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GREATEST COMMON SUBGRAPHS OF GRAPHS

GARY CHARTRAND‘), ForrOKH SABA, HUNG-BIN Zou, Kalamazoo
(Received August 1, 1984)

Summary. A graph G without isolated vertices is a greatest common subgraph of a set ¢ of
graphs, all having the same size, if G is a graph of maximum size that is isomorphic to some sub-
graph of every graph in ¢. A number of results concerning greatest common subgraphs are
presented. In particular, it is shown that for integers m = 3 and n = 1, there exists a set of m
graphs of equal size having exactly n greatest common subgraphs. Furthermore, it is shown that
for any graph G without isolated vertices, there exist graphs G; and G, of equal size having G
as their unique common subgraph. A further investigation of this result gives rise to a parameter,
called the greatest common subgraph index of a graph.

1. INTRODUCTION

In [2] the authors introduced the concept of a greatest common subgraph of two
graphs G, and G, of the same size (having the same number of edges) for the purpose
of studying a distance between G, and G,. This concept can be generalized as follows:

61 M . H1:.

Figure 1

Given a set ¥ = {Gl, Gy, ..., Gy}, n 2 2, of graphs, all of the same size, a greatest

common subgraph of ¥ is a graph of maximum size and without isolated vertices
that is isomorphic to some subgraph of every graph in %. The set of all greatest

1) Research supported by a Western Michigan University faculty research fellowship.

80



common subgraphs of ¢ is denoted by
ges ¢ = ges(Gy, G, ..., G)

If ¢ = {G,, G,}, where G, and G, are shown in Figure 1, then gcs ¢ = {H,, H,},
where H; and H, are also shown in Figure 1. (All definitions and terminology not
presented here may be found in [1].)

2. GREATEST COMMON SUBGRAPHS OF GRAPHS

We first show that the number of greatest common subgraphs of the two graphs
can be arbitrarily large.

Proposition 1. For every positive integer n, there exist graphs G, and H, such
that |ges(G,, H,)| = n.

Proof. First we note that if we define G, = P;and H; = 2K,, then ges (G, H,) =
= {K,}. For n = 2, define G, = S(K(1, n)), the subdivision of the star K(1, n), i.e.,
each edge uv of K(1, n) is replaced by a new vertex w and two edges uw and wo.
The graph G, is then obtained from G, by identifying two endvertices of G,. Define
H, = K(1, n) U nK,. Observe that each of G, and H, has size 2n. The graphs G,
and H, are shown in Figure 2.

Figure 2

Observe that every subgraph {without isolated vertices) of H, is of the type K(1, r),
sK, or K{1,r)u sK,, where 1 £ r < n and 1 £ s < n. Since each of G, and H,
contains K(1, n) as a subgraph, every greatest common subgraph of G, and H,
has size at least n. Further, the edge independence number ,BI(G,,) of G, is n; while
By(H,) = n + 1 so that nK, is also a common subgraph of G, and H,. Let K(1, r) U
U sK, be a common subgraph of G, and H, (r, s = 1) of maximum size. If r = 1,
then s = n — 1. For any subgraph K(l, r), r = 2, of G,, there are at most n — r
independent edges of G, that neither are adjacent to nor are themselves the edges
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of K(1, r). Hence r + s < n, which implies that every greatest common subgraph
of G, and H, has size n. It now follows that

g5 (G, H)) = {K(1, m)} U {nKy) U{K(1, ) U(n = Ky r=23..n—1};

consequently, |gcs (G,, H,)| = n. O
A branch of a graph G at a vertex v is a maximal connected subgraph of G con-
taining v as a non-cut-vertex. Thus, if v is not a cut-vertex, then there is only one
branch at v, namely the component of G containing v; otherwise, the number of
branches at v equals the number of blocks to which v belongs.
We are now prepared to present a much stronger result than Proposition 1 in the
case where n = 1.

Proposition 2. For every graph G without isolated vertices, there exist graphs
G, and G, of equal size such that gcs (G,, G,) = {G}.

Proof. Let G be a graph without isolated vertices having size g(=1), and let v
be a vertex of maximum degree in G. We consider two cases.

Case 1. Suppose that no branch of G at v is isomorphic to P5. In this case we
construct a graph G, by adding a new vertex u to G and joining it to v. Define G, =
= GUK,, where E(G,) — E(G) = {e}. Clearly G, # G,. Each of G; and G,
has size g + 1, and since G has size ¢ and is a common subgraph of G, and G,,
it follows that G € ges (G4, G,).

