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ON LOCAL SPECTRAL RADIUS 

JOSEF DANES, Praha 

(Received March 26, 1984) 

Summary. For a bounded linear operator there is defined a local spectral radius and it is 
proved that the local spectral radius is equal to the spectral radius on a set with the 1st category 
complement. The connection to the local spectral theory is also discussed. 
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Let A be a linear bounded operator in a complex Banach space X. Then r(A), 
the spectral radius of A, may be defined as the least number r such that the series 
Yjn=o X"(n+l^An is convergent for all X outside the closed r-circle at 0. Now fix any x 
in X. The local spectral radius of A at x may be defined as the least number r such 
that the series Y*=o X~(n+1)Anx is convergent for all X outside the closed r-circle 
at 0, i.e. lim sup ||Anx||1/M. This leads to 

n-* oo 

Definition. Let X be a (real or complex) normed linear space, i : I - > I a linear 
bounded operator and x eX. Define 

r(A,x) = limsup(|4Mx[|1 / n 

H-+00 

and call it the local spectral radius of A at x. 
One sees at once that 0 = r(A, x) ^ r(A) for any x in X (where r(A) is defined 

by r(A) = lim \\An\\1/n = inf ||ylnjj1/n) and r(A,x) depends only on the norm of 
n-»oo n^. 1 

sp {Anx: n = 0}. Our main result asserts that r(A, x) = r(A) for all x from a 2nd 
category subset of the Banach space X. On the other hand, the limit lim ||Awx | |1 / n 

W-+00 

does not exist generally and it may happen that L(A, x), the set of limits of all con­
vergent subsequences of the sequence {|Awx||1/w}^°=1, is the whole segment [0, r(A)~] 
for x from a dense subset of X. 

In what follows, X will be a normed linear space and i : I ^ I a linear bounded 
operator. 

Lemma 1. 
(1) r(aA, bx) = |a | r(A, x)for all x in X, b =f= 0 and a a scalar. 
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(2) r(A, x + y) f£ max {r(A, x), r(A, y)} for all x, y in X. 
(3) / / r(A, x) * r(A, y), then r(A, x + y) = max {r(A, x), r(A, y)}. 
(4) r(A, x) = 0 iff r(A, x + y) = r(A, y) for all y in X. 
(5) r(A, Akx) = r(A, x)for all x in X and all nonnegative integers k. 
(6) r(Ak, x) = r(A, x)k for all x in X and all positive integers k. 
(7) If B is a linear bounded operator in X and BA = AB, then r(A + B, x) ^ 

g r(A, x) + r(B)for all x in X. 
(8) IfB is as in (7), then r(AB, x) <; r(A, x) r(B)for all x in X. 

Proof. (1) is trivial. 
(2) Lete > 0 be arbitrary. Take m such that ||A"x|| = (r(A, x) + e)n and \\Any\\ g 

g (r(A, y) + e)n for all n = m. Then 

'{Ч2) ѓ ł((r(Л, x) + e)n + (r(A, y) + e)") й 

= max {(r(A, x) + e)n, (r(A, y) + e)n} = 

= (max {r(A, x), r(A, y)} + e)n for all n = m. 

Using (1) we obtain r(A, x + y) = r(A, (x + y)jl) ^ max {r(A, x), r(A, y)} + e for 
each e > 0. Hence the result. 

(3) Assume r(A, y) < r(A, x) and take any e e (0, \(r(A, x) — r(A, >'))). There 
are m > 0 and an increasing sequence of positive integers {nk} such that ||An kx|| t / W k -> 
-> r(A, x) and ||-4ny||1/n

 = r(A, y) + e for all n = m. Let fc0 be such that nk = m 
and ||/l"kJc||1/Wfc ^ r(A, x) - e for all fc = fc0. Then we have, for fc = fc0, 

\Ank(x + y)\1/nk

 = (\Ankx\ - \Anky\\)1/nk

 = \Ankx\\l/nk (1 - dnk)1/nk, 

where d = (r(A, y) + e)j(r(A, x) - e) e (0, 1). This implies lim inf \\Ank(x + y)\\l/nk

 = 
fc-»oo 

^ r(A, x) and hence r(A, x + y) ^ r(A, x). Using (2) we obtain the result. (Let us 
point out that we have proved, in fact, a stronger result: if [|A"k;c[|1/'"£ -> r(A, x) > 
> r(A, y), then \\Ank(x + y)\1/nk -> r(A, x) = r(A, x + y).) 

