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112(1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 2,162—172 

ON CERTAIN ITERATIVE SEQUENCES*) 

THOMAS I. SEIDMAN, Catonsville 

Dedicated to John Oosterhout 

(Received January 17, 1984) 

Summary. The author studies small functions (introduced by V. Ptak). Among others, he proves 
the following theorem: a continuous function is small, iff it is majorized by a monotone small 
function. 

Keywords: Small function, rate of convergence, iterative sequence. 

L INTRODUCTION 

In [l]Ptak introduces the notion of a small function (= "convergence rate") 
as co: [0, T] -> [0, T] such that the series 
(LI) t + co(t) + co{co(t)) + . . . = : 2 ? con(t) = : *(*) 

converges for each t. (We take the notation [0, T] as including the possibility of 
R+ := [0, co). The notation con(') is defined by setting 

(1.2) co0(t) := t; recursively (for n = 1, 2,...): con(t) := ©(©„_!(*)) 

for t e [0, T].) An example is co(t) := 6t (0 g 6 < 1) — with the obvious relation 
of (1.1) to the rate of convergence given by the Contractive Mapping Theorem, for 
which a(i) : = £,, con(t) provides the bound on distance to the fixed point in terms 
of the initial step length f. 

For the applications discussed in [1], all the functions co(') considered were both 
monotone (i.e., nondecreasing) and continuous but these properties were not made 
part of the definition of a small function. We note (see Observation 4, below) that 
any function majorized by a monotone small function is itself a small function and 
a principal result of this note is a converse of this: if a small function is continuous, 
then it must necessarily be majorized by a monotone small function. Other principal 
results are: 
o- If co is a continuous small function, then convergence in (l.l) is uniform on 
bounded intervals so <r(t) : = X 6 ^ ) depends continuously on t. 

*) This research was partly supported under grant # AFOSR-82-0271. 

162 



o If co[t) ~ [t - cf+1~\ with c > 0, a > 0, then co is a small function for 0 = a < 1 
but not for a _ 1. 
t> The set of continuous (respectively, monotone) small functions is closed under 
max, min and convex combinations. 

By way of perspective, we note that small functions, with no supplementary 
properties, can be quite wild: one easily sees that 

, x ' \ •— jffe f ° r Pos-t-ve rational t 
' K' ' ^arbitrary (but positive rational) otherwise 

gives a small function which can be constructed so its graph is dense in [0, T] X [0, T] 
(or in R+ x R+). 

2. SOME OBSERVATIONS 

Observation 1. Let $: [0, T] -> [0, f] be strictly increasing with 0 < 0_ 5j 
_" cf)(t)lt < 0+ for t near 0. (Note that cj)~l is well-defined with similar estimate.) 
For co: [0, T] -> [0, T] , let co denote cj> o co o cj)'1: [0, f] -> [0, f ] . Then co is a small 
function if and only if co is. 

Proof. One has, by induction, a)n(s) = cj)(con(t)) for s := $(t). If co is a small 
function, then, given t, one must have con(t) -» 0 so, for large n, one has con(s) = 

g 0+ a>„(f) so Z^/.(s) < oo. The argument for the converse is essentially identical. • 

Observation 2. Suppose con(t) -> Ofor each t; let co denote the restriction of co to 
[0, e]. Then co is a small function if and only if cb is. (Le., smallness depends 
primarily on behavior near 0.) 

Proof. The 'only i f is immediate. Given t, one has con(t) < e for n ^ N = 
= N(s, t); set i := coN(t). Clearly con(t) = con-N(i) for n = N so, assuming (ft is 
small, 

I ? <»„(.) = IS" 1 < 0 + Zo <*>»(?) < oo 
and co is also a small function. • 

Observation 3. Lef co be any iterate of co: say, co := coK. Then co is a small function 
if and only if co is. 