We now show that gcs(G,, G,) = {G}. Assume, to the contrary, that G’ e
€ ges (Gy, G,) and G’ # G. Then G’ has size q. Since G’ is a subgraph of G,, the
graph G’ is obtained by deleting an edge f from G, (and any resulting isolated
vertices), where f # e. The edge f cannot belong to a component isomorphic to K,;
for otherwise G ~ G'. Hence f must belong to a component with two or more edges,
which implies that G’ has more components isomorphic to K, than does G. Since G’
is a subgraph of G,, the graph G’ is obtained by deleting an edge f’ from G, (and any
resulting isolated vertices), where f’  uv. Since A(G') < A(G,) < A(G,), it follows
that f’ is incident with v. However, G contains no branches at v isomorphic to Pj;
therefore, G' and G have the same number of components isomorphic to K,, and
this produces a contradiction.

Case 2. Suppose that G contains branches at v that are isomorphic to P;. Let B
be a branch at v isomorphic to P,, where u is the vertex of B adjacent to v and w is
the remaining vertex of B. Define G, = G + vw and let G, = GuU K,, where
E(G,) — E(G) = {e}. Then G, # G,, and each of G, and G, has size ¢ + 1. Since G
is a common subgraph of G, and G,, we conclude that G € gcs (G, G,).

Next we show that gcs(Gy, G,) = {G}. Assume, to the contrary, that G'e
€ gcs (Gl, G,), where G’ % G. Then G’ has size q. Suppose that G has k components

82



isomorphic to K, and ¢ subgraphs isomorphic to K;. Since G’ is a subgraph of G,,
the graph G’ is obtained by deleting an edge f from G, (and any resulting isolated
vertices), where f = e. Since f cannot belong to a component isomorphic to K,,
it implies that G’ has at least k + 1 components isomorphic to K,. Further, since
deleting an edge from a graph does not increase the number of subgraphs isomorphic
to K, it follows that G’ has at most ¢ subgraphs isomorphic to K5. Now, since G’ is
a subgraph of G, the graph G’ is obtained by deleting an edge f’ from G, (and any
isolated vertices), where f’ # vw. Since A(G’) £ A(G,) < A(G,), we see that f
must be incident with v. Moreover, since G, has k components isomorphic to K,
and G’ has at least k + 1 components isomorphic to K,, it follows that f' must
belong to a branch isomorphic to P;. However, this implies that the number of
subgraphs of G’ isomorphic to K; must equal that in G, which is ¢ + 1. This produces
the desired contradiction.

We now show that the above result has no analogue where two graphs are pre-
scribed.

Proposition 3. Let Hy ~ K(1, 6) and H, =~ K,. Then for every two graphs G, and
G, of equal size, ges (G, G,) + {Hy, H,}.

Proof. Suppose, to the contrary, that there exist graphs G, and G, of equal size
such that ges (G4, G,) = {Hj, H,}. Observe that not both G, and G, have a com-
ponent isomorphic to K,; for otherwise, each has a component containing a sub-
graph isomorphic to K(1, 6), which implies that K, U K(1, 6) is a common subgraph
of G, and G,. However, since K, U K(1, 6) has size 12, H; ¢ gcs (G,, G,) for i =
= 1, 2, which produces a contradiction. On the other hand, if neither G, nor G, has
a component isomorphic to K,, then both must contain a subgraph isomorphic to
the graph G of Figure 3. Since G has size 7, however, we again have a contradiction.

O— -0

Figure 3

Therefore, we may now assume that exactly one of G, and G,, say G, has a com-
ponent isomorphic to K,. In Gy, then, there is another component containing
a subgraph isomorphic to K(1, 6). In G,, let F be a subgraph isomorphic to K, and
let v be a vertex of G, having degree at least 6. If v € V(F), then each of G, and G,
has a subgraph isomorphic to K3 U K(1, 3), which has size 6, so that gcs (Gy, G,) *
+ {H,, H,}. If v ¢ V(F), then there are at least two vertices in V(G,) — V(F) that
are adjacent to v so that G; and G, have a subgraph isomorphic to K4 U P5, which
has size 8, and H, ¢ gcs (G4, G,) for i = 1,2, O

We present yet another extension of Proposition 1.
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Proposition 4. For every pair m, n of integers with m = 2 and n = 1, there exist
pairwise nonisomorphic graphs Gy, G,, ..., G,, of equal size such that

lges (G4, Gy, ..., G)| = 1.

Proof. The result is true for m = 2 by Proposition 1. Otherwise, we proceed
by cases.

Case 1. Assume that n = 1. Define
G, =K(l,m+ 2 — i) Uik,
for i =1,2,...,m. Then G; has maximum degree A(G;) =m + 2 — i so that
A(G) £ 2 whenever G € ges %, where
9 = (G, Gy, ..., Gy} .

