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Summary. In the article the notions of dominancy and singularity of signed states on a logic
are defined. A theorem is proved, which asserts that if @ and m are finite signed states on the logic
of all closed subspaces of a separable Hilbert space, w is nonnegative, then m can be written
as a sum of two signed states my, m, such that m; is dominated by w and m, is singular to w.
An example is given which shows that in distinction to the case of measures on a o-algebra
in this case the nonnegativity of m does not guarantee the nonnegativity of m; and m,.
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The notions of dominancy and singularity of signed measures are defined for
example in [5]. The known theorem on the Lebesgue decomposition asserts that
if 4 is a o-finite measure and v a o-finite signed measure on a o-algebra &, then
there exist two signed measures v,, v, such that v = v, + v,, v, is dominated by u
and v, is singular to u. If v is a measure, then v,, v, are also measures. In the present
paper we introduce the notions of dominancy and singularity for signed states on
a logic. The structure of a general logic does not enable us to formulate for signed
states any theorem similar to that on the Lebesgue decomposition. Therefore we deal
with a special logic #(H), which consists of closed subspaces of a complex or real
separable Hilbert space H, dim H = 3. Finite signed states on #(H) are also called
Gleason measures. We prove a theorem which asserts that if w is a nonnegative
finite signed state and m a finite signed state on Sf(H), then m can be written as a sum
of two signed states m,, m,, where m, is dominated by w and m, is singular to .
On the other hand, we show that there is a difference between the classical result
for measures on a o-algebra and that for signed states on Z(H), because there are
nonnegative finite signed states on #(H) whose dominated and singular parts are
not nonnegative.

Let & be a g-lattice with the first and last element 0 and 1, respectively, and an
orthocomplementation L: a > a', a, a* € £, which satisfies

(i) (aY)t = a forall ae 2,

(i) if @ £ b, then b* < at,

(i) a v at =1 forall ae %,

(iv) a £ b implies b = a v (a* A b).



A o-lattice % fulfilling all the above conditions is called a logic. Two elements a, b
of Z are called orthogonal (written a L b) if a < b*. A signed state on a logic &
is a map m from % into R L {0} U {— 0} such that

(i) m@ =0, (i m(Va)— m(a)

where a;, i = 1,2, ..., is any sequence of pairwise orthogonal elements of &.

Definition 1. Let m be a signed state and w a nonnegative signed state on &£.
Then m is said to be dominated by w (written m < o), if w(a) = 0 implies m(a) = 0
foralla € &. m s said to be singular to w (written m J_ ), if there exists an element
ao € & such that a < a, implies w(a) = 0 and b < ag implies m(b) = 0.

The logic ¥(H) is the most important case of logic. A deep theorem due to
Gleason asserts that there is a one-to-one correspondence between nonnegative
finite signed states on .S,P(H) and nonnegative hermitean operators of the trace class
on H. Gleason [4] proved that every finite nonegative signed state m is of the form
m(M) = tr TP, M € £(H), where T is a nonnegative hermitean operator of the
trace class and P is the projector corresponding to M. A hermitean operator T is
of the trace class, if there exists an orthonormal basis {¢;} such that )’ (|T]e;, ¢;) <

i

< o0. Then the sum tr T = Y (To;, ¢;) is called the trace of T and is independent

i
of the basis used [6]. Dvure&enskij [2] generalized that theorem and proved that m
is a finite signed state on #(H) if and only if m is of the form m(M) = tr TP,
where T'is a hermitean operator of the trace class.

Theorem 1. Let m be a finite signed state and w a nonnegative finite signed state
on L(H). Then there exist signed states m; and m, such that m = my + m,,
m; < w, m,Ll o ’

Proof. We shall prove this theorem for the case when H is complex. The proof
in the real case is a little simpler. Let S and T be the operators corresponding to w
and m, respectively. Let {¢;} be the orthonormal system of eigenvectors of S and
{4} the sequence of the (positive) corresponding eigenvalues. Adding a suitable
orthonormal system {y;} to the system {;} one obtains a complete orthonormal
system in H. Since tr TP and tr SP™ are independent of the basis, we shall use the
system {;} U {;}. Hence

w(M) = Z;“i(PM i (Pi) ’
m(M) = Z(TPM@., ;) + Z(TPMnl/j, ¥;), MeZ2(H).
i J
Denote v,(M) = (TPMgp;, ¢;). Let-M,, n=1,2,..., be a sequence of pairwise
orthogonal elements of #(H) and M =V M,. A known proposition from the
, n=1



theory of Hilbert spaces asserts

PMp =% P, ¢eH.

n=1

Using this fact and the continuity of T'and the scalar product one obtains
UI{M) = Z l)i(Mn) .
n=1

Hence v; is a og-additive function, which is generally complex. Denote §,(M) =
= Re v{M). Clearly, #; is also o-additive. Thus it is a finite signed state. Denote
my(M) = 3 5(M), M e Z(H).