Proof. Clearly con = conK so Y/°n _ Z^/r **> o n t h e o ther hand, (ft is small, set 
tk : = cok(t) for 0 ^ fc < K. One can always set n = mK + fc with 0 ^ fc < K so 
®»(0 = Mfk)- Thus, 

I » f»»(0 = Zm <*>m('o) + .^ + Zm ^m(^-l) < 00 

so co is then also small. • 
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Observation 4. Letf, co: [0, T] -> [0, T] with co nondecreasing andf ^ cofor each t. 
Thenfn ^ (onfor each n. If, also, co is a small function, then so isf 

Proof. One hasfn —^ con for each n since, inductively, 

fn+l(t)=f(fn(t)) = "(f»(0) = *>K(0) = fl>.+ i(0 • 
For small co one then has £ f„(0 ^ X co„(t) < co andf is small. • 

Observation 5. A small function co cannot have a positive fixed point. Hence, 
if either (a) co is monotone or (b) co is continuous, then co small implies 

(2.1) co(t) < t for each t > 0 . 

Proof. If co(t*) = t*, then co^f*) = f* for each n so, if t* > 0, one would have 
Z*0/.^*) = °°> contradicting smallness. Suppose, next, one could have co small with 
co(t*) > t*. For case (a), co monotone, this gives, inductively, 

«>n+i(t*) = ^ W * ) ) = ^(^- i (^*) ) = a>n(t*) 

so con(t*) = . . . = co^f*) > t* = 0 and Xco,.(f*) = '* + Zi° wi( r*) = °°> contra­
dicting smallness. For case (b), co continuous, note that con(t*) -> 0 to have Ys^Jj*) < 
< co so there must be a first n with con+l(t*) < con(t*) — i.e., (noting n ^ 1) one has 

b < a with a>(b) > co(a) 

where b := co^.^r*) so co(b) = co^r^) = : a and co(a) = co„+1(f*). This would give 
a fixed point 1 e (a, b) for co — but we have already shown that is impossible. Thus 
(2.1) holds in either case. • 

Observation 6. Lef T = T0 > TX > ... with T„ -> 0 and define ob: [0, T] -> [0, T] by 

(2.2) ob(0) = 0 and <b(t) := ^n for ^n < t = xn.x . 

If co is similarity defined using {{Tm} with { T J C_ {fm}, then ab g co on [0, T] . 
If co is a monotone function on [0, T] , ^n := CO„(T). One then has 

(2.3) T „ + 1 = co(0 = T„ for T„ = t = ^n.1 (n = 1, 2, . . .) 

so co^ ob given by (2.2). Thus, co is a small function if and only if ob is. 

Proof. The graph of cb, given by (2.2), corresponds to a 'staircase' with 'upper 
corners' {(T„, T„)} and 'lower corners' {(T„, T M + 1 ) } . Introducing additional T'S merely 
introduces additional steps, so increasing the value of the function at the new 
'treads' while leaving it unchanged on the remaining portions of the old ones; hence 
co ^ ob. For {T„ := CO„(T)} with co monotone (We may assume T,.+1 < T„ for n = 
= 0, 1,...) and t e [T„, T „ _ 1 ] , one has, from the definition (2.2) and monotonicity, 

^n+l = obfa) = CO(T„) = co(t) = cofa-J = ^n = <b(t), 
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giving (2.3) and co ̂  a). Clearly co will be small if &> is by Observation 4 while <b 
is small if (and only if) £ T „ < oo, i.e., if Y,con(T) < °°- • 

3. TWO THEOREMS 

A principal result of this note is the following. 

Theorem 1. Let f: [0, T] —> [0, T] be a continuous function. Define a monotone 
function J: [0, T] -> [0, T] by setting 

(3.1) J(t) : = max {/(s): 0 = s = t] for te [0, T] . 

Then J is continuous and is a small function if and only iff is. 
That / i s monotone is immediate; that it is continuous (given that f is) is a standard 

exercise and will be omitted; the 'only i f part of the proof follows immediately 
from Observation 4. Before proceeding to (the rest of) the proof of Theorem 1 — 
which now consists of showing t h a t / i s a small function, given t h a t / i s small — we 
need the following information about/, defined by (3.1). 

Lemma 1. Assume f is a small function. Then J(t) < t for t e(0, T] . 

