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ON CERTAIN ITERATIVE SEQUENCES*)

TroMAS 1. SEIDMAN, Catonsville

Dedicated to John Qosterhout
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Summary. The author studies small functions (introduced by V. Ptdk). Among others, he proves
the following theorem: a continuous function is small, iff it is majorized by a monotone small
function.
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1. INTRODUCTION

In [1]Pték introduces the notion of a small function (= “convergence rate’)
as w: [0, 7] - [0, t] such that the series

(1.1) t + oft) + olo(t)) + ... =137 0,t) =:0(t)

converges for each t. (We take the notation [0, 7] as including the possibility of
R* := [0, o0). The notation w,(+) is defined by setting

(1.2) wot) :=t; recursively (forn =1,2,...): o) := olo,-(1)

for te[0,7].) An example is o{f) := 6t (0 < 6 < 1) — with the obvious relation
of (1.1) to the rate of convergence given by the Contractive Mapping Theorem, for
which o(f) := ), w,(t) provides the bound on distance to the fixed point in terms
of the initial step length ¢.

For the applications discussed in [1], all the functions w{*) considered were both
monotone (i.e., nondecreasing) and continuous but these properties were not made
part of the definition of a small function. We note (sec Observation 4, below) that
any function majorized by a monotone small function is itself a small function and
a principal result of this note is a converse of this: if a small function is continuous,
then it must necessarily be majorized by a monotone small function. Other principal
results are:

o If w is a continuous small function, then convergence in (1.1) is uniform on
bounded intervals so 6(f) := Y w,(f) depends continuously on .

*) This research was partly supportéd under grant 3# AFOSR-82-0271.
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> If /f) ~ [t — er** '] with ¢ > 0, & > 0, then w is a small function for 0 < « < 1
but not for « = 1.
e The set of continuous (respectively, monotone) small functions is closed under
max, min and convex combinations.

By way of perspective, we note that small functions, with no supplementary
properties, can be quite wild: one easily sees that

(1.3) wlf) 1= t[2 for positive rational ¢
) \/ 7 \arbitrary (but positive rational) otherwise

gives a small function which can be constructed so its graph is dense in [0, t] x [0, 7]
(orin R* x R*).

2. SOME OBSERVATIONS

Gbservation 1. Let ¢:[0, 7] — [0,%] be strictly increasing with 0 < 0_ <
< ¢(t)ft < 0, for t near 0. (Note that ¢~ is well-defined with similar estimate.)
For w:[0,7] - [0, 7], let & denote ¢ oo ¢p~':[0, 2] - [0, t]. Then w is a small
function if and only if @ is. :

Proof. One has, by induction, &,(s) = ¢{w,(t)) for s := $(2). If @ is a small
function, then, given ¢, one must have w,(f) - 0 so, for large n, one has @,(s) <
< 0, o,(t) so Y.@,(s) < oo. The argument for the converse is essentially identical. [

Observation 2. Suppose w,(t) — 0 for each t; let & denote the restriction of w to
[0, e]. Then w is a small function if and only if & is. (I.e., smallness depends
primarily on behavior near 0.)

Proof. The ‘only if’ is immediate. Given t, one has a),,(t) <egforn=zN =
= N(e, t); set i:= wy(f). Clearly w,(t) = ®,-5(1) for n 2 N so, assuming & is
small,

Yo wt) =Y 0t) + Y7 0,1) <
and w is also a small function. [J
Observation 3. Let @ be any iterate of w: say, ® := wg. Then w is a small function
if and only if @ is.

Proof. Clearly @&, = w,x s0 Y &, < > w,. If, on the other hand, & is small, set
t := ot) for 0 £ k < K. One can always set n = mK + k with 0 £ k < K so
w,(t) = &n(t). Thus,

o FO,,(t) = Yom On(to) + «oo + Yo Dutg-1) <

so w is then also small. [J
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Observation 4. Let f, w: [0, ] — [0, ] with w nondecreasing and f < w for each t.
Then f, < w, for each n. If, also, w is a small function, then so is f.