(4) follows easily from (2) and (3), and (5) is trivial. 
(6) Clearly, r(Ak, x) = r(A, x)k. For any integer n let m(n) be the integral part of 

n\k, and r(n) = n - k m(n). Set M = max {||-4S||: 0 g s = fc - 1}. Then, for all 
n = fc, 

\\Anx\\1/n
= II^^II^IIA^^xl l 1 ^^ 

< M1/n(||(ylk)m(n)x||1/m(n))(1/k)-(km(w)/,,). 

As lim fc m(n)jn = 1 and lim sup \(Ak)m™x\1/m™ = lim sup ||(,4*)m x||1/m = r(Ak, x)y 

we have r(A, x) ^ lim M1/nr(Ak, x)1/k ^ r(Ak, x)1/k. 
B-.00 

(7) Let e > 0 be given and take an m such that 
J.4"jcJ ^ (r(A, x) + e)n and ||BBJ ^ (r(B) + e)n for all n ^ m . 
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Take any n — 2m. Then 

(A + B)«x = __r=-0' Q B-Wx + £_:: Q B-'A'x + __„=B_M+1 (j) B-*.4*x 

and hence 

||(A + BY x|| 5_ JJ-o' ( j ) K*|| (r(B) + er* + 

+ a - ( j ) (r(B) + * ) - - (r(A, x) + _)< + __-_,_.+. ^ ) «B<-'|| (r(A, x) + ef -

= (r(B) + r(A, x) + 2e)» + __-_-„- (jj) (||A'x|| - (r(A, x) + e)k) (<B) + <T< + 

+ ____-.-_,+. ( j ) ( | B - ' | | - (KB) + ^ - ' ) «>-. *) + e)k __ 

_. (r(B) + r(A, x) + 2e)» ( l + J - - Q ^ ^ + * s" + 

• /n\ 1JB-1 + (r(B) + ey-" \ ^ 
+ L — + 1 W (r(A,x) + ey-> SJ = 

= (r(B) + K^> *) + 2-)" (1 + *-,(«) s") • 

where cm(n) is a polynomial in n of order m — 1 and s = (max (r(_B), r(A, x)} + 
+ e)l(r(B) + r(A, x) + 2e). As s e (0, 1), we have r(A + B, x) = lim (r(B) + 

«->co 

+ r(A, x) + 2e) (1 + cm(n) sn)1/w = r(B) + r(A, x) + 2e. This gives our asser­
tion because e > 0 was arbitrary. 

(8) is trivial. 

Lemma 2. Let N be a subset of X, Then 
(1) sup {r(A, x): x e N} = sup {r(A, x): x e sp(N)}; 
(2) if X is complete and X = sp(N), then 

r(A) = max {r(A, x): xeN] 

(so that r(A) is equal to r(A, x)for at least one x in X\ we shall see later that r(A) = 
= r(A, x) for "almost" all x in X). 

Proof. (1) Let M = sp(N). Clearly, sup {r(A9 x): x eJV} _g sup {r(A9 x): x e M}_ 
Let x in M be given. Then x = £"___ ttXi with xf- in N. By (1) and (2) of Lemma 1, 
r(A, x) _S max r(A, ttx) _g max r(A9 xt) _g sup {r(A9 y): y e N}. 

i i 

(2) First we show that 
(§) r(A) = max {r(A, x): x e X] . 

By (1) in Lemma 1 we may assume that r(A) = 1 (the case r(A) = 0 being trivial). 
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Assume (§) is false. Then for each x in X we can take some r(x) e (r(A, x), 1). For 
each x in X there exists n(x) such that 

H-4"-1| = r(x)n for all n = n(x). 

Fix any X with |>L| = 1. We have 

£•%*> W^)nA = zr-cx, ||-4"*|| = 1.%,, r(*y < x 
and hence 

^ = o K-i'1^)" -x|| < oo for each x in X . 

For any m define a linear bounded operator Tm in X by 

We have shown above that 

sup {||Tm(x)||: m = 0} < oo for each x in X . 