Proof. By case (b) of Observation 5 we havef(s) < s on [0, t\. The max in (3.1) 
is, indeed, attained since [0, t\ is compact andf continuous so, for some s e [0, f], 
one has J(t) = f(s) < s = t. • 

Lemma 2. Assume f is a small function and define J by (3.1). For any t0 e [0, T] , 
recursively set tn := J(tn-^). (Note that t0 > tx > . . . by Lemma 1.) Then for any 
m = 1 and any s e [fm+1, tm\ there exists se [tm, tm_^\ such that s = s = f(s). 

Proof. One has f(tm) ^ J(tm) = tm+l. On the other hand, J(tm-^) = tm so, for 
some s _" tm-l one hasf(s) = tm by the definition (3.1); clearly s > tm since J(tm) = 
= tm+l < tm. Thus, for any s e [tm+l, tm\ one hasf(fm) = s ^ f(s) so, by continuity, 
there exists se [tm, s] <-= [tm, rm_ t] for whichf(s) = s. • 

P r o o f of Theorem 1. We assume f is a small function and suppose / were not small 
so, for some t0 e [0, T] , one would have __/-('o) = oo. (One has Jn(t0) = : tn as in 
Lemma 2.) 

For each m, arbitrarily choose smm e[tm+1, tm\ — say, sm>m := tm. By Lemma 2 
one has existence of sm m_! e [tm, tm-l\ such that swm = / ( s - , - ^ ) . Applying Lemma 
2 again one has sm,m_2 e [tm-u fm_2] such that sm>m-1 =f(sm,m_2) so sm,m = 
= f2(smm_2). Repeating this procedure, one eventually obtains existence of sOT : = 

•'= *« f o
e [^ i^o] S u c h t h a t 

(3.2) A ( 4 ) = 5m A6[r, + 1 , r , ] for 0 = fc = m . 
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By the compactness of [f., f0] one has, for a subsequence, sm -> f* e [tlt f0] and 
by continuity (3.2) gives fk(t*) e [tk+1, tk~\ for every k. In particular, this gives 
/*(to) = t*^A-i(t*) so 

(3.3) £/*(to)^L7*-i(t*)<*> 
(using the smallness of f), contradicting the supposition that X/k(fo) = 00. D 

Corollary 1. Let co: [0, T] -> [0, T] be a continuous small function. Then the 
convergence in (1.1) is uniform (on bounded intervals) so a := Y^n *s continuous. 

Proof. In view of Observation 5 it is clearly sufficient to consider only finite T. 
Define co from co as in (3.1). Then, uniformly for t e [0, T], one has co(t) = co(t) = 

= CO(T) so, by Observation 4, 0 = cojt) = C5„(T) and Y^JJ) = Z^«(T)- O 

Corollary 2. The sef of continuous small functions is convex; iff, g are continuous 
small functions, then so are f A g and f v g. 

Proof. With no loss of generality, given (2.1), we may take T to be finite. Given 
continuous small functions f, g: [0, T] -> [0, T] , let / g be defined as in (3.1) and 
define / , § from / , g as in Observation 6. Set 

W„ •=&[?)> Vn - = Qniy) 

and let {T„} be the set {un} u {vn}, ordered so T = T0 > TX > . . . . By the Theorem 
we have / g monotone small functions so, by Observation 6, also / , § are small. 
Clearly 

0 = /(/) = J(t) = ?(t) , 0 = g(t) = g(t) = g(t) 

for f e [0, T] . Defining d> by (2.2), one has / = d5 and g = d> by Observation 6 
since {un} <= {T„} and {u„} a { T J . Thus, 

(3.4) Af + (1 - X) g , f A g r f v a = d) (0 = 2 = 1) 

on [0, T] . S ince / g are small so ^ww < 00, Yvn < °°5 o n e n a s ZT» < Ew« + Zy« < 

< 00 so, as in Observation 6, db is small. The desired results then follow by applying 
Observation 4 to (3.4). • 

We next wish to consider the map: co H-XT defined by (1.1) and will obtain a limited 
form of lower semicontinuity for this in each of the contexts we have considered: 
continuous functions, topologized by uniform convergence, and (left continuous) 
monotone functions, topologized by a notion of 'uniform lower semiconvergence, 
(co -<M {coJ}). (Definition: We write co -< {co}} if 

(3.5) for each e > 0 and each t there exists j = j(e, t) such that co(t) ^ coJ\t) + s 

ifj^j 

and write co <u {co}} if j = j(s), independent of t.) Before proving the theorem we 
need the following observations. 
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Lemma 3. (i) LetfJ ->f uniformly with f continuous (hence, uniformly continuous 
for [0, T] compact); let gJ -> g pointwise (or uniformly). Then / 7 o gJ - > / o g point-
wise (or uniformly). 