Proof. One has f, £ w, for each n since, inductively,

Sos l(t) = f(fn(t)) = w(fn(t)) = w(wn(t)) = Wpy 1(‘) i
For small w one then has Y. f,(f) £ ¥ w,(t) < oo and fis small. [J

Observation 5. A small function o cannot have a positive fixed point. Hence,
if either (a) @ is monotone or (b) w is continuous, then w small implies

(2.1 ' o(f) <t foreach t>0.

Proof. If o(t,) = t4, then w,(ty) = t, for each n so, if t, > 0, one would have
Y w,(ts) = oo, contradicting smallness. Suppose, next, one could have o small with
o(ty) > ty. For case (a), @ monotone, this gives, inductively,

W +1(ts) = 0(0,(ty)) = W(w,_(ty)) = 0,(t4)

50 @,(ty) = ... 2 0y(ty) > 15 2 0 and Y o,(ts) = ty + 2.7 w4(ty) = 0, contra-
dicting smallness. For case (b), @ continuous, note that w,(t,) — 0 to have Y ,(tx) <
< o0 so there must be a first n with w,, ,(t4) < @,(tx) — i.e., (noting n = 1) one has

b<a with w(b)> oa)

where b := w,_(t4) so w(b) = ,(tx) =:a and w{a) = w,(tx). This would give
a fixed point t e (a, b) for @ — but we have already shown that is impossible. Thus
(2.1) holds in either case. [J

Observation 6. Let T = 7o > 7, > ... with 1, = 0 and define &: [0, 7] - [0, 7] by
(22) ®0) =0 and &(f):=1, for 7, <t=7, ;.

If @ is similarlly defined using {{%,} with {z,} = {%,}, then & < & on [0, 7].
If w is a monotone function on [0, 7], 7, := w,(t). One then has

(23 Tyog Sot)St, for 1,<t<7,, (n=12,..)
50 0= @ given by (2.2). Thus, w is a small function if and only if & is.

Proof. The graph of &, given by (2.2), corresponds to a ‘staircase’ with ‘upper
corners’ {(z,, 7,)} and ‘lower corners’ {(z,, 7,+,)}. Introducing additional ¢’s merely
introduces additional steps, so increasing the value of the function at the new
“‘treads’ while leaving it unchanged on the remaining portions of the old ones; hence
& £ @. For {r, := 0,(r)} with ® monotone (We may assume 7,., < 7, for n =
=0,1,...) and t€[r,, 7,-1], one has, from the definition (2.2) and monotonicity,

faer = 0(5) = 0{5) S @) < 0fe,-)) = 7, = 6(0).
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giving (2.3) and o £ @. Clearly w will be small if & is by Observation 4 while &
is small if (and only if) }'7, < o0, ie, if Y w,(1) < 0. O

3. TWO THEOREMS
A principal result of this note is the following.

Theorem 1. Let f:[0, 1] — [0, 7] be a continuous function. Define a monotone
function f:[0,1] - [0, t] by setting

(3.1) J(t) := max {f(s):0< s <t} for te[0,1].

Then f is continuous and is a small function if and only if f is.

That f is monotone is immediate; that it is continuous (given that f is) is a standard
exercise and will be omitted; the ‘only if* part of the proof follows immediately
from Observation 4. Before proceeding to (the rest of) the proof of Theorem 1 —
which now consists of showing that fis a small function, given that f is small — we
need the following information about f, defined by (3.1).

Lemma 1. Assume f is a small function. Then f(t) < t for t€(0, 1].

Proof. By case (b) of Observation 5 we have f(s) < s on [0, ¢]. The max in (3.1)
is, indeed, attained since [0, ¢] is compact and f continuous so, for some s € [0, t],
onehas f(f) = f(s) <s<t. O

Lemma 2. Assume f is a small function and define f by (3.1). For any t, € [0, ],
recursively set t, := f(t,_,). (Note that t, > t; > ... by Lemma 1.) Then for any
m 2 1 and any s € [t,y,, t,] there exists § € [t,, t,—,] such that s = s = f(5).