By the Banach-Steinhaus Theorem we conclude that the operator T: X -> X (well-) 
defined by T(x) = lim Tm(x) is a linear bounded operator. We will show that 

m->oo 

(X - A) T = T(X - A) = I. Let x in X be given. Then 

(§§) (X - A) Tjx) = Tm(X-A)x = x- ( r M ) m + I x 

for each m. But ||(A~1y4)m+1 x|| = r(x)m+1 for all m = n(x), so that, taking limit 
in (§§), we obtain (X - A) Tx = T(X - A) x = x. Thus (X - A) T = T(2 - A) = 
= 7. This implies that each X with |>l| = 1 is in the resolvent set of A, which contra­
dicts the fact that 1 = r(A) = max |cr(A)|. Hence (§) holds. 

As X = sp(N), we have by (§) and (1) 

r(A) = max {r(A, x): xeX} = sup {r(A, x): xeN} . 

To show that "sup" on the right hand side can be replaced by "max", it is sufficient 
to show that for each y in X there exists some x in N with r(A, y) = r(A, x). Let y 
in X be given. Then y = £"= i tiXt with xf- in N. We have shown in the proof of (l) 
that r(A, y) = max r(A, xt). Hence for at least one xf we have r(A, y) ;= r(A, xt). 

i 

Corollary 1. Let N be a subset of X. Then 

sup {r(A, x): x e N} = sup {r(A, x): x e M} , 

where M = sp{.Akx: x eN, k ^ 0}. 

Proof follows from (5) of Lemma 1 and (l) in Lemma 2. 

Corollary 2. Let N be a finite subset of X and let M be defined as in Corollary 1. 
Then 

max {r(A, x): x e N} = max {r(A, x): x e M} . 
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Corollary 3. Let X be complete, N a subset of X, and let M be defined as in Corol­
lary l.IfX = M, then 

r(A) = max {r(A, x): xeN} . 

Proof follows from (2) in Lemma 2 and Corollary 1. 

Lemma 3. Let X(<r) = {xeX: r(A,x) < r} (r > 0) and X( = r) = {xeX: 
r(A, x) =~r}(r^ 0). Then 
(1) X(<r) is a Fa linear subspace of X for each r > 0 and X(^r) is a Fff5 linear 
subspace of X for each r g: 0; 
(2) X(<r) c X(<R) c X( = R) for each 0 < r = R, and X( = r) cz X(^R) for 

each 0 = r ^ R; 
(3) if X is complete, then X(<r) is of the 1st category in X for each r e(0, r(A)]. 

Proof. (1) Let X(n, r) = {xeX: \\Anx\\ = rn} (n = 0, r = 0). Each set X'n, r) 
is closed in X. As X(<r) = U*°°=i U£=o C\7=mX(n, r - l/k) and X( = r) = 
= nr= i x( < r + Vfc)' w e h a v e t h a t -Y( < r) is Fff and X( g r) is Fa5 in X. The linearity 
of both these sets follows from (1), (2) in Lemma 1. 

(2) is trivial. 
(3) Let y(k, m) = f)™=m X(n, r - l/k). Since each Y(k, m) is closed and X(<r) = 

= Ur=i Um = o y( fc
5
 m)» i t is sufficient to show that int(y(k , m)) 4= 0 for some k 

and m leads to a contradiction. So assume that int (Y(k, m)) =t= 0 for some k, m. 
Then 

sup {r(A, x):xe Y(k, m)} = r - l/k = r(A) - l/k . 

As int (y(k, m)) 4= 0, we have X = sp(y(k, m)) and, by (2) in Lemma 2, 

r(A) = max {r(A, x): xe Y(k, m)} 

which by the preceding inequality leads to r(A) _̂  r(A) — l/k, a contradiction. 

Theorem. Kef X be a Banach space and S a countable set of linear bounded 
operators in X. Then there exists a Fa 1st category subset F of X such that 

r(A, x) = r(A) for each x in X\F and each A in S . 