Moreover, the edge independence number of G, is f,(G;) = i + 1fori = 1,2,...,m.
Therefore, B,(G) < 2 for G e gcs ¥, and so G = K(1, 2) U K, is the unique member
of gcs 9.

Case 2. Assume that n = 2. At this point, it is convenient to introduce a class
of graphs. For nonnegative integers i and j, not both zero, we denote bySi(1, i + )
that graph obtained by subdividing i edges in the graph K(1, i + j).

For i = 1,2,..., m, define

G, =S, m+2—i)uikK,,
and let ¢ = {G;}. If G e gcs &, then A(G) < 2 and B,(G) < 3. Since P, UK, = G;
for all i, the size g(G) of G satisfies g(G) = 4. Now A(G) = 2; for otherwise G = tK,

for some ¢t = 4, which contradicts the fact that f;(G) < 3. Since the length of a longest
path in each G; is 3, either G = P, U K, or G = P; U 2K, so that

lees 9| = 2.

Case 3. Assume that 3 £ n < m — 1. Here we define
Gi = S,._l(l, m + n — l)U iKz

for i =1,2,...,m, and let ¥ = {G}. If Geges %, then By(G) < n + 1 and
A(G) < n. Since S,-,(1, 1) UK, = G; for all i, it follows that ¢(G) = 2n for any
such graph G. If A(G) < n, then the structure of the graphs G; implies that §,(G) >
> n + 1, which produces a contradiction. Therefore, A(G) = n whenever G € gcs 4.
If g(G) > 2n, then since A(G) = n, it follows that B,(G) > n + 1 which is impossible.
These observations imply that

gesY = {S,-(LLn)UiK,|i=12,..,n}.
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Case 4. Assume that 3 < m < n. Fori = 1,2,...,n, define
Gi = Sn—i+1(1’ n) v (i - 1) Kz .

Consider first gcs (G, G,). Since Sy(1, n) is a subgraph of both G, and G, it follows
thatif G € ges (G, G,), then g(G) = n + 1. We cannot, however, have g(G) = n + 2,
for this would imply that G has a path of length 3, which is not present in G,. There-
fore, if G € ges (G4, G,), then ¢(G) = n + 1. If we define

H,=S(IL,n—i+1)u(i-1)K,
fori =1,2,..., n, then it is easy to see that

ges (G, G,) = {H;|i=1,2,...,n}.
However, since H; = G, for all i,je{1,2,..., n}, it follows that

gCS (Gl’ Gz, ceny Gm—l’ Gn) = {Ifl I i = 1, 2, ceay n} >

thereby completing the proof. O

3. THE GCS INDEX OF A GRAPH

In Proposition 2 we showed that for every graph G without isolated vertices,
there exist graphs G, and G, of equal size such that ges (G,, G,) = {G}. By a similar
argument, the following result, whose proof we omit, can be verified.

Proposition 5. For every graph G without isolated vertices, there exist pairwise
nonisomorphic graphs G, G, and G of equal size such that

gCS (Gl’ Gz, G3) = {G} .

Propositions 2 and 5 suggest the question that for a given graph G without isolated
vertices and a given integer n > 2 as to whether there exists aset ¢ = {G,, G,, ..., G,}
of n pairwise nonisomorphic graphs of equal size such that gcs ¢ = {G}. Certainly
if n is large, then the graphs in ¢ must have large size. By introducing a new graphical
parameter, we shall see that the answer to this question depends on the given graph G.

For a graph G without isolated vertices, the greatest common subgraph index
or ges index of G, denoted i(G), is the least positive integer g, such that for any
integer ¢ > q, and any set

% ={G,Gy...,G,}, n22,

of graphs of size q for which G € gcs 9, it follows that |ges | > 1, i.e., gos 4 contains
an element different from G. If no such g, exists, then we write i(G) = oo; it is for
such graphs G that Propositions 2 and 5 can be extended. We illustrate this idea now.
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Proposition 6. For integers r = 1 and n = 4,
(a) i(K(1, M) = o,
(b) i(rK;) = oo, and
() .i(K,,) = 0.

Proof. (a) Suppose, to the contrary, that i(K(1, r)) is defined, say i(K(1, 7)) = q
for some positive integer g,. Let g be an integer such that ¢ > max {qo, r}. Let

G, =K(1,9) and G,=K(1,r)u(q—r)K,.
Then
ges (Gy, Gy) = {K(1,r)},
a contradiction.
(b) Suppose that i(rK;) = g, for some positive integer g, and let g be an integer
such that ¢ > max {qo, r}. Let

G, =9K, and G,=K(l,q—r+1)u(r—-1)K,.