Proof. One has f(t,) < f(t,) = tw+1. On the other hand, f(t,-,) = t, so, for
some § < t,,—, one has f(5) = ¢, by the definition (3.1); clearly § > t,, since f(t,) =
= tys1 < . Thus, for any s € [t,,+ 4, t,,] one has f(z,,) < s < f(5) so, by continuity,
there exists § € [f, 5] < [, tm—4] for which f(§) =s. O

Proof of Theorem 1. We assume f is a small function and suppose f were not small
so, for some f, € [0, 7], one would have Y f,(t,) = co. (One has f,(t5) =:t, as in
Lemma 2.)

For each m, arbitrarily choose s, , € [tm+1, Im] — $2Y, Spm = tn. By Lemma 2
one has existence of Sy m—1 € [tm tm—1] such thats,, ,, = f(Sn m—1). Applying Lemma
2 again one has Spm-2 € [fmys tm-2] such that s, .1 = f(Smm-2) SO Spm =
= f5(Smm-2)- Repeating this procedure, one eventually obtains existence of §, :=
1= 5,0 € [#1, to] such that

(3.2) fil8m) = smi€[tisrs t] for 0 k< m,
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By the compactness of [¢,, #,] one has, for a subsequence, §,, — t, € [y, to] and
by continuity (3.2) gives fi(tx) € [tx+1, t] for every k. In particular, this gives
fu(‘o) =1 éfk—x(t*) so ’
(33) YJilto) £ Yfi-i(te) <

(using the smallness of f), contradicting the supposition that Y fi(to) = . O

Corollary 1. Let w:[0, 7] — [0,7] be a continuous small function. Then the
convergence in (1.1) is uniform (on bounded intervals) so ¢ := ) w, is continuous.

Proof. In view of Observation 5 it is clearly sufficient to consider only finite .
Define @ from o as in (3.1). Then, uniformly for # € [0, t], one has w(t) £ @(t) <
< @(1) so, by Observation 4, 0 < w,(f) < @,(7) and Yo, < Yaé,r). O

Corollary 2. The set of continuous small functions is convex; if f, g are continuous
small functions, then so are f A g and f v g.

Proof. With no loss of generality, given (2.1), we may take 7 to be finite. Given
continuous small functions f, g: [0, 7] - [0, 7], let f, § be defined as in (3.1) and
define f, § from f, § as in Observation 6. Set

U, = J0), v, 1= (%)

and let {z,} be the set {u,} U {v,}, ordered so T = 75 > 7; > .... By the Theorem
we have f, § monotone small functions so, by Observation 6, also f, § are small.
Clearly

0<f() < f()) < f(1), 0=g(t) = d(r) < 4()

for t € [0, z]. Defining & by (2.2), one has f < & and § < & by Observation 6
since {u,} = {7,} and {v,} = {r,}. Thus,

(3.4) M+(Q—-=2g, frg, fvgsd (051=1)

on [0, 7]. Since f, § are small so Yu, < o0, Yv, < oo, one has Yz, < Yu, + Yv, <
< o0 s0, as in Observation 6, & is small. The desired results then follow by applying
Observation 4 to (3.4). O

We next wish to consider the map: w > ¢ defined by (1.1) and will obtain a limited
form of lower semicontinuity for this in each of the contexts we have considered:
continuous functions, topologized by uniform convergence, and (left continuous)
monotone functions, topologized by a notion of ‘uniform lower semiconvergence,
(o0 <, {@'}). (Definition: We write w < {'} if

(3.5) for each ¢ > 0 and each ¢ there exists j = j(¢, f) such that w{f) < o/(t) + &
ifjzj

and write w <, {@’} if j = j(e), independent of ¢.) Before proving the theorem we
need the following observations.
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Lemma 3. (i) Let f/ — f uniformly with f continuous (hence, uniformly continuous
for [0, t] compact); let g/ — g pointwise (or uniformly). Then f/ o g’ > f o g point-
wise (or uniformly).