Proof. Set F = [j{X(<r(A)): AeS} and use Lemma 3, part (3). 
Using the technique of the local spectral theory for self-adjoint operators we have 

proved also that r(A, x) = lim ||y4".x||1/w for any normal operator A on a Hilbert 
7I-+00 

space X and each x in X. As this technique is closely related to iterative processes 
in Hilbert spaces, we have decided not to develop it here and the reader is referred 
to [1]. Since r(A, x) = r[A) for "almost"' all x, we may use the sequence {||Anx||1/w} 
for computing r(A) for some classes of operators A. But it should be pointed out 
that the (respective) convergence of this sequence is very bad. 
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Proposition 1. LetX be a Banach space, A:X -> X a linear bounded operator such 
that a(A) n S(0, r(A)) = {A1?..., Am} is a finite isolated subset of a(A) (S(0, r(A)) 
denotes the spectral circle of A) and the resolvent R(A, A) has a pole at kt of a finite 
order, for each i = 1, 2 , . . . , m. Let Er = E(A, {A t,..., Am}) and let x in X be such 
that Erx =f= 0. Then the limit lim |[A"x|[1/,! exists and equals r(A) (= r(A, x)). 

n-->oo 

Proof. Let a = a(A)\ {A l s..., Am}, E, = E(A, {Af}), X, = £f(K) for i = 1 m, 
and F, = £ (4 , a), Xa = £„(*)• Then X == Xx 0 . . . © Xm 0 Xa and each of Xl5... 
...,Xm,X(T is invariant under A. Without loss of generality we may assume that 
r(A) = 1 and \\x\\x = max {[l^x]!*., . . . , [IF*,*^, ||£<r*||*ff} for each x in X. Let x 
in X be such that Erx 4= 0, and set xt = £,* (i = 1, . . . , m) and xa = Eax. Then 
x = xx + ..."+ xm + xa and the set J = {i e { 1 , . . . , m}: x,- 4= 0} is nonempty 
(because Er = Ei + ... + £m).Leti^(A,A)haveapoleat A; of order p^f = 1, . . . ,m). 
Take any i e J and let n( be the largest integer such that (Af - A)ni xt #= 0; clearly 
Q = nt < pi (note that Xt = {xeX: (A, - A)Pi x = 0}). Then we have, for n = nt, 

Anxt = (A, - (Af - A))"xf = SLo ( - l y Q ^ r u - # x f . 

It is easy to see that there exist ah b( > 0 such that 

a < ( ^ ) ^ l ^ " . x , I g 6 , ( " { ) for large n. 

Therefore, for large n we have 

max {.,(;):../} a MXI Í « . {*, (;j:^j 
This implies that lim ]]Anxr||

1/rt = r(A, xr) = 1. From this equality and from 
B-+00 

r(A, xa) = r(Aa) < r(A) = 1 (where Aa denotes the restriction of A to Xa) we con­
clude that the limit lim ||-4wx||1/w exists and equals r(A, xr) = r(A, x) = r(A) = 1 

J1-+00 

(see Lemma 1, (3) and its proof). 

Corollary 1. Let X be a Banach space and A:X -> X a linear compact operator. 

Then r(A,x) = lim ||Artx||1/Mf^^ each x in X. 
n-*oo 

In Proposition 1 and its corollary, the set {xeX : r(A, x) < r(A)} is a proper 
closed linear subspace of X. Corollary 1 extends a result of [3, § 9.1], 

Proposition 2. Let X be a normed linear space and A:X -» X a linear operator. 
Assume that at least one of the following conditions is satisfied: 
(1) A is bounded; 
(2) A is one-to-one and A"1: R(A) -» X is bounded. 
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Then, for each x in X, the set L(A, x) of limits of all convergent subsequences of 
the sequence {||Anx||i/f,}^°=1 is a closed segment in [0, co]. 

Proof. Let x in X be given. It is clear that the set L(A, x) is closed in [0, co]. 
Assume that L(A, x) is not a segment, i.e. not connected. Then there exist nonnegative 
numbers u and v such that u < v and L(A, X) n [u, v\ = {u, v}. Take two numbers a 
and b such that u < a < b < v and set c = b\a ( > l). Define two sets JR and S 
of positive integers by R = {n: \\Anx\\1/n

 = a} and S = {n: \\Anx\\1/n
 = b}. It is 

clear that R n S = 0 and the set of positive integers outside the set R u S is finite, 
and hence there exists n0 such that each integer n ^ n0 is either in 1? or in S. As both 
sets R and S are infinite, one can easily construct two sequences nt < n2 < ... 
... < nk < ... and mx < m2 < . . . < mk < ... such that nke R, nk + 1 e S and 
mk E S, mk + 1 e R for all k. Then 

\\Ankx\\ = ank, \\Ank+1x\\ = bnk+i , \\Amkx\\ = bmk, | |Amk+1x]| = amk+1 

for all k. Set xk = AWfcx and j>fc = Amkx. Then 

l l ^ l /H^I I = bcnk and ||-4yfc|]/||y*|| = ac""* for all k , 

and hence neither (l) nor (2) is satisfied, a contradiction. 
This proposition also shows that the claim in the proof of the second part of 

Lemma 2.2 in [2] is false. 

