n(m) — 1) = M(f(m) — 1) =
= m — 1 (for large m) and, by (§), [|4A"™x| = gc/™~V™"* so that

A Hmem = glntmelm=1imt2/ml=u) _, { a5 m — oo,
We have just proved that both 0 and 1 lie in L4, x). But L{4, x) < [0, 1] and hence,

by Proposition 2, L{4, x) = [0, 1]. (One may show directly that n(m) = [s(m)/d]
satisfies | A"™x]||'"™ — ¢? as m — co; similarly in the other cases.)

Case (ii). Let t = log a/loé ¢ and define f(m) = [m! "] for me N and s(m) =
= f(m + 1)Jm for m 2 m,. Take n(m) = f(m + 1) — u. Then M(n(m)) = m
for large m and, by (§),

”An(m)x” > QCS(M("(M))) = gcsw) ;

hence
”An(m)x"l/n(m) g glln(m)cf(.m+ 1)/(m(f(m+1)—u)) -1 as mo .
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Since

lim sup - (M(u_i_”_—_l_)) lim upf(M(u+n_l)+|)§
n= o n n- 0 M(u +n— 1) n
< lim sup SM(u +n—1)+1) lim flm+1) _ ’

oo M+ n—1)f(Mu+n— 1)) m=o m f(m)
we conclude that llmmf [|4"x|'" = ¢' = a and hence 1€L/d,x) < [a,1]. But

for n(m) = f(m) (m > 1) one has “A"‘"’)x””"‘"" < qstMEM) — gestm and hence
| Anmx |[1imm) < qUnm SIS . g URm) SO+ OIS s g for m > c0. We have
proved that both a and 1 lie in L(4, x) and L(4, x) < [a, 1]. By Proposition 2,
we have L(4, x) = [a, 1].

Case (iii). Set t = log bflog ¢ and define f(m) = [m!t™™] (m e N) and s(m) =
= mf(m) (m = my).

Case (iv). Set t = log aflog b and define f(m) = [t"] (m e N) and s(m) =
= f(m) log aflog ¢ (m = my).
Both the cases (iii) and (iv) are treated similarly as the case (ii).

Case (v). Define (a4, ay,...) = (1,43 1,1,4% a% 1,1, 1, a% a% a%1,...). One
easily checks that L(4, x) = {a} for each nonzero x in Hy,.

It remains to note that in all five cases the sequence {a,};, lies in (0, 1] and con-
tains arbitrarily long segments of consecutive 1s, so that |4"| = 1 for all n and hence

rA4) = 1.

APPENDIX

Let us show the relation of this paper to the local spectral theory. Let X be a com-
plex Banach space, 4 a bounded linear operator in X, and x in X. The local resolvent
set of A at x, denoted by ¢(4, x), is the set of all complex numbers { for which there
exists a neighbourhood U of { and an analytic X-valued function f on U such that
(A — A) f(A) = x for all 4 in U; the local spectrum of A at x, denoted by a(4, x),
is the complement of ¢(4, x) (to the whole complex plane). In [2], it is shown that
for each { € do(A), there is a set X({) of the second category in X such that (e
€ do(A, x) for all x € X({). A more precise argument makes it possible to prove the
following

Claim. The set X \ {x € X: d6(A, x) > 0a(A)} is of the first category in X.

Proof. Let { e do(A4) be given. Then {, — { for some sequence {({,}=, =
< o(A), the resolvent set of A. As ||R(4, L = 1/(¢, — §) = oo for n —> oo, the
Banach Theorem (see [6, Chap. II, § 4]) implies that the set Z({) = {x e X:
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lim sup ||R(4, ¢,) x| < oo} is of the first category in X and hence, by the definition
n—o0
of the local spectrum, { € do(A4, x) for all x € X \ Z({).

Now let {{,};, be a dense subset of da(A). Then the set Z = (%, Z({,) is of
the first category in X and, for each x € X \ Z, da(4, x) contains each {, and hence
the whole boundary do(A).

In [5] it is proved (by a slightly different argument) that the set M = {x e X:
o(A, x) o do(A)} is not of the first category in X; in fact, the proof given there
shows that the complement of M (to the whole space X) is of the first category.
Since o(4, x) = a(A4), we have dg(A4) = do(A4, x) provided do(A) = o(A, x). Hence
the above claim makes the assertion concerning M more precise. By the same argu-
ment as in [5] one can prove a more general result. Let o(4) = {1eC: X +
=+ ran (A — A)} (the surjective spectrum of 4) and g(4,x) = {ie C:x ¢ ran(4 — 1)}
(this set may called the local surjective spectrum or the minimal local spectrum of A
at x). It is clear that do(4) < o(A4) < o(4) and o (4, x) = (4, x). Note that
o4(A) is closed (this may be proved either directly or by using the fact that 4 — 1
is not surjective iff it is a right topological divisor of zero).