Then ges (G, G,) = {rK,}, which contradicts the fact that |gcs (G, G,)| > 1.
(c) Suppose that i(K,) = g, for some positive integer g, and let g be an integer
such that
g > max {qo, q,} .

where g, = (Z) Define

G, =K, +(K,-;uK,-,) and G, = K,u(qg —q)K,.

Then ges (Gy, G,) = {K,}, which is impossible. O
That the condition n = 4 is required in Proposition 6(c) is now verified.

Proposition 7. The gcs index of K is 6.

Proof. For g > 6, let
4% = {G,G,,...,G,}, n=2,

be any set of graphs of size q for which K3 € gcs 4. We show that K, U P; € gcs 4
so that |gcs 9| > 1. \

For each i (1 < i < n) such that G, has at least two components, it is obvious
that K, U P; = G,. Suppose then that G; (1 < j < n) is connected. Let vy, v, and v,
be the vertices of a triangle in G;. If degg, v; = 4 for some i (1 £i<3),thenK, v
U P; = G;. On the other hand, if degg, v; < 3 for all i, then since g > 6, G; must
contain an edge incident with none of the vertices v; so that K, U P; = G;. Hence
K, U P; e gces 9, as claimed.

Therefore, i(K3) < 6. Suppose, to the contrary, that i(K3) = g, < 6. Necessarily,
qo > 3 since K3 egsc¥. Now g, #+ 4 since each of G; = K3 u 2K, and G, =
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= K, — e has size 5 and gcs (Gy, G,) = {K,}. Further, qo + 5, since H, =

= K, U 3K, and H, = K, have six edges and ges (Hy, H,) = {K;}. Consequently,

i(K3) = 6. D
We conclude by determining the gcs index of every path.

Proposition 8. The gcs index of a path is given by

i(P,,)= 0 1.f n+4.
6 if n=4

Proof. By Proposition 6(a), i(P,) = o for n = 2, 3. Suppose, then, that n = 5
and assume, to the contrary, that i(P,) = q, for some positive integer g,. Let g
be any integer such that ¢ > max {go, n — 1}. Let G, be that graph obtained by
subdividing an edge of K(1, ¢ — n + 3) a total of n — 3 times, and let

GZ=P,,U(q—n+1)K2.

Then ges (Gy, G,) = {P,}, which is impossible.
The proof that i(P,) = 6 is very similar to the proof of Proposition 7 and is there-
fore omitted. O
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Souhrn

NEJVETSI SPOLECNE PODGRAFY GRAFU
GARY CHARTRAND, FARROKH SABA, HUNG-BIN Zou

Graf G bez izolovanych vrcholu je nejvEtSim spoleénym podgrafem mnoZiny ¢ grafa, které
maji vechny stejnou velikost, jestliZe G je graf maximalni velikosti, ktery je izomorfni s n€jakym
podgrafem kaZdého grafu z 4. Je podana fada vysledku tykajicich se nejvétSich spoleénych pod-
grafu. Zejména je ukazano, e pro kazdy graf G bez izolovanych vrcholu existuji takové grafy
G,, G, stejné velikosti, Ze G je jejich jediny nejvétsi spoletny podgraf. Dalsi vySetfovani tohoto
vysledku vede k zavedeni parametru, ktery se nazyva index nejvétSiho spoleéného podgrafu
grafu.

Pe3ome

HAWBOJIBIIVE OBMUE ITOATIPA®LI TPAG®OB
GARY CHARTRAND, FARROKH SABA, HUNG-BIiN Zou

I'pad G Ge3 M30NMPOBAHHBIX BEPIIMH HA3bIBAacTCA HalGombmmM oOmuM moarpadoM MHO-
xkecTBa ¢ rpadoB OOMHAKOBOM BeIMYMHEI, €ClH G €CTh rpad MaKCHMAaJIbHOM BETHYHMHEI, KOTOPOM
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m3oMmopden HekoTopomy moarpady xaxmoro rpada m3 ¢.B craThe mokasaH uensif pax pe3ynb-
TaTOB O HaiGompmuEx obmux moarpadax. B 4acTHOCTH 34eCh MOKA3aHO, YTO Ui KaxXaoro rpada
G 6e3 H30IMPOBAHHBIX BEPIIAH CYMECTBYIOT Takue rpadet Gy, G, OMMHAKOBOX BEIHYHHEI, YTO G.
ABJIAETCA HX €AAHCTBEHHBIM HaMGombmmm ob6mmM moarpadoM. JlanpHeifmee HCCeIOBAHAE 3TOIO

pe3ynbTaTa OPEBOAMT K ONPENENeHHIO napaMeTpa, KOTOPOR Ha3bIBAeTCA MHOEKCOM HaiGonbmero
obmero noarpada.

Anthors’ address: Western Michigan University, Department of Mathematics, Kalamazoo,
Michigan 49008.
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