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PARTITION NUMBERS, CONNECTIVITY AND HAMILTONICITY 

MIECZYSLAW BOROWIECKI, Zielona Gora 

(Received March 19, 1984) 

Summary. The author studies the connectivity of (n, P)-critical graphs, where P is a k-like 
property. As a corollary, hamiltonicity of such graphs is obtained. 
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1. INTRODUCTION 

In the present paper finite graphs without loops and multiple edges will be con­
sidered. Notation and terminology not introduced here follow the book [3] (but 
we use the terms vertex and edge rather than point and line). 

Let a graph G and a property P of graphs be given. Suppose that for a graph G 
there exists a partition of V(G) into n classes, called P-sets, each of which induces 
a subgraph with the property P. Such a partition is called an (n, P)-partition. 

The minimum n for which there exists an (n, P)-partition is denoted by XP(G). 
If ZP(G) = 7i, while xp(G — v) < n for any vertex v of G, then G is said to be (n, P)-
critical with respect to the property P. We call a property P hereditary if, whenever 
a graph has P, so does each of its subgraphs. Let G, H be graphs with VyH) n V(G) = 
= {v} which both have a hereditary property P. If the graph GvH has the property 
P, then the property P is called a good property. A hereditary property P is fc-like if 

(i) the complete graph Km has the property P for every m, 1 ^ m ^ fc + 1, and 
(ii) whenever S is a P-set of G and a vertex v £ S is adjacent to at most fc vertices 

of S, then S u {v} is also a P-set of G. A graph G is said to be fc-degenerate, fc _ 0, 
if S(H) = fc for every induced subgraph H of G. 

Let U _ V(G) be a P-set if and only if <£/>G is fc-degenerate. It is easy to see that P 
is a fc-like hereditary property which would be denoted by Dk, and XP(G) is the 
vertex-partition number introduced in [4]. This property is good only for fc = 0, 1, 
but many properties of graphs are good. 

In [2] Dirac has proved the following result: Every (n, D0)-critical graph, n ^ 3, 
is 2-connected. McCarthy [5] has extended this result to (n, D^-critical graphs. 

The aim of this paper is to extend Dirac's result to all (n, P)-critical graphs, where 
either P is a good O-like property or P is a fc-like hereditary property of G and the 
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number of vertices is bounded from above by a simple expression in n and k. This 
upper bound is the best possible provided fc = 2, 3 and n = 2. Moreover, our result 
shows that the assumption of 2-connectedness in McCarthy's theorem 5 concerning 
the existence of Hamiltonian circuits in (n, Dfc)-critical graphs is superfluous. 

2. CONNECTIVITY 

Theorem 1. If G, \V(G)\ = 3, is an (n, P)-critical graph with respect to a good 
0-like property P, then G is 2-connected. 

Proof. Suppose that G is not connected. Let Gl9..., Gr, r = 2, be components 
of G. If A and B are two P-sets of G contained in two different components, then 
A u B is a P-set of G, too. If it were not so, the property P would not be good 0-like. 
Therefore, Z/>(G) = max {xP(Gf): Gt- is a component of G}. Hence, the graph G 
that is (n, P)-critical should be connected. Suppose G has a cut-vertex v. 

Let us denote by Vl9..., VS9 s = 2, the vertex sets of the components of G — v. 
For each induced subgraph Gt = <Vf u {v}> we have /p(Gf) < n. Hence, V{ u \v\ 
can be partitioned into sets Wij9 j = 1, ...,n — 1, some of them may be empty, 
and each of them which is non empty is a P-set. Suppose that v e W{1 for i = 1, ..., s. 
Since P is a good property, the sets Wj = Wtj u ... u Wsj, j = 1, ..., n — 1, form 
P-sets. Thus, XP(G) < w, a contradiction. 

Now, we need some lemmas. 

Lemma 1. Let P be a k-like property. If G is (n, P)-critical, then d(G) = (fc + 1). 
. („ - 1 ) . 

The proof is essentially the same as for (n, Dfc)-critical graphs (see [4]) and will 
be omitted. 

From Lemma 1 we directly obtain 

Lemma 2. The unique graph G which is (n, P)-critical with respect to a k-like 
property P with \V(G)\ ^ (fc + 1) (n — 1) + 1 is the complete graph of order 
(k+ l)(n - 1) + 1. 