(ii) Let f <, {f’} with f monotone and left continuous and let g < {g’}. Then
fog <{fl.g'}.

Proof. In either case,
fg(0) = g’ (1) = [F(9(n) = £ )] + [f(g’(9) — A’ (D)].

For (i) this, noting the uniform continuity of f, gives the result immediately. For (ii)
onehass = s/ := g/(f) 2 g(f) — &' for large enough j and then f(s) = f(g(t) — &) =
= f(9(¢)) — ¢/2 for & = ¢'(¢) small enough. At the same time f(s) — f/(s) < ¢/2
for large j, uniformly in s since f <, {f’}. Thus, f(g(t)) £ f(¢’(t)) + ¢ for large
enough j. [

Corollary. (i) Let f7, f be as in Lemma 3(i). Then the iterates converge uniformly:
fi > f, for each n.
(i) Let f, f be as in Lemma 3(ii). Then f, < {f}} for each n.

Proof. By induction on n since fr41 = fof,. O

Theorem 2. Let f7, f be as in Lemma 3(i) or 3(ii). Define 6/, o from 7, f by (1.1) —
not necessarily finite for each t. Then, for each t,

(3.6) a(f) < &(1) := lim inf 67(1) .

Proof. Given ¢, we assume &(t) < oo or there is nothing to prove. Extracting
a subsequence if necessary, we may assume o/(t) - g(t). For N = 1, 2, ... , introduce

(3.7) on:i= Y8 1), ok =YD fi()

so that oy — o(f) and of — o/(f) as N > oo. For case (i) one has f} — f, for each n
so g — ay. Since of < a’(t) — &(t), one has ¢} < 6(t) + ¢ for each N and for
J Z jy. Thus oy = lim; 0§ < 6(¢) + &. Since this holds for each N, one has o(f) =
= limyoy < 6(t) + ¢ and since & > 0 is arbitrary, this gives (3.6). For case (ii)
one has f, < {fi} for each n so oy < {0}}. Since o} < o/(f) > G, this gives

onSof+esd()+e=<61) + 2

for large enough j whence oy < 6(t) + 2¢ for each N. Again, o(f) = limy oy <
< o(t) + 2¢ so (3.6) follows. [

Corollary. If {f'}-is a sequence of continuous small functions on [0, t] with {c'}
bounded and if f? — f uniformly on [0, t], then f is also a small function. [
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4. EXAMPLES AND REMARKS

If w: [0, 7] — [0, 7] satisfies (2.1) and, for example, is continuous then Observation.
2 applies: the essential criterion for smallness is the asymptotic behavior of (t)
as t - 0. In view of (2.1) we consider asymptotic behavior of the form:

(4.1) ot) = 1[1 — cr* + 0(1)]

with @ 2 0 and ¢ > 0. (The case « = 0 reduces to w{t) ~ 0t with 0:=1 — c.
Presumably, here ¢ < 1 so 0 < 6 < 1 and, asymptotically, w,(t) ~ 0"t so o(t) :=
:=Yo,t) ~t/(1 — 0) < oo as for the Contractive Mapping Theorem.) The
interesting case is then a > 0 and the principal result of this section is that (4.1)
implies

(4.2) Yui=n"wf) > 7:=(ac)"* as n-

for each ¢t > 0.

Theorem 3. Suppose w: [0, ] — [0, 7] is such that w,(t) — 0 for each t and (4.1)
holds for t near 0 with @ > 0, ¢ > 0. Then, for each t (assuming w,(t) + 0) one
has (4.2).