(ii) Let / <u {fJ} with / monotone and left continuous and let g < {gJ}. Then 
fog<{fJogJ}. 

Proof. In either case, 

f(g(t)) -/MO) = um -mm + w(o) -wm • 
For (i) this, noting the uniform continuity off, gives the result immediately. For (ii) 
one has s = sJ := gJ(t) ^ g(t) — e' for large enough; and thenf(s) g f(g(t) - e') ^ 
= f(g(t)) - ^/2 for e' = e'(e) small enough. At the same time f(s) - fJ(s) g e\2 
for large j , uniformly in s since f <u {fJ}. Thus, f(g(t)) ^ fj(dj(t)) + e for large 
enough j . • 

Corollary, (i) Let fJ,f be as in Lemma 3(i). Then the iterates converge uniformly: 

fj
n -* />, for e a c n w-

(ii) L e t / ; , / b e as in Lemma 3(ii). Then/ , •< {fJ
n} for each n. 

Proof. By induction on n since f„+1 = f°fn* • 

Theorem 2. LetfJ,fbe as in Lemma 3(i) or 3(ii). Define GJ, afromfJ,f by (1.1) — 
ttol necessarily finite for each t. Then, for each t, 

(3.6) <r(f) ^ d(t) : = lim inf aJ(t) . 

Proof. Given t, we assume d(t) < oo or there is nothing to prove. Extracting 
a subsequence if necessary, we may assume GJ(t) -> Q(t). ForN = 1, 2 , . . . , introduce 

(3.7) Vs:=FoUt), 4--=lUi(t) 

so that GN -> cr(t) and GJ
N -> cr^f) as N -> oo. For case (i) one hasfj ->f„ for each n 

so GJ
N -» cr̂ . Since GJ

N g crj(r) -> d(t), one has cr̂  ^ d(t) + 8 for each N and for 
j ^ j N . Thus o-jv = limy GJ

N ̂  c?(t) + e. Since this holds for each N, one has a(t) = 
= limjv GN ^ d(t) + e and, since 8 > 0 is arbitrary, this gives (3.6). For case (ii) 
one h a s / , •< {f!} for each n so GN < {GN}. Since GJ

N ^ GJ(t) -> a, this gives 

GN g crj.) + e <: (^(f) + 8 ^ o\f) + 28 

for large enough j whence GN ̂  d(i) + 2e for each N. Again, G(£) = lim^ GN ^ 
^ (j(r) + 2s so (3.6) follows. • 

Corollary. If {fJ}*is a sequence of continuous small functions on [0, T] with {GJ} 
bounded and if fJ ->f uniformly on [0, T] , then f is also a small function. • 
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4. EXAMPLES AND REMARKS 

If co: [0, T] -» [0, T] satisfies (2.1) and, for example, is continuous then Observation 
2 applies: the essential criterion for smallness is the asymptotic behavior of co(t) 
as t -> 0. In view of (2.1) we consider asymptotic behavior of the form: 

(4.1) co(t) = *[1 - cf + 0(f)] 

with a = 0 and c > 0. (The case a = 0 reduces to co(t) ~ Ot with 0 := 1 — c. 
Presumably, here c < 1 so 0 < 8 < 1 and, asymptotically, con(t) ~ 6nt so o-(t) : = 
:= Y.con(t) ~ '/(I — 0) < oo as for the Contractive Mapping Theorem.) The 
interesting case is then a > 0 and the principal result of this section is that (4.1) 
implies 

(4.2) yn := n1,at con(t) -> y := (ac)"1/a as n -+ oo 

for each t > 0. 

