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112(1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1,1—-5 

ON THE LEBESGUE DECOMPOSITION OF GLEASON MEASURES 

VLADIMÍR PÁLKO, Bratislava 
(Received August 1, 1983) 

Summary. In the article the notions of dominancy and singularity of signed states on a logic 
are defined. A theorem is proved, which asserts that if co and m are finite signed states on the logic 
of all closed subspaces of a separable Hilbert space, co is nonnegative, then m can be written 
as a sum of two signed states ml9 m2 such that m± is dominated by co and m2 is singular to co. 
An example is given which shows that in distinction to the case of measures on a c-algebra 
in this case the nonnegativity of m does not guarantee the nonnegativity of mt and m2. 

Keywords: Signed states on a logic, dominancy and singularity of signed states on a logic, 
decomposition of signed states on a logic. 

AMS classification: 81 B 

The notions of dominancy and singularity of signed measures are defined for 
example in [5]. The known theorem on the Lebesgue decomposition asserts that 
if ^ is a cr-finite measure and v a cr-finite signed measure on a cr-algebra Sf, then 
there exist two signed measures v l s v2 such that v = vx + v2, vx is dominated by \i 
and v2 is singular to \i. If v is a measure, then vl9 v2 are also measures. In the present 
paper we introduce the notions of dominancy and singularity for signed states on 
a logic. The structure of a general logic does not enable us to formulate for signed 
states any theorem similar to that on the Lebesgue decomposition. Therefore we deal 
with a special logic J?(H), which consists of closed subspaces of a complex or real 
separable Hilbert space H, dim H = 3. Finite signed states on SB(H) are also called 
Gleason measures. We prove a theorem which asserts that if co is a nonnegative 
finite signed state and m a finite signed state on S£(H), then m can be written as a sum 
of two signed states m l s m2, where mx is dominated by co and m2 is singular to co. 
On the other hand, we show that there is a difference between the classical result 
for measures on a cr-algebra and that for signed states on S£(H), because there are 
nonnegative finite signed states on SB(H) whose dominated and singular parts are 
not nonnegative. 

Let SB be a cr-lattice with the first and last element 0 and 1, respectively, and an 
orthocomplementation 1: a \-> a1, a, a1 e SB, which satisfies 

(i) (a 1 ) 1 = a for all as SB, 

(ii) if a = b, then b1 < a\ 
(iii) a v a1 = 1 for all at SB, 
(iv) a = b implies b = a v (a 1 A b). 



A cMattice S£ fulfilling all the above conditions is called a logic. Two elements a, b 
of S£ are called orthogonal (written a ± b) if a = b1. A signed state on a logic S£ 
is a map m from S£ into R u {00} u { — 00} such that 

(i) m(0) = 0 , (ii) m(Vai) = tm(ai), 
i = i i = i 

where ai9 i = 1, 2 , . . . , is any sequence of pairwise orthogonal elements of St?. 

Definition 1. Let m be a signed state and co a nonnegative signed state on S£. 
Then m is said to be dominated by co (written m <| co), if co(a) = 0 implies m(a) = 0 
for all a e S£. m is said to be singular to co (written m J_ co), if there exists an element 
a0e S£ such that a ^ a0 implies co(a) = 0 and b ^ a0 implies m(b) = 0. 

The logic Sf(H) is the most important case of logic. A deep theorem due to 
Gleason asserts that there is a one-to-one correspondence between nonnegative 
finite signed states on S£(H) and nonnegative hermitean operators of the trace class 
on H. Gleason [4] proved that every finite nonegative signed state m is of the form 
m(M) = tr TPM, M e S£(H), where T is a nonnegative hermitean operator of the 
trace class and PM is the projector corresponding to M. A hermitean operator T is 
of the trace class, if there exists an orthonormal basis {cpt} such that ]T (|-T|<p/, <pf) < 

i 

< 00. Then the sum tr T = YiTWi* P«) *s called the trace of Tand is independent 
i 

of the basis used [6]. Dvurecenskij [2] generalized that theorem and proved that m 
is a finite signed state on S£(H) if and only if m is of the form m(M) = tr TPM, 
where Tis a hermitean operator of the trace class. 

Theorem 1. Let m be a finite signed state and co a nonnegative finite signed state 
on J5f(H). Then there exist signed states mt and m2 such that m = m1 + m2, 
mx <̂  co, m2 i . co. 

Proof. We shall prove this theorem for the case when H is complex. The proof 
in the real case is a little simpler. Let S and T be the operators corresponding to co 
and m, respectively. Let {cpt} be the orthonormal system of eigenvectors of S and 
{^i} the sequence of the (positive) corresponding eigenvalues. Adding a suitable 
orthonormal system {xj/j} to the system {cpt} one obtains a complete orthonormal 
system in H. Since tr TPM and tr SPM are independent of the basis, we shall use the 
system {<pj u {i/zj}. Hence 

co(M)=^i(P
M<Pi,cpl), 

i 

m(M) = ^(TPu<Pi, <P,) + YiTPM^j, *j), M e S£(H) . 
i J 

Denote vt(M) = (TPM<pi9<pl). Let M„, n = 1, 2 , . . . , be a sequence of pairwise 
00 

orthogonal elements of Sf(H) and M = V M„. A known proposition from the 
n = l 



theory of Hilbert spaces asserts 
00 

pMcp = £ PM"(p , cpsH . 
n = l 

Using this fact and the continuity of T and the scalar product one obtains 

vt{M) = t <M„) . 
n = l 

Hence vt is a c-additive function, which is generally complex. Denote vt(M) = 
= Re vt(M). Clearly, v{ is also cr-additive. Thus it is a finite signed state. Denote 
mx(M) = £ vt(M), M e $e(H). 