Proof. We begin by considering the special case:
(4.3) o(t) := (1 — )
so 7 := P where, for convenience, we have set p = 1/o. Observe that y,:= n’t,
with #, := @,({) gives t, = n” %y, and
7n+l = (n + l)ﬁ tn+1 = (1 + l/n)ﬁ nﬂw(n‘ﬁy") = (1 + I/n)ﬁ Vn(l - Yﬁ’") .
It is convenient to introduce
80) = i) i= (L + 9P (1= 770) (02 0)
so that ’
(44) Yas1 = O(1n;p,)y, n=0,1,....
Since ¢(0) = 1 and
¢'(v) = B(L + 0 "1 [1 — o* — (1 + ) 7%],
one has
(4.5) @) ¢)<1 if y27, v>0,
(i) ¢(®)>1 if y<§, 0<v small.
Step 1 [lim sup y, £ 7]: From (4.4), (4.5i), if y, = 7 then 7,41 < 7, while if y, £ 7

then 7,44 < (1 + I/n)" ¥; we need only eliminate the possibility: y, > Y441 > ...
...> % > 7. Suppose 7,19 > 7 so, for large enough m and all n 2 m, one has
7» 2 9 and

¢(1[n;y,) < (1n;9) £ 1+ (B — 7)[n |
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(some 7 between 7 and 9 so (B — %) = —J < 0). Then
Ymsr = [[Tn*™" @1 9)] 9w = [T+ (1 = 3[m)] P -

Standard results on infinite products show this would give 7,+x — 0, a contradiction.

Step 2 [lim inf y, = 7]: For small ¢ > 0, if n is large enough (so » := 1/n is small
enough) then (4.4), (4.5ii) show that y, < 7 — & implies V,+1 > 7, While if y, 2
2> — ¢ one has y,., > (1 — C#/n) (7 — ¢); thus, we need only eliminate the
possibility: 7, < Yu+1 < ... <f <7 — & As for Step 1, for some § between 9
and 5 — ¢ this would give

¢(1[n;7,) 2 ¢(1/n;9) 2 1 + 6fn

with 6 := (B — 7°) > 0 for n 2 m large enough and a similar infinite product
argument would then give the contradiction: y, — co.

This shows the desired result for the special case (4.3). The result for ¢ + 1, i.e.,
w’s) 1= s{1 — ¢s”) follows from this by taking t:= s so w,(s) = ¢c”? (1) for
each n. For the still more general (asymptotic) case (4.1), suppose

(4.1) o) £ 11 = c* + 0(r)]

near 0 so w{t) < #(1 — &) =: ®{t) near (enough) to 0 for any & < ¢. For small ¢
one has & monotone so (cf., Observation 4) w,(1) < &,(t) whence

lim sup n” ©,(1) < lim n” (1) = (at)™*

and, since & < ¢ is arbitrary, this gives lim sup n’ w,(t) < (ac)”?. On the other
hand, a corresponding argument for w satisfying (4.1) gives w(f) = (1 — &) =: &(¢)
near 0 with & > ¢ whence (parallel to Observation 4) w,(t) 2 @,(f) so lim inf n® w,(f) =
2 (ac)™# as above. [

Corollary. Let w: [0, 1] — [0, ] satisfy (4.1) with ¢ >0 but « 2 1. Then
cannot be a small function. Conversely, if w is such that w,(t) — 0 for each t and
satisfies (4.1") with ¢ > 0 and 0 < « < 1, then w is a small function.

Proof. In the first case one has, at least for small t, w,(f) ~ yn™# with f < 1 so
Y.o,(t) diverges. In the second case, setting &(f) := #(1 — &) with 0 < & < ¢ as
earlier, one has w,(t) £ @,(f) ~ jn~# with B > 1 so Y w,(t) converges. [

It is of possible interest also to consider the differentiability of a(-) if w(*) is
continuously differentiable. Differentiating (1.1) term by term gives, formally,

