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SOME NEW RESULTS ABOUT THE SHORTNESS EXPONENT
IN POLYHEDRAL GRAPHS
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(Received October 25, 1982)

Summary. The shortness exponent o(I') of a family I of graphs G is defined as o(I") =

= lim inf (log #(G))/(log n(G)), where n(G) or #(G) denotes the number of vertices of G or the
GeIl
maximum number of vertices of G belonging to a circuit, respectively.

The paper deals with shortness exponents of families of regural graphs of polyhedra having
the smallest number of types of faces and a shortness exponent <1.
Keywords: Shortness exponent, polyhedral graphs.

We denote by n(G) the number of vertices and by h(G) the number of vertices
in a maximum circuit of a graph G. In the following, we deal with families I" of graphs
containing non-Hamiltonian members G, that means h(G) < n(G) and, moreover,
for any & > 0 there exists a G € I', such that 1(G)/n(G) < e.

A suitable concept for estimating the length of a maximum circuit is the shortness
exponent o(I') of a family I' of graphs G:

oll’) := lim inf log h(G) .
ger log n(G)

In this paper, we only study families of polyhedral graphs. Let us denote by I,,
r € {3, 4, 5} the family of all regular polyhedral graphs of degree r. As is well-known,
a graph G is polyhedral iff G is planar and three-connected. Let us denote by
r'(py, ..., pm) the subfamily of I', containing at most m types of faces, namely,
P1-E0NS, D,-gons, ..., P,~gOns.

J. Zaks [4] searched for the minimum m(r) such that there exist m = m/r) in-
tegers py, P, ..., P With the property that o(I',(p,, p,, ..., Pm)) < 1. P. J. Owens [3]
proved that for r € {4, 5} the inequality m(r) < 3 holds. We can prove

Theorem 1. m(r) = 2 for r € {3, 4, 5}.
If I (pr), q(r)) + 0and p'r) < q(r)then p(3) € {3, 4, 5}, p(4) = p(5) = 3 (see [2]).
We can prove

Theorem 2.

o(I's(4,K)) < log 44

log 45

for any odd K = 21,
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oTy(5,K) < %83 forany K279 and K %0 (mods),

log 37
o(I4(3,K)) < log 16 forany K 258 and K #% 0 (mod3),
log 17
/ log 16
o(I's(3,K)) < 1 forany K 243 and K % 0 (mod 3).
0g

In this paper we will only prove the first inequality. (The proofs of the remaining
estimates of the shortness exponents indicated in Theorem 2 can be seen from [2].)
To this aim we construct a sequence {G;} of 3-regular polyhedral graphs containing
only 4-gons and K-gons and satisfying

/
m log h{G)) < log 44 '
i-~w log n(G;) ~ log 45

Let G, be the graph of a cube with exact one distinguished (black) vertex.
G, arises from G, by replacing each of the black vertices by a suitable figure Z
still to be constructed.

Definition. Let i, j, m be integers and G be a graph with following properties:
(i) G is planar, 3-connected and 3-regular.
(i) G contains a vertex P incident with an (i + 1)-gon, a (j + 1)-gon and an
(m + 1)-gon. All the other faces of G are 4-gons or K-gons.
(iii) G contains a vertex Q (Q # P) incident with three 4-gons. Exactly one of these
vertices will be distinguished. We call it black.
A figure (i, j, m) is the object arising from G by splitting up the vertex P into 3
half-edges (in Fig. 1 G is the graph of a cube and we obtain by splitting up an ar-
bitrary vertex a figure (3, 3, 3)).

N T

G figure (3,33)

" Fig. 1,

Let us now construct the figure Z. This construction proceeds in two steps:

Step 1: We start with the figure E arising from the well-known non-Hamiltonian
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Grinberg ian graph (see [5]) splitting off some vertex (remark: E has the property
that a path through E which connects any two arbitrary halfedges leaves out at least
one vertex).

Step 2: Each of the vertices of E is to be replaced by a suitable figure (i, j, m) and
we obtain the figure Z shown in Fig. 2. As one can easily see, we need eleven different

Fig. 2,

figures (i, j, m), namely (3, 3, 3), (2,3,4), (2,K - 16, K — 17), (2,3,9), (2,3,8),
(2,3,7),(2,3,10),(8,9,K — 17),(2, 3, 5), (2, K — 12, K — 13), (2, K — 13, K — 14),

Fig. 3 shows a figure (3, 3, 3).