Proposition 3. Let H be a Hilbert space with an orthonormal basis {en}™=l, and 
0 = a = b =" r. Then there exists a weighted shift operator A in H such that 
r(A) = r and L(A, x) = \a, b] for all nonzero x in Hfin = sp {eu e2,...}. 

Proof. We may restrict ourselves to the case r(A) = 1 only. We shall consider 
five cases: 

(i) 0 = a < b = 1; 
(ii) 0 < a < b = 1; 

(in) 0 = a < b < 1; 
(iv) 0 < a < b < 1; and 
(v) 0 = a = b = 1. 

In cases (i)—(iv) we take c e (0, 1) and define (N denotes the set of nonnegative 
integers): 

(a) a function / : N -• N such that, for some mf = 0, i > j ^ mf implies f(i) > f(j) 
and f(m + 1) — f(m) -> oo as m -> co; 

(b) a number M(n) e N, for n = f(mf), by the condition 

f(M(n))^n<f(M(n) + l); 

(c) a nondecreasing function 5: N n \mf, co) -> .R+; 
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(d) a function e: N -> R+ by 

!

s(m) — s(mf) if « = f(m) , m _ mf + 1 , 

*("*/) i f " = / ( m / ) > 

0 otherwise; 
(e) a sequence {an}^=l by a„ = ce(n); and 
(f) a weighted shift operator A: H -> H by ^4en = «„£,. +1 (M _ 1). 

If x = £ £ = 1 x^e* € Hfin, then we have, for n _ f(mf), 

AnY — Vu Tlk + n-l _ yu Hl = k
k + n'ie(i) __ 

-^ * — L f c = l l l i = k aiek + n — Lk=Y XkC ek + n ~ 
_ y u .s(M(fc + n-l))-I*.- . i e( .) 
— _,k=l XkC ek + n • 

Assume x =# 0 and define g = min {\xt\: Xi + 0} and h — max {\x(\: i = 1,. . . , u}. 
Then 

| |A"x]| = / i m a X C S ( M ( n ) ) " " E k i = l c ( 0
 = |IcS(M(n))-I-i--ie(i) 

fc=l,...,w 

and hence 

(§) \\Anx\\ _ qcsiMin)) for n _ f(mf) , 

where q = hc"IM<=ie(0. Similarly one obtains 

(§§) ||A"x|| = gcs(M(M+n-1)) for n_f(mf). 

Case (i). Define f(m) = m! (then m7 = 1) and s(m) = (m + l)1/2f(m). If 
n(m) = f(m) (m = 1), then M(n(m)) = m and, by (§), ||A"(m)x|| _ qcs(m\ so that 

||4«(«>j|]l/»(») = ^lMm) c(m+ l) i /- ^ Q a s m _ , oo # 

If we set n(m) = f(m) — w for large m, then M(w + n(m) — 1) = M(f(m) — l) = 
= m - 1 (for large m) and, by (§§), \\An(m)x\\ _ gc/(m"1)ml/2, so that 

| |4»(«)x | |lMm) = ^l/ii(m)c(m-l)!m«/-/(m!-u) _> j a § m _> QQ . 

We have just proved that both 0 and 1 lie in L(A, x). But L(A, x) c [0, 1] and hence, 
by Proposition 2, L(A, x) = [0, 1]. (One may show directly that n(m) = [s(m)/d] 
satisfies ]]An(m)x]]1/"(m) -> cd as m -> oo; similarly in the other cases.) 