(49 (1) = S i) = 1 + 3. (T /()

where, for each t = t, we have set ¢, := w,‘(to). Suppose

4.7) o'(tf)=1—(a+ 1)cr* t near 0
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which, integrating, 8ives (4.1"). Then, with 7 as in (4.2), one has
ty ~ k™ w'(t) — 1~ — (ot+ kb,
a+ 1, _
(45) )(ty) = n ) ~ [_1 ( 2y 1) ~

~ Cexp[— - z k™ ] ~ C'n~ @D

(where C, C’ reflect the approximations involved, especially in the ‘early’ stages
of the iteration — the approximation being asymptotically correct as n — ).
One then has convergence of (4.6) since « > 0 gives (¢ + 1)/o > 1. This convergence
is formally independent of ¢ but, of course, one must have ¢ > 0 in (4.7) to have
convergence of (1.1) as in the Corollary to Theorem 3. The approximation #, ~ jk™!/*
is not uniform in t,. However, continuity of w and a careful look at the proof above
for Theorem 3 show that this is locally uniform away from 0. Thus, the approximation
(4.7) is locally uniform and the convergence of (4.6) is uniform on compact subsets
of (0, 7]. This shows that ¢ is then continuously differentiable on (0, t]. We will not
examine diffrentiability near O.
We next provide counterexamples to some plausible conjectures.

Conjecture 1. For monotone functions, if @/ —  uniformly and, for some every-
where finite & one has ¢/ < & for each j, then w is a small function.

Counterexample. Let w/(t) := {0 on [0,1/2); 1/2 — 1/j on [1/2,1]} so ¢/(f) =
= {t on [0,1/2); ¢t + 1/2 — 1]j on [1/2,1]} < &(t) = t + 1/2. One has &/(t) >
- o{t) := {0 on [0,1/2); 1/2 on [1/2,1]} uniformly but o(t) = {t on [0, 1/2);
o on [1/2, 1]} since 1/2 is a fixed point of w. (This emphasizes the requirement of
left continuity in Theorem 2.) [

Conjecture 2. Let {w’} be a sequence of continuous small functions with &’ - o
uniformly and ¢/ — 6. Then ¢ = 6. Le., the map: w+> ¢ is continuous in this
context.

Counterexample. By Theorem 2 one has ¢ < & in this context and by Corollary 1
to Theorem 1 one has o continuous. Choose {t,} as in Observation 6 with Y t, < o
and define & by (2.2). Define w'by modifying this, shifting the “upper corners” slightly
to the right — to (7, + &,, 7,) with suitably chosen positive {¢,} — and making &
linear on each [t,,, T, + &,] so the risers of the staircase are steep but no longer
vertical; we refer to this modification as (2.2’). Thus, w is continuous; the numbers
{e,} need only be ‘sufficiently small’ for the rest of this construction to work. At the
Jj-th stage, select a (finite) set {#{, ..., ¥/ ,)} in the interval (7;.; + &+, 7;) in such
a way that

=Y 5¢c>0 as jo .
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This is clearly possible. Now define w/ by (2.2') using {z,} U {#{} with the original
{¢,} associated with {7,} and a new set of small {#}. Clearly w/(f) = o(f) except
for 1,41 + €4y <t <7, +¢; and 0 < /(1) — @{t) < 7; — 7;4, for all ¢ thus
@’ - o uniformly. One then has o/(t) = o(t) + ¢; for t > 1; + ¢; so for each ¢
one has ¢/(t) > o(t) + ¢ # ot) as j » 0. [

Conjecture 3. If o is continuous and o\?) is finite for almost all t, then much of
the analysis above applies.

Counterexample. First consider the example with @ = 0 on [0, 1/3], w(2[3) =
= 2[3, w(1) = 0 and w linear on [1/3, 2/3] and on [2/3, 1]. One has a fixed point 2/3
so Observation 5 fails but ¢{f) < oo for ¢ # 2/3. Note that obtaining @ as in (3.1)
gives @ = w on [0, 2/3] and @ = 2[3 on [2/3, 1] s0 6{f) = oo on [2/3, 1].