Theorem 3. Suppose co: [0, T] -> [0, T] is such that con(t) -> Ofor each f and (4.1) 
ho/ds for f near 0 w'fh a > 0, c > 0. Then, for each t (assuming con(t) 4= 0) one 
has (4.2). 

Proof. We begin by considering the special case: 

(4.3) co(t):= t(l - f) 

so y := f}0 where, for convenience, we have set /? = 1/a. Observe that yn := nptn 

with tn := a^f) gives tn = n-/?y„ and 

y.+ i = (n + 1 / *w+i = (1 + IjnY n*co(n~Pyn) = (1 + l / n / y„(l - y'Jn) . 

It is convenient to introduce 

*(») = *(»; y) := (i + »y (i - y*») (v = o) 
so that 

(4.4) yn+ i = 0(l/n; y„) y„ n = 0, 1, .. . . 

Since 0(0) = 1 and 

P(v) = j8(l + vY'1 [1 - ay* - (1 + a) A ] , 

one has 

(4.5) (i) <£(u) < 1 if y = y , i> > 0 , 

(ii) (f)(v) > 1 if y < y , 0 < t; small. 

Step 1 [lim sup y„ ^ y]: From (4.4), (4.5i), if yn = y then y„+1 < y„ while if y„ ^ y 
then yw+1 < (1 + 1/n/y; we need only eliminate the possibility: yn > yn+i > . . . 
. . . > $ > y. Suppose y„ J ? > y so, for large enough m and all n ^ m, one has 
yn = $ and 

#-/«; v.) ^ *(i/»; JO ^ 1 + (0 - f)/» 
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(some y between y and y so (/? — y*) = — 5 < 0). Then 

ym+k = [ l i r ' - 1 *(i/»; y„)l ym = I I I : " - 1 (i - */»)] v» • 
Standard results on infinite products show this would give ym+k -> 0, a contradiction. 

Step 2 [lim inf y„ = y]: For small e > 0, if n is large enough (so v := \\n is small 
enough) then (4.4), (4.5ii) show that yn g y - e implies yrt+i > y„ while if yn ^ 

= y - e one has y,I+1 > (I - Cy*jn)(y - e); thus, we need only eliminate the 
possibility: yn < y,l+1 < . . . < ? < y - £. As for Step 1, for some y between ? 
and y — e this would give 

0(l/ti;yn) = c6(l/«;f) = l + ^ 

with S := (/? — T) > 0 for n ^ m large enough and a similar infinite product 
argument would then give the contradiction: yn -> co. 

This shows the desired result for the special case (4.3). The result for c + 1, i.e., 
co's) := s{l — cs*) follows from this by taking t := cps so cojs) = c~p con(t) for 
each n. For the still more general (asymptotic) case (4.1), suppose 

(4.f) co{t) = t[l - cf + 0(.a)] 

near 0 so co(t) ^ r(l — cf) = : a)(r) near (enough) to 0 for any t < c. For small t 
one has co monotone so (cf., Observation 4) cojt) = cojt) whence 

lim sup np cojt) = lim np cojt) = (ac)~p 

and, since c < c is arbitrary, this gives lim sup np con(t) ^ (ac)~^. On the other 
hand, a corresponding argument for co satisfying (4.1) gives co(t) ^ t(l — tf) = : cb(t) 
near 0 with c > c whence (parallel to Observation 4) con(t) = cbn(i) so lim inf npcon(t) = 

= (VLC)~P as above. • 

Corollary. Let co: [0, T] -> [0, T] satisfy (4.1) with c > 0 but a ^ 1. Then co 
cannot be a small function. Conversely, if co is such that con(t) -> Ofor each t and 
satisfies (4.V) with c > 0 and 0 < a < 1, then co is a small function. 