Case (ii). Let t = log a/log c and define f(m) = [m! fm] for m e N and s(m) = 
= f(m + l)/m for m ̂  my. Take n(m) = f(m + 1) — u. Then M(n(m)) = m 
for large m and, by (§), 

||A[n(m)x|| _ ac
s(M(w(m))) = gcs(m); 

hence 
| |AM ( m )x| | 1 / n ( m ) > 0-/"(m) c /(m+-)/(m(/c«+-)-«)> _> ] a s m _> QQ B 

184 



Since 
s(M(u + n- 1)) r f(M(u + n - 1) + n 

hm sup -v— = hm sup -' = 

»-*oo n n-oo M(u + n — 1) n 
f(M(u + n - 1) + 1) r f(m + 1) 

= hm sup ---=—^ '- = hm — - = / , 
n-oo M(w + n — l)f(M(u + n — 1)) ro-oo mf(m) 

we conclude that lim inf ||Anx||1/n
 = c* = a and hence 1 e L(A, x) c. [a, 1]. But 

for n(m) = f(m) (m ^°°l) one has ||A«0")x||i/^m) = ?c»w»(»))) = qcs(m) a n d h e n c e 
| |^(m)^| | 1 Mm) .g ql/n(m)cs(m)/f(m) = qlfn(m)cf(m+ l)/(m/(m)) _> fl fQr m _ » QQ W e h a y e 

proved that both a and 1 lie in L(A, x) and L(A, x) c [a, l ] . By Proposition 2, 
we have L(A, x) = [a, l ] . 

Case (iii). Set t = log b/log c and define f(m) = [m! r~m] (meN) and s(m) = 
= mf(m) (m = mf). 

Case (iv). Set r = log a/log ft and define f(m) = [rm] (m GN) and s(m) = 
= f(m) log a/log c (m = 77if). 

Both the cases (iii) and (iv) are treated similarly as the case (ii). 

Case (v). Define (al9 a2,...) = (l, a2, 1, 1, a2, a2, 1, 1, 1, a2, a2, a2, 1,...). One 
easily checks that L(A, x) = {a} for each nonzero x in Hfin. 

It remains to note that in all five cases the sequence {a^}^! lies in (0, 1] and con­
tains arbitrarily long segments of consecutive l's, so that ||A"|[ = 1 for all n and hence 
r(A) = 1. 

APPENDIX 

Let us show the relation of this paper to the local spectral theory. Let X be a com­
plex Banach space, A a bounded linear operator in X, and x in X. The local resolvent 
set of A at x, denoted by Q(A, X), is the set of all complex numbers £ for which there 
exists a neighbourhood U of ( and an analytic K-valued function f on U such that 
(k — A)f(X) = x for all X in U; the local spectrum of A at x, denoted by a(A, x), 
is the complement of Q(A, X) (to the whole complex plane). In [2], it is shown that 
for each (ed(7(A), there is a set K(() of the second category in X such that ( e 
e da(A, x) for all xeX(C). A more precise argument makes it possible to prove the 
following 

Claim. The set X\{x eX: da(A, x) => da(A)} is of the first category in X. 

Proof. Let ( e da(A) be given. Then C -> £ for some sequence {Cn}n=i <= 
c= Q(A), the resolvent set of A. As ||.R(-4, fB)|| = l/(fB — () -> oo for n -> oo, the 
Banach Theorem (see [6, Chap. II, § 4]) implies that the set Z(() = {XG X: 
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lim sup \\R(A, Cn) *|| < °°} is of the first category in X and hence, by the definition 
n-+ao 

of the local spectrum, C ~ 8<r(A, x) for all x e X \ Z(Q. 
Now let {£,}„*= i be a dense subset of 5<r(A). Then the set Z = U«°°=i Z(C) is of 

the first category in X and, for each x e X \ Z, dcr(A, x) contains each £, and hence 
the whole boundary <9<r(A). 

In [5] it is proved (by a slightly different argument) that the set M = {xeX: 
<T(A, X) =) d<r(A)} is not of the first category in X; in fact, the proof given there 
shows that the complement of M (to the whole space X) is of the first category. 
Since <r(A, x) c <r(̂ 4), we have d<r(A) c d<r(A, x) provided d<r(A) c <r(A, x). Hence 
the above claim makes the assertion concerning M more precise. By the same argu­
ment as in [5] one can prove a more general result. Let crs(A) = {X e C: X =J= 
4= ran (A — X)} (the surjective spectrum of A) and <rs(A, x) = {X e C: x $ ran (A - X)} 
(this set may called the local surjective spectrum or the minimal local spectrum of A 
at x). It is clear that 8<r(A) C <7S(A) c <r(A) and <rs(A, x) c <r(A, x). Note that 
<rs(A) is closed (this may be proved either directly or by using the fact that A — X 
is not surjective iff it is a right topological divisor of zero). 