Theorem. Let X be a Banach space and S a countable set of linear bounded
operators in X. For each A in S let D, be a countable subset of 6(A). Then there
exists a first category subset F of X such that, for each x in X\ F and each A in S,
(1) D4 = 04, s) and (2) a(A) = cl(o(4, x)).

Proof. The sets F, = ) {ran(4 — A):1e D4}, A€S, and F = () {F: A€ S}
are of the first category in X. If x € X\ F, then D, < 64, x). If xe X \ F, then
D, < o(A4,x) for all Ain S, i.e. (1) holds. Since we may assume that each D, is
dense in o,(A), the assertion (2) is a consequence of (1) and of the equivalence of
D, = cllo|(4, x)) and o,(4) = cl(a (4, x)).

Since r(A4) = max |o(4)| and r(4, x) = max |o(4, x)|, we have {x € X: (4, x) <
< r(4)} =« X\ {xeX:00(4, x) > do(A)} = X\{xeX:0(4,x) 2 do(4)} =
c X\{xeX: 04, x) o g A)}, the theorem in the main text is a consequence
of the claim and of the above theorem as well.

On the other hand, our theorem implies the above claim at least in the case when A
possesses the single-valued extension property. Indeed, in this case r(4,x) =
= max |o(4, x)|. One easily checks that o((4 — 4)™', x) = (6(4,x) — 4)~' and
hence r{(4 — 2)~*, x) = dist (4, 6(4, x))™* for all A in o(A4). Let D be a countable
dense subset of g(4). Since also r{(4 — 2)™') = dist (4, o(4))~* for all A in o(4),
our theorem ensures the existence of a first category subset F of X such that
dist (4, o(4, x)) = dist (4, 6(4)) for all x in X\ F and A in D. This immediately
implies that do(4, x) > do(A) for all x in X \ F.

In [2] the author conjectured that there exists an x with o(4, x) = o(A4). A simple
example (see [4]) disproves the conjecture. Indeed, if S is the unilateral shift in
a (complex infinite dimensional) separable Hilbert space H, then o(S*, x) = do(S*)
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for all x € H, but ¢(5*) = o(S) = {A: |4| £ 1}. (Given any nonzero x in H, set
f) = = Yo a5t x,
Then f is analytic in the interior of o(S*), because S is an isometry and hence

im inf 57+ = tim [ = 1,

and (A — S*) f(4) = x for all 4 with |4| < 1.) The hitch is in the fact that S* does
not possess the single-valued extension property. If this obstruction is avoided by
modifying the definition of the local spectrum (precisely, by incorporating the
analytic residuum into it), then the above claim holds with d6(4, x) > do(A) replaced
by o(4, x) = o(A4) (see [5]).

The author wishes to thank V. Miiller for calling his attention to the paper [5]
and P. Vrbovd for useful discussions concerning the local spectral theory.
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Souhrn

O LOKALN{M SPEKTRALNIM POLOMERU

JoserF DANES

Pro omezeny linearni operator je definovan lokalni spektralni polomér a je dokazano, Ze
lokalni spektralni polomér je roven spektralnim polom&ru na mnoZing, jejiz doplndk je 1. kate-
gorie. Je také ukazana souvislost s lokalni spektralni teorii.

Pe3ome

O JIOKAJIBHOM CIHEKTPAJIBHOM PAOUYCE
Joser DANES
Jlis OTpaHMYEHHOIO JIMHEHHOIO OMNepaTopa ONpPeneNseTCs JIOKABHBIA CIEKTPaNbHbIK paguyc
M J0Ka3bIBAa€TCs, YTO JIOKANBHBIX CHEKTPaNbHBIH paguyC paBeH CHEKTPalbHOMY PaguyCy Ha MHO-

JKECTBE, OLOJHEHHE KOTOPOrO SIBIAETCA MHOXECTBOM IepBod kareropud. PaccMmatpmBaercs
TaKkXXe CBA3b C JIOKAJIbHOW CIEKTPATbHOU Teopuei.
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