i 

Let us assume that the number of <p( is infinite, 
00 

i.e. mx = £ »i • 
i = l 

(Of course, the other case is again simpler.) Then 
n 

mx = lim sn, where sn = £ vt. 
n-->oo i = 1 

A finite limit of a convergent sequence of finite signed states is also a signed state. 
Different proofs of this generalization of the known Nikodym's theorem were given 
in [1] and [3], Hence mx is a signed state. Denote m2(M) = £ Re(TPM\l/j, ij/j). It 

j 

may be proved in the same way that m2 is also a signed state. Obviously, mt(M) + 
+ m2(M) = m(M), because m(M) is real for all M e <£(H). Let us now prove 

mx < co , m2 1 co . co{M) = p i | | p ^ « | | 2 = ° 
i 

implies PM<p{ = 0 for all i. Thus i\(M) = 0 for all i. Hence m^(M) = 0. mt <̂  co is 
proved. Denote by N the closed subspace generated by the system {cpt}. M a N 
implies \j/j is orthogonal to M for all j , hence m2(M) = 0. M c: N1 implies C9; is 
orthogonal to M for all i, hence co{M) = 0. Thus m2 J_ co. Theorem is proved. 

Now we give an example of nonnegative finite signed states co and m on Jf(H) 
such that m is not decomposable into two nonnegative signed states mi,m2,mi<£co, 
m2 -L co. 

Example 1. Let H = R3,cp = (1, 0, 0), xfr = (1, 1, 0), co(M) = (PMcp, cp), m(M) = 
= (PMiJ/, \j/), M G <£(H). Let us assume that m = mt + m2, mj <̂  co, m2 J_ co, 
mx _ 0, m2 = 0. Then m2 is necessarily of the form mt(M) = k co(M), where fc is 
a positive real constant. Hence m2(M) = (PMi{/, i/>) — k(PMcp, <p). Let N be the 
onedimensional subspace generated by the vector ( 1 , - 1 , 0 ) . Then m2N) = 
= — k[PNcp, cp) < 0. This is a contradiction with the assumption m2 = 0. 

The following theorem characterizes the situation when the singular and the 
dominated part of a nonnegative Gleason measure are nonnegative. 



Theorem 2. Let co, m be nonnegative finite signed states on &(H) and S, T the 
operators corresponding to co9 m, respectively. Then the following statements are 
equivalent: 

(i) There exist nonnegative finite signed states m l 5 m 2 such that m = m1 + m 2 , 
mx <̂  co, m2 1 co. 

(ii) Tcan be written as a sum of two nonnegative hermitean trace class operators 
Tl9 T2 such that JT(T2)

L c JT(S) c JT(T^, where JT(S), Jr(T^, JT(T2) denote 
the null-spaces of S, Tl9 T2, respectively. 

Proof, (i) =>(ii) Let Tl9 T2 be nonnegative operators corresponding to ml9 m2, 
respectively. The correspondence between the operators and the signed states is 
linear, hence T = Tt + T2. Let <p e Jr(S). Then <p is orthogonal to all eigenvectors 
of S. Hence co([<p]) = 0, where [<p] is the onedimensional subspace generated by <p. 
mx <^ co implies Wi([<p]) = 0. Hence <p is orthogonal to all eigenvectors of T±. 
An immediate consequence is Txcp = 0. Jr(S) c Jr(T1) is proved, co Lm2 implies 
that there exists a subspace N such that co{N) = 0 and m 2 (N 1 ) = 0. This yields 
N c JT(S) and N1 c JT(T2). Hence JV(T2)

L c JT(S). 
(ii) => (i) Let ml9m2 be the signed states corresponding to Tl9 T2, respectively. 

Obviously, ml9m2 are nonnegative and m = mx + m 2 . Using a similar consideration 
as in the proof of the converse proposition we obtain m1 <̂  co, m2 J_ co. 
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Súhrn 

ON THE LEBESGUE DECOMPOSITION OF GELASON MEASURES 

VLADIMÍR PÁLKO 

V článku sa definuje pojem dominovanosti a singulárnosti zovšeobecněných stavov na kvan-
tovej logike. Dokazuje sa veta, ktorá hovoří, že ak co a m sú konečné zovšeobecnené stavy na 
logike uzavretých podpriestorov separabilného Hilbertovho priestoru, pričom co je nezáporný, 
potom m je súčtom dvoch zovšeobecnených stavov m1 a m2 takých, že m1 je dominovaný co 
a m2 je singulárny na co. Je daný příklad, že na rozdiel od klasického případu mier nac-algebre 
nezápornosť m ešte nezaručuje nezápornosť m1 a m2. 



Peзюмe 

O PAЗЛOЖEHИИ ЛEБEГA MEP ГЛИCOHA 

VLADШÍR PALKO 

B paбoтe oпpeдeлeнo пoнятиe дoминиpoвaнocти и cингyляpнocти oбoбщeнныx cocтoяний 
нa лoгикe и дoкaзaнa cлeдyющaя тeopeмa: Ecли co — кoнeчнoe нeoтpицaтeльнoe oбoбщeннoe 
cocтoяниe и m — кoнeчнoe oбoбщeннoe cocтoяниe нa лoгикe зaмкнyтыx пoдпpocтpaнcтв 
ceпapaбeльнoгo пpocтpaнcтвa Гильбepтa, тo m являeтcя cyммoй двyx oбoбщeнныx cocтoяний 
m! и m2, гдe m! дoминиpoвaнo й и r n 2 cингyляpнo нa co. Пoкaзaнo тaкжe, чтo нeoтpицaтeль-
нocть m нe гapaнтиpyeт нeoтpицaтeльнocть mj и m2. 
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