Theorem. Let X be a Banach space and S a countable set of linear bounded 
operators in X. For each A in S let DA be a countable subset of <rs(A). Then there 
exists a first category subset F of X such that, for each x in X \F and each A in S, 
(1) DA c <js(A, s) and (2) os(A) C cl(<7s(A, x)). 

Proof. The sets FA = U {ran (A - X): X e DA}, A e S, and F = U {^A- AeS} 
are of the first category in X. If x e X \ FA, then DA c <rs(A, x). If x e X \ F, then 
DA c <TS(̂ 4, x) for all A in S, i.e. (1) holds. Since we may assume that each DA is 
dense in <TS(A), the assertion (2) is a consequence of (1) and of the equivalence of 
DA c cl(<rs(A, x)) and crs(A) c cl(<7s(A[, x)). 

Since r(A) = max |cr(-4)| and r(A, x) = max |cr(A, x)|, we have {x e l : r(A, x) < 
< r(A)} c-X\{xeX:d<r(A,x) => 8<r(A)} = X \{x e X: <r(A, x) ZD d<r(A)} c 
c X\{xeX: <TS(A,X) => crs(A)}, the theorem in the main text is a consequence 
of the claim and of the above theorem as well. 

On the other hand, our theorem implies the above claim at least in the case when A 
possesses the single-valued extension property. Indeed, in this case r(A, x) = 
= max |cr(A, x)|. One easily checks that cr((A — X)~l

9 x) = (<r(A, x) — X)~~l and 
hence r((A — X)~l, x) = dist (X, <r(A, x))'1 for all X in Q(A). Let D be a countable 
dense subset of Q(A). Since also r((A — X)~l) = dist (A, cr(A))"1 for all X in Q(A), 
our theorem ensures the existence of a first category subset F of X such that 
dist (X, <T(A, X)) = dist (X, <r(A)) for all x in X \ F and X in D. This immediately 
implies that d<r(A, x) o <7<r(A) for all x in X \ F. 

In [2] the author conjectured that there exists an x with <r(A, x) = cr(A). A simple 
example (see [4]) disproves the conjecture. Indeed, if S is the unilateral shift in 
a (complex infinite dimensional) separable Hilbert space H, then <r(S*, x) c c7<r(S*) 
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for all x e H, but <x(S*) = cr(S) = (A: \X\ ^ 1}. (Given any nonzero x in H, set 

/ W = - S „ 0 0 = o A B S ' ' + 1 x . 

Then/is analytic in the interior of a(S*), because S is an isometry and hence 

liminf [S-^xfl1!- = Urn |x[[1/n = 1, 
n-*oo n-+ao 

and (X - S*)f(X) = x for all k with |A| < l.)The hitch is in the fact that S* does 
not possess the single-valued extension property. If this obstruction is avoided by 
modifying the definition of the local spectrum (precisely, by incorporating the 
analytic residuum into it), then the above claim holds with d<r(A, x) => dtr(A) replaced 
by CT(A, X) = CT(A) (see [5]). 

The author wishes to thank V. Miiller for calling his attention to the paper [5] 
and P. Vrbová for useful discussions concerning the local spectral theory. 
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Souhrn 

O LOKÁLNÍM SPEKTRÁLNÍM POLOMĚRU 

JOSEF DANEŠ 

Pro omezený lineární operátor je definován lokální spektrální poloměr a je dokázáno, že 
lokální spektrální poloměr je roven spektrálním poloměru na množině, jejíž doplněk je 1. kate­
gorie. Je také ukázána souvislost s lokální spektrální teorií. 

Резюме 

О ЛОКАЛЬНОМ СПЕКТРАЛЬНОМ РАДИУСЕ 

1О8ЕР ОАГОЗ 

Для ограниченного линейного оператора определяется локальный спектральный радиус 
и доказывается, что локальный спектральный радиус равен спектральному радиусу на мно­
жестве, дополнение которого является множеством первой категории. Рассматривается 
также связь с локальной спектральной теорией. 
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