Proof. In the first case one has, at least for small t, con(t) ~ yn~p with /? g 1 so 
£c0„(f) diverges. In the second case, setting cb(t) := t(l — cf) with 0 < t < c as 
earlier, one has con(t) ^ cbn(t) ~ yn~p with /? > 1 so Xc0„(f) converges. D 

It is of possible interest also to consider the differentiability of cr(') if co{>) is 
continuously differentiable. Differentiating (1.1) term by term gives, formally, 

(4-6) cr'(t0) = t co'n(t0) = 1 + t (flco'(tk)) 
B = 0 n = l * = 0 

where, for each t = t0 we have set tk: = cok(t0). Suppose 

(4.7) co'(t) = 1 - (a + 1) cf t near 0 
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which, integrating, gives (4.1'). Then, with y as in (4.2), one has 

tk~yk~v*, ^ - - - - ( - ^ V 1 , 

(4.8) o'n(t0) = n ^ ' W * "ff f 1 - — k~») * 
fc=o fc=o \ a / 

« CexpT- - — Vfc"1! * C'n"(a+,)/a 

L a *=° J 
(where C, C reflect the approximations involved, especially in the 'early' stages 
of the iteration — the approximation being asymptotically correct as n -> oo). 
One then has convergence of (4.6) since a > 0 gives (a + l)/a > 1. This convergence 
is formally independent of c but, of course, one must have c > 0 in (4.7) to have 
convergence of (1.1) as in the Corollary to Theorem 3. The approximation th ~ yk~lfx 

is not uniform in t0. However, continuity of co and a careful look at the proof above 
for Theorem 3 show that this is locally uniform away from 0. Thus, the approximation 
(4.7) is locally uniform and the convergence of (4.6) is uniform on compact subsets 
of (0, T] . This shows that a is then continuously differentiable on (0, T] . We will not 
examine diffrentiability near 0. 

We next provide counterexamples to some plausible conjectures. 

Conjecture 1. For monotone functions, if coJ -> co uniformly and, for some every­
where finite & one has aJ ^ a for eachj, then co is a small function. 

Counterexample. Let coJ(t) := {0 on [0,1/2); 1/2 - 1// on [1/2, 1]} so aJ(t) = 
= {t on [0, 1/2); t + 1/2 - l/j on [1/2, 1]} = a(t) = t + 1/2. One has coJ(t) -> 
-> co(t) := {0 on [0, 1/2); 1/2 on [1/2, 1]} uniformly but a(t) = {t on [0, 1/2); 
co on [1/2, 1]} since 1/2 is a fixed point of co. (This emphasizes the requirement of 
left continuity in Theorem 2.) • 

Conjecture 2. Let {coJ} be a sequence of continuous small functions with coJ -> co 
uniformly and aJ -> a. Then a = a. I.e., the map: co i-> a is continuous in this 
context. 

Counterexample. By Theorem 2 one has a ^ a in this context and by Corollary 1 
to Theorem 1 one has a continuous. Choose {T„} as in Observation 6 with Y^n < °° 
and define <b by (2.2). Define co by modifying this, shifting the "upper corners" slightly 
to the right — to (rn + en, rn) with suitably chosen positive {sn} — and making co 
linear on each [T„, rn + en] so the risers of the staircase are steep but no longer 
vertical; we refer to this modification as (2.2'). Thus, co is continuous; the numbers 
{£„} need only be 'sufficiently small' for the rest of this construction to work. At the 
7-th stage, select a (finite) set {f{, . . . , f/0)} in the interval (TJ+1 + EJ+1, T,-) in such 
a way that 

Cj : = YAJ) H[-* c > ° as J -+ °° • 
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This is clearly possible. Now define coj by (2.2') using {T,,} U {?/} with the original 
{£„} associated with {T„} and a new set of small {e{}. Clearly coj(t) = co(t) except 
for zj+x + sj+l < t < Zj + Sj and 0 < coJ(t) - co(t) ̂  z} - zj+x for all t; thus 
coj -> co uniformly. One then has crJ(t) = cr(t) + cy for t > Zj + ey so for each f 
one has a\t) -> o-(r) + c 4= o\f) as I -* oo. • 

Conjecture 3. If co is continuous and cr(t) is finite for almost all t, then much of 
the analysis above applies. 

Counterexample. First consider the example with co = 0 on [0, 1/3], co{2J3) = 
= 2/3, co(i) = 0 and co linear on [1/3, 2/3] and on [2/3, 1]. One has a fixed point 2/3 
so Observation 5 fails but cr(t) < oo for t #= 2/3. Note that obtaining co as in (3.1) 
gives co = co on [0, 2/3] and co = 2/3 on [2/3, 1] so d(t) = co on [2/3, 1]. 