Theorem 2. If G is (n, P)-critical with respect to a k-like property P and 3 _ 
_ \V(G)\ =" 2(fc + 1) (n - 1) + 2, then G is 2-connected. 

Proof. Let v be a cut-vertex of G and let Gl9 ..., Gs, s — 2, be the components 
of G - v. For a vertex u e V(Gf), d(u) = (k + 1) (n - 1) - 1. Therefore, 

\V(Gt)\^(k+l)(n-l)9 i = l9...9s 

and 

|V(G)| = s(fc + l)(n- 1) + 1 . 
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By assumption 

(a) s(k + 1) (n - 1) + 1 = |V(G)| = 2(k + 1) (n - 1) + 2 . 

From this, we have 
(b) ( s _ 2 ) ( k + l ) ( n - 1 ) = l . 

If k = 0, n = 2, the inequality (b) implies that 2 = s = 3. If k = 1 and n = 2, 
we obtain 5 = 2. 

Suppose that 5 = 2. In both cases, by (a) at least one of G\ = <V(G£) u {v}> 
(the subgraph induced by V(Gf) u {v}), i = J, 2, say G[, has (k + 1) (n — 1) + 1 
vertices. Since d{u) = (k + 1) (n — 1) for any vertex of G, G[ is a complete graph. 
By Lemma 2, Gj is (n, P)-critical. But G\ is a proper subgraph of G, a contradiction. 

Now, let k = 0, n = 2 and 5 = 3. By (a), 3n - 2 = \V(G)\ = 2n. Hence, n = 2. 
It implies that G is isomorphic to Ki3. In a similar way as before, the complete 
graph K2 is a proper subgraph of G, a contradiction. Thus G is 2-connected. 

In some cases the order of graphs of Theorem 2 is the best possible. Since Dh is 
a k-like property, according to [5], let H be a graph obtained from Kk+2 by sub­
dividing one of its edges by a new vertex v. Let G be the graph obtained by joining 
[(k + 2)/2] copies of H at the vertex v. For k = 2, G is (2, I\)-critical, but v is a cut-
vertex of G. For n = 2, k = 2, 3 G has the smallest order, but the problem is still 
open whether for every n, k _ 2 the order of graphs from Theorem 2 is the best 
possible? 

3. HAMILTONTCITY 

Proposition 1 [l].Lef G be a graph on p vertices and with all degrees at least m. 
Then, if G is 2-connected, it contains a circuit of length at least 2m, or 
a Hamiltonian circuit. 

Proposition 2 [5]. If a graph G is 2-connected and (n, Dk)-critical and if \V(G)\ ^ 

= 2(k + 1) (n - 1) + 2, then G is Hamiltonian. 
From Theorems 1, 2, Lemma 1 and both Propositions, we have the following 

results: 

Corollary 1. If G, |V(G)| = 3, is (n, P)-critical with respect to a k-like property Py 

then G contains a circuit of length at least 2(k + \)(n — 1), or a Hamiltonian 
circuit. 

Corollary 2. If a graph G is (n, Dh)-critical and if 3 = \V(G)\ = 2(k + 1) . 
. (n — 1) + 2, then G is Hamiltonian. 

Acknowledgment. The author wishes to thank the referee for his valuable comments 
and suggestions. 
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S o u h r n 

ROZKLADOVÁ ČÍSLA, SOUVISLOST A H A M I L T O N I C I T A 

MlECZYSLAW BOROWIECKÍ 

Autor vyšetřuje souvislost (n, P)-kritických grafů, kde P je vlastnost splňující jisté podmínky 
(,,k-like property") . Jako důsledek dostává hamiltonicitu takových grafů. 

Pe3K)Me 

HHCJIA PA3JIO3KEHHÍÍ, CBiI3HOCTI> H r A M M H J I b T O H H M H O C T b 

MlECZYSLAW BOROWIECKÍ 

A B T O P HccjieflyeT CBH3HOCTB (n, P) - KPHTHHCCKHX rpa^OB, Tne P — CBOÍÍCTBO, yAOBjíeTBop^K)-

mee HeKOTopwM ycjiOBHHM (CBOÍÍCTBO THna k), H B KanecTBe cjie^CTBHH nojiynaeT, mo 3TH rpaýw 
raMHJlbTOHOBbl. 
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