Let us assume that the number of ¢; is infinite,
]
i.e. ml = Z 5,' .
i=1
(Of course, the other case is again simpler.) Then

n
my = lims,, where s, =) ;.

n— oo i=1
A finite limit of a convergent sequence of finite signed states is also a signed state.
Different proofs of this generalization of the known Nikodym’s theorem were given
in [1] and [3]. Hence m, is a signed state. Denote m,(M) = ) Re (TPMy;, §;). It

J
may be proved in the same way that m, is also a signed state. Obviously, m,(M) +
+ my(M) = m(M), because m(M) is real for all M e £(H). Let us now prove

<o, my Lo, o) = T4 = 0

implies PM¢; = 0 for all i. Thus v (M) = 0 for all i. Hence m{(M) = 0. m; < w is
proved. Denote by N the closed subspace generated by the system {¢;}. M = N
implies ; is orthogonal to M for all j, hence m,(M) = 0. M = N* implies ¢; is
orthogonal to M for all i, hence w{M) = 0. Thus m, L . Theorem is proved.

Now we give an example of nonnegative finite signed states w and m on ¥(H)
such that m is not decomposable into two nonnegative signed states m,, m,, m; < w,
m, 1 .

Example 1. Let H = R3, ¢ = (1,0,0),¥ = (1, 1, 0), o(M) = (PMp, ), m(M) =
= (PMy, ), M e L(H). Let us assume that m = m; + m,, m; < 0, m; L o,
my; = 0, m, = 0. Then m, is necessarily of the form m,(M) = k o{M), where k is
a positive real constant. Hence m,(M) = (PMy, ¥) — k(PMgp, ¢). Let N be the
onedimensional subspace generated by the vector (1, —1,0). Then m,/N) =
= —k/PNp, ¢) < 0. This is a contradiction with the assumption m, = 0.

The following theorem characterizes the situation when the singular and the
dominated part of a nonnegative Gleason measure are nonnegative.




Theorem 2. Let w, m be nonnegative finite signed states on £(H) and S, T the
operators corresponding to w, m, respectively. Then the following statements are
equivalent:

(i) There exist nonnegative finite signed states my, m, such that m = my + m,,
m; <o, m 1l o

(ii) Tcan be written as a sum of two nonnegative hermitean trace class operators
Ty, T, such that ¥ (Ty)* = N(S) € #(Ty), where N(S), ¥ (Ty), #(Tz) denote
the null-spaces of S, Ty, T,, respectively.

Proof. (i) = (ii) Let Ty, T, be nonnegative operators corresponding to m,, m,,
respectively. The correspondence between the operators and the signed states is
linear, hence T = T, + T;. Let ¢ € #(S). Then ¢ is orthogonal to all eigenvectors
of S. Hence w([¢]) = 0, where [¢] is the onedimensional subspace generated by ¢.
m; < o implies m([¢]) = 0. Hence ¢ is orthogonal to all eigenvectors of Tj.
An immediate consequence is Ty = 0. A(S) = H(Ty) is proved. o L m, implies
that there exists a subspace N such that w{N) = 0 and m,(N*) = 0. This yields
N < #(S) and N* = #(T;). Hence A/ (T,)* = A(S).

(ii) = (i) Let m,, m, be the signed states corresponding to T, T, respectively.
Obviously, m,, m, are nonnegative and m = m,; + m,. Using a similar consideration
as in the proof of the converse proposition we obtain m; <€ w, m, L .
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Sahrn

ON THE LEBESGUE DECOMPOSITION OF GELASON MEASURES

VLADIMIR PALKO

V ¢lanku sa definuje pojem dominovanosti a singularnosti zovSeobecnenych stavov na kvan-
tovej logike. Dokazuje sa veta, ktora hovori, Ze ak w a m si koneéné zovSeobecnené stavy na
logike uzavretych podpriestorov separabilného Hilbertovho priestoru, pri¢om o je neziporny,
potom m je siftom dvoch zov3eobecnenych stavov miy a m, takjych, Ze m; je dominovany ©
a m, je singularny na w. Je dany priklad, Ze na rozdiel od klasického pnpadu mier na o-algebre
nezapornost m eSte nezarucuje nezdpornost m; a mj.
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Pesome

O PA3JIOXKEHUWU JIEBETA MEP T'JIMCOHA

VLADIMIR PALKO

B pa6GoTe onpeneneHO NOHATHE NOMHHHPOBAHOCTH M CHHIYJIAPHOCTH OOOOIIEHHBIX COCTOSHHIL
Ha JIOTMIKE M JI0Ka3aHa Cliefyromas TeopeMa: Eciu @ — KOHEYHOE HEOTpHLATeNnsHoe 0000IIeHHoe
COCTOSIHHE M m — KOHEYHOe OOOOINEHHOE COCTOSHME Ha JIOFMKE 3aMKHYTHIX IOANPOCTPAaHCTB
cenapabenbHOro nNpocTpascTea I'unsbepra, TO m ABIAETCA CyMMOI ABYX OOOOIIEHHBIX COCTOSHUM
my ¥ my, TI€ m; JIOMMHHUPOBAHO ® M M, CUHIYJIAPHO Ha . [ToKa3aHO Takxke, YTO HEOTPHIATENb-
HOCTb m HE FApaHTHPYET HEOTPULATENLHOCTD my U M.
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