For constructing the eleven figures (i, Jj, m) needed let us introduce some operations
taking into consideration 2 < i,j, m £ K — 2 (We use the abbreviation: (i, j, m)
A(u, v, w), if we obtain a figure (u, v, w) by applying the operation A to the figure
(1 m):

a: (i, j, m)olK — i, j + 2, m + 2), see Fig. 4 for K = 13,
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Bold-face italics (e.g. (#, K — i) means that the operation is performed at the exterior

(333)

Fig. 3,

K=13

(LT TTV NN

Fig. 4,

face the border of which contains i vertices.

B: (i, m)B(i,j+ 4, m+4):=(@j,ma(K—ij+2 m+2)
ai,j + 4, m + 4).

yi (i, j,m)y(i + 8,j+ 8 m+ 8):=(i,j, m)B(i,j + 4, m + 4)
Bi +4,j+4,m+8)p(i + 8, j+ 8, m+3).

6: (K—2,j,m)62,j+ 1, m+ 1), see Fig. 5 for K = 13.

e (2,j,m)e(2,j + 1, m + 1), see Fig. 6.

o (2,34 6,3+i4))el2,3,j+3):=
=23 4+0,3+i+))e23+i+1L,3+i+j+1)
e...6(,K—j—2,K—2)6 '
(B, K—j—1,2)e4,K - j,2)
e...e(j +2,K—2,2)
j+3,2,3).

117



¥ (2,3, + 1) Y(2,3,j + 3):=(2,3,j + 11) f(6,7,j + 11)
oK —6,9,j + 13) B(K — 2,13, j + 13)

K=13

(257)

Fig. 5,

(2.4,5) — & (2,56)

/

/

Given a figure (2, 3, 5) we get the other seven figures (i, j, m) in the following way.

\mm

(2 3,5)
K-G 5\ /3

Fig. 6,

£(4,6,7)

Fig. 7,
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—(2,3,5)¢(2,4,6) a(4,6, K — 6) and according to Fig. 7, (4,6,7) «

(6,K — 6,9) B(10, K — 2,9) 5(11,2, 10) ¥ 13 (K — 2,2,K — 3)5(2, 3, K — 2)
5(3, 4,2).

—(3,4,2) ¥ 2°(K — 17, K — 16, 2), analogously (K — 12, K — 13, 2) and (K —
—13,K — 14,2).

—(2,3,5) (6,7, 5) (K — 6,9,7) (K — 2,13, 7) 5(2, 14, 8) 05(2, 9, 3).
—(2,3,5)B(6,7,5) (K — 6,9, 7) and according to Fig. 8, (4,11, 8)

2 (4,118)

Fig. 8,

(6,K — 11,10)a’K — 6,K — 9, 12) B(K — 2, K — 5, 12) §(2, K — 4, 13)
(2, K — 2,15) 5(3, 2,16) (3, 2, 8).

—(2,3,8) %2, 5,10) «(4, 7, K — 10) ,
(2,3,5)¢%2,7,9) see Fig. 9

(8,6,8) %10, K — 6, 10) B(10, K — 2, 14) 5(11, 2, 15) ¢5(3, 2, 7).

y 2
\(4 AN 7537/

7N\ /K10 9\

2(8,6.8)

Fig. 9,
—1(2,3,4)¢%(2,5,6)x(4,7,K — 6) 4,11, K — 2)6(5 12, 2)<p2(3 10, 2).
(2,3,9) 6, 3, 13) B(6,7,17) (8, 9, K — 17).

Now let us construct a (2, 3, 5). We have to distinguish four cases.
Casel, K=8N + 7, N = 2.
(3,3,3)y" (8N — 5,8N - 5, 8N — 5) B8N — 5, 8N — 1,8N — 1)

o8N — 3,8, 8N + 1) B8N + 1,8, 8N + 5) 5(8N + 2,9,2) 638N + 5, 12,2)
8(2,13,3) ¥(2, 5, 3).
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Case2, K=8N + 5, N = 2.

(3,3,3) 18N — 5,8N — 5, 8N — 5) B(8N — 5, 8N — 1, 8N — 1)

B8N = 1,8N — 1, 8N + 3) 5(8N, 8N, 2) (8N + 1, 8N + 1,2) «(4, 8N + 3,4)
6(5,2,5) (7, 4,K — 5), on the one hand according to Fig. 10, (8, 11, K — 4)

\\_(47/(5)7 ((4 7K5)7/

/K5

2(K-4,11,8)

Fig. 10,

o(10, K — 11, K — 2) (11, K — 10, 2) f¥(11, K — 2, 10) 5(12, 2, 11) 04(4, 2, 3);
on the other hand, (7,4, K — 5) (9, K — 4, K — 3) and according to Fig. 11,

9
\Euw (234 7/

K3\

2(313,K-2)

Fig. 11,

(3,13, K — 2) 5(4, 14,2) ¢,(3, 13,2) ¥(3, 5, 2).