A more interesting example is provided by taking co'O) = co(l) = 0 and co = 1 
on [1/3, 2/3] with co linear on [0, 1/3] and on [2/3, 1], Not only is there a positive 
fixed point at t = 3/4, but one has co(t) > t on (0, 3/4). Note that cojt) = 1 gives 
con(t) = 0 for n > m and so cr(t) < oo. Recursively, we note that: 

co2(t) = 0 for t e [1/3, 2/3] , 

co: [1/9, 2/9], [7/9, 8/9] -> [1/3, 2/3] so co3(t) = 0 for t e [1/9, 2/9] u [7/9, 8/9] , 

co4(t) = 0 for te [1/27, 2/27] u [7/27, 8/27] u [19/27, 20/27] u [25/27, 26/27] , 

etc. Thus, cr(t) < oo on the complement of the Cantor set, hence almost every­
where. (Clearly, from the above analysis, a(t) < oo for some t in the Cantor set as 
well and it would be plausible to conjecture that for this example the set {t: a(t) = oo} 
is actually countably infinite.) • 

Remark 1. One might wish to replace (1.1) by the more general form: 
00 

(4.9) <r(t):=£W) 
« = o 

using non-negative sequences c := (c0i cx,...) other than (1, 1,...). Then Observa­
tions 1, 2, 4, 5, 6 and Theorem 1 remain valid (with negligible modifications of the 
proofs) provided J]cn diverges. The validity of Obesrvation 3 in this context would 
depend on the action of left hifts on c. 

A still more general notion would be to use 

(4.10) <t):=E?^S(t)) 
where \f/n: S -> R+ is specified for n = 0, 1 , . . . and, now, co: S -> S with S an ar­
bitrary set. In this generality there seems little useful structure but, for example, 
one interpretation might be: 

S := {bounded subsets of a metric space X}, 

co: 11-> {f(£): £ e t} for t e S where f:X->X, 

xj/n = if/: f h->diam(f), 

related to, e.g., the Contraction Mapping Principle. • 
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R e m a r k 2. Of considerable interest would be a somewhat different general­
ization — keeping (1.1) as it is but now with t taking values in [0, T]m for some 
m > 1 so co: [0, T ] W -> [0, z\m. The following example, however, shows that one 
must be careful in dealing with this situation: one need not have (2.1) but, in fact, 
can have a continuous small function for which co(t*) = 2t* for some t* > 0. 

Example. Let T = 1, m = 2 so t = (x, y) varies over the unit square and define co 
as a composition of three maps: 

Stepl: (x, y) H>(X, min {y, x, 1 - x}), 

Step 2: (x, y) i-> (min {x, y}, y), 

Step 3: The segment [(0, 0), (1/4,1/4)] -> [(0, 0), (1, 0)] linearly, 
the segment [(1/4,1/4), (1/2, 1/2)] -> [(1, 0), (1, 1)] affinely. 

Note that co: [0, l ] 2 -> L : = [(0, 0), (1, 0)] u [(1, 0), (1, 1)] and co:L-> (0,0) so 
co2(t) = (0, 0) for every t. However, for 7* = (1/2, 1/2) one has co(t*) = (1, 1) = 
= 2f*. • 
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Souhrn 

O JISTÝCH ITERATIVNÍCH POSLOUPNOSTECH 

THOMAS I. SEIDMAN 

Autor studuje „malé funkce" (small functions) zavedené VI. Ptákem. Mezi jinými dokazuje* 
ře spojitá funkce je malá, právě když je majorizována monotónní malou funkcí. 

Резюме 

О НЕКОТОРЫХ ИТЕРАТИВНЫХ ПОСЛЕДОВАТЕЛЬНОСТЯХ 

ТНОМА8 I . $ЕЮМАМ 

В статье изучаются „малые функции", введённые Вл. Птаком, и кроме прочего доказы­
вается, что непрерывна функция малая тогда и только тогда, когда она мажорируется моно­
тонной малой функцией. 
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