A more interesting example is provided by taking »{0) = o(1) = 0 and © = 1
on [1/3, 2/3] with o linear on [0, 1/3] and on [2[3, 1]. Not only is there a positive
fixed point at ¢t = 3/4, but one has w(f) > t on (0, 3/4). Note that w,(t) = 1 gives
o,(t) = 0 for n > m and so o(t) < co. Recursively, we note that:

w,(f) =0 for te[l/3,2[3],

w: [1/9,2/9], [7]9, 8/9] = [1/3,2/3] so ws(t) =0 for re[1/9,2/9] v [7)9,8/9],
wi(f) =0 for te[1)27,2/27]u [7)27, 827] L [19/27, 20/27] L [25/27, 26/27]
etc. Thus, 0{f) < oo on the complement of the Cantor set, hence almost every-
where. (Clearly, from the above analysis, a(t) < oo for some ¢ in the Cantor set as
well and it would be plausible to conjecture that for this example the set {t: 6{f) = oo}

is actually countably infinite.) [

Remark 1. One might wish to replace (1.1) by the more general form:

(49) oft) 1= g:oc,, o,(1)

using non-negative sequences ¢ := (co, ¢y, ...) other than (1, 1, ...). Then Observa-
tions 1, 2,4, 5, 6 and Theorem 1 remain valid (with negligible modifications of the
proofs) provided ) ¢, diverges. The validity of Obesrvation 3 in this context would
depend on the action of left hifts on c.

A still more general notion would be to use

(4.10) o{t) := Y8 ¥ lw,t)

where ¥,: S = R* is specified for n = 0, 1, ... and, now, w: S —» S with S an ar-
bitrary set. In this generality there seems little useful structure but, for example,
one interpretation might be:

S := {bounded subsets of a metric space X},
w:t {f(&): Eet} for teS where f1 X - X,
¥, = Y: t>diam (1),
related to, e.g., the Contraction Mapping Principle. [
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Remark 2. Of considerable interest would be a somewhat different general-
ization — keeping (1.1) as it is but now with ¢ taking values in [0, 7]™ for some
m > 1 so @:[0,7]™ > [0, t]". The following example, however, shows that one-
must be careful in dealing with this situation: one need not have (2.1) but, in fact,
can have a continuous small function for which w{t,) = 2t, for some t, > 0.

Example. Let T = 1, m = 250 t = (x, y) varies over the unit square and define
as a composition of three maps:

Step 1: (x, y) —(x, min {y, x, 1 — x}),

Step 2: (x, y) > (min {x, y}, »),

Step 3: The segment [(0, 0), (1/4, 1/4)] - [(0, 0), (1, 0)] linearly,

the segment [(1/4, 1/4), (1/2, 1/2)] - [(1, 0), (1, 1)] affinely.

Note that w: [0, 1]* - L:= [(0, 0), (1, 0)] v [(1, 0), (1, 1)] and w:L - (0,0) so
w,(t) = (0, 0) for every t. However, for t, = (1/2,1/2) one has o(t,) = (1,1) =
= 2t*. D
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Souhrn

O JISTYCH ITERATIVNICH POSLOUPNOSTECH

THOMAS 1. SEIDMAN

Autor studuje ,,malé funkce* (small functions) zavedené V1. Ptakem. Mezi jingmi dokazujes
7e spojita funkce je mal4, pravé kdyZ je majorizovana monotonni malou funkci.

Pe3ome

O HEKOTOPBIX UTEPATUBHBIX ITOCJIEJOBATEJIbHOCTAX

THOMAS I. SEIDMAN

B cratbe m3yvarorcsa ,,Manble pyHkuuu, BBeaéunbie Bn. ITtakoM, # KpOMe IPOYErc NOKa3bl-
BaeTCs, YTO HenpephiBHA GyHKUMA Manas TOrAa ¥ TOJIBKO TOrAa, KOraa OHA Ma)XXOpPUPYETCsi MOHO-
TOHHON Manoit yHKuuei.
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