Case3, K =8N + 3, N = 3.
(3,3,3) y""}(8N — 5,8N — 5, 8N — 5) (8, 8N — 3, 8N — 3)
B(12, 8N — 3, 8N + 1) 5(13, 8N — 2,2) £3(16, 8N + 1,2) 5(17, 2, 3)
¥(9,2,3) 'K — 9,4,5) a(K — 7,6,K — 5)a’K — 5,K — 6, K — 3)
oK —3,K —4,3) a(3, K — 2,5) 54,2, 6) 0,(3,2,5).
Case4, K=8N + 1, N = 3.
(3,3,3) y""{(8N — 5,8N — 5, 8N — 5) a(6, 8N — 3, 8N — 3) o(8, 4, SN — 1)
3(*)(9, 5,2) £(10, 6, 2) a(12, K — 6, 4) together with (*) according to Fig. 12 yields
(5,10, 14) o7, K — 10, 16) (15, K — 2, 16) 6(16,2, 17) ¢45(3, 2, 4) (x»).
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From (x) we get (9, 5,2) 9(7, 3,2) «(9, K — 3, 4) together with (**) according to
Fig. 13 yields a (5,7, 10) «(7,9, K — 10) (7,13, K — 6) (11,13, K — 2)

5(12, 14,2) 9,(3, 5, 2).
(472—K6)7 \ (259)7/
VANSY/ S\

2(51014)

Fig. 12,

£ 3

(4,9K-3)7K 3 \ (23,4)

N/ AN\

2(5,7,10)

Fig. 13

In all cases we have found a figure (2, 3, 5), that means for all odd K = 21 we have
found the necessary eleven types of (i, j, m) listed in Step 2.

Constructing the figures (i, j, m) needed we have always started with a figure
(3, 3, 3), that means, each figure (i, j, m) contains at least one vertex incident with
three 4-gons. Hence the figure Z contains exactly 45 black vertices and an arbitrary
path trough Z connecting any two halfedges avoids at least one black vertex. Ob-
viously Z is a figure (K — 3, K — 3, K — 3).

By induction, if G, contains only 4-gons and K-gons (which is really true for
l = 0), then after replacing all black vertices of G, by a figure Z, the resulting graph
G, has only 4-gons and K-gons as well.

The estimate log 44/log 45 for the shortness exponent may be established in an
analogous way as in [1]. Obviously, the number of vertices increases by the factor 45,
but the number of vertices in the longest circuit only by the factor 44 if we pass
from G, to G4 4.
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The following problems remain unsolved:

1. What holds in the open cases of Theorem 2, K = 0 (mod 5) for I';(5, K) and
K = 0 (mod 3) for I'y(3, K) and I's(3, K)? .

2. Conjecture: 6(I';(3, K) = 1forallK < 11 (obviously, I';(3, K) = @ forK = 12.
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Souhrn

NOVE VYSLEDKY O ,,SHORTNESS EXPONENTU“ POLYEDRICKYCH GRAFU

JoCHEN HARANT, HANSIOACHIM WALTER
Exponent o(I") (,,shortness exponent) soustavy I’ grafd G je definovan jako o(I") =
= lim inf (log #(G))/(log n(K)), kde n(G) resp. h(G) znamena podet vrcholi G resp. maximalni
Gell

polet vrcholu G, patticich cyklu. V praci se studuje exponent G(I') soustav regularnich polyedric-
kych grafu, které maji nejmen3i podet typu st€n, a pro néZ plati o(I") < 1.

Pe3ome

HOBBIE PE3VJIBTATHI O ,,JITIOKA3ATEJIE KOPOTKOCTH"
INOJIMDAPUYECKUX I'PA®OB

MOXEH '’APAHT, XAHCHOAXWM BAJITEP
IToxazarems o(IN) (,,ioka3aTeab KOPOTKOCTH ) cucteMsl I rpados G ompenensieTcs GhopMyToi
o(I") = lim inf (log A(G)/(log n(G)), rae n(G) u h(G) 0603Ha4alOT COOTBETCBEHHO YHKCJIO BEPIUMH
Gell

rpada G ¥ MaKCHMAJIBHOE YHCIIO BepmHAH rpada G, npuHAQIekKamuX HUKITy. B paborte uzyyaercs
mokazatenb G(I') CHCTEM PperyjsfipHBIX NOMHIAPHYECKHX rpadoB, MMelOmUX HalMeHbIIee YMCIIO
THNOB IrpaHe#t u ynosnersopstommx o(N) < 1.
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