Casopis pro péstovani matematiky

Bohdan Maslowski
On some stability properties of stochastic differential equations of It0's type

Casopis pro péstovdni matematiky, Vol. 111 (1986), No. 4, 404--423

Persistent URL: http://dml.cz/dmlcz/118288

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/118288
http://project.dml.cz

Casopis pro p&stovani matematiky, ro. 111 (1986), Praha

ON SOME STABILITY PROPERTIES OF STOCHASTIC DIFFERENTIAL
EQUATIONS OF ITO’S TYPE

BoHDAN MAsLOwSKI, Praha

In the present paper we deal with Liapunov criteria for some stability properties
of solutions of the n-dimensional stochastic differential equation
(E) df, = b(t, {r) dt + O'(t, Ct) dw,,
where w, is an I-dimensional Wiener process, w, = 0.

The fundamental results in the stability theory of the equation (E) belong to
R. Z. Khasminskii (cf. [2], [3]). In the monograph [3] (English translation, [4])
the basic statements on the stability of the trivial stationary solution of (E) can be
found (cf. also [7]). Later the theory was developed in numerous works, for instance,
the stability of general (compact) sets was treated in works of A. Friedman and M.
A. Pinsky (see e.g. [5]). These results can be found in a self-contained form in
Friedman’s monograph [6], where also some applications in the theory of partial
differential equations are given.

In the present paper we shall investigate a “‘pathwise stability” of general solutions
of the equation (E). We say that the equation (E) is stable (in a certain sense), if —
roughly speaking — all its solutions are Liapunov-like stable in the same sense (cf.
Definitions 2.1 and 5.1). The method used here is the classical stochastic version
of the first Liapunov method as used, e.g., in [3] or [6]. Most of the results are
formulated in terms of the operator L(cf. (1.1)).

The paper is divided into five sections. In Section 1 we give preliminaries and some
notations. In Section 2 theorems on various types of stability in probability are
stated. Some examples are given in Section 3. Section 4 contains an instability theorem
with some examples. It is shown that in the one-dimensional case an ordinary differen-
tial equation can always be stabilized (Example 3.2) and for n > 3 destabilized (Exam-
ple 4.2) by adding an appropriate noise. Stability in the mean is treated in Section 5,

The author is grateful to I. Vrko¢ for instructive conversations on the subject
and for his helpful suggestions and remarks.

1. PRELIMINARIES AND NOTATIONS

We consider the equation (E), where b = (b;) is an n-dimensional vector, ¢ =
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= (0;;)is a matrix n x 1, b and o are defined on {0, ©) x R,; w, is an I-dimensional
Wiener process. The solutions of (E) are considered in the strong sense. Throughout
the paper it is supposed that the coefficients b and o fulfil the assumptions of the
following Theorem 1.1 and thus, existence and uniqueness of solutions of (E) (in the
usual sense) are guaranteed. For the proof of Theorem 1.1 see e.g. [1] or [6], where
also other fundamental statements from the theory of stochastic differential equations
used in this paper can be found.

Theorem 1.1. Let b, 6 be measurable functions and assume that for all N > 0,
te{0,N), x,y,z€R,, |x| £ N, |y]| £ N we have

[b(t, 2)| + [o(t, 2)]| < KnL + [2]),
[b(t, x) = b8, y)| + Jlo(t, x) = o(t, Y)]| = Knlx = 5],

where KN are positive constants, ] ] stands for the n-dimensional Euclidean norm
matrix norm. If X is an n-dimensional random variable
stochasttcally independent of w, and satisfying E,XI2 < o0, and s = 0, then there
exists a solution &, of the equation (E) defined on (s, ) such that & = X. If n, is
another solution with these properties, then

P[ sup If,—n,l >0]=0

tes,0)

holds.

We shall denote by &¥ (or &) the solution of (E) defined on (s, o) such that
EX = X; ¥ =¢%* Fors 20, X = (x,y) e R, x R, we denote by & the couple
(&, &). The sign — stands for the weak convergence of measures. R, stands for
<0, o0) and Cy,,(M) (where M = R, x R, is open) for the set of functions defined
on M whose first time-derivatives as well as’ the first and second space-derivatives
exist and are continuous. We recall that if X, is a continuous k-dimensional random
process, G = R, is open and F <« R, is a closed set, se R,, then the random
variable

t=inf{t = s; X, ¢ G}
is called the exit time (after s) from G. The random variable
=inf{t 2 s; X, e F}

is called the first hitting time (after s) of F. For (t,x,y)e R, x R, x R, we denote
by A(t, x, y) = (4;;) the 2n x 2n matrix
s = (e oenale)
olt,y)a'(t,x) o(t, y)a'(t, ) . _
(where o7 is the transposed matrix to o). We shall introduce the operator L. If
Gc R, x R, x R, is open, V = C, 5(G), set ‘
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(the derivatives of ¥ and the elements of 4 taken at the point (t, X, ¥)). To simplify
the references, we conclude this section by the following theorem:

Theorem 1.2. Let b, ¢ satisfy the assumptions of Theorem 1.1 and assume that

there exists a funcion Ve Cy ,(R, x (G\F)) for some F = G < R;,(G open and F
closed) such that

Lv(t,x,y) <0 for (t,x,y)eR, x (G\F).
Furthermore, assume that for all s 2 0, X € G\ F we have
PL&* e F for some t>s]=0.
Consider the process E"i and denote by 1 the exit time from G. Then
EV(r A t, &%) S V(s %)

forall t = s.
The proof can be easily obtained by It&’s formula (cf. [1], [6]).

2. STABILITY IN PROBABILITY

We consider the equation
(B) dé, = b(t, &) dt + o{t, &) dw,,

where b and o satisfy the same conditions as in Theorem 1.1, w, is an I-dimensional
Wiener process defined on a certain probability space (Q, &, P), w, = 0. We denote
by S the set of all random variables X defined on (Q, &, P), satisfying E|X|* < o
and stochastically independent of w,. Let ¢: <0, ) x R, X R, = 0, o) be a Borel
measurable function such that

ox,y) < ot,x,y) £ &(x,y) forall (t,x,y)eR+ xR, x R,,

where 9, § are continuous functions and §(x,x) = 0, &, y) > 0 holds for all
x,yeR, x* y.

Definition 2.1. We say that the equation (E) is:
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— Stable in probability, if for every s 20, ¢ >0 and X € S there exists é =
= d(s, & X) > 0 such that for all Ye S,

Plo(s, X, Y) > 6] < & implies
P[supo(t, &%, &) > e) > e.

t=s

If 6 = &(s. &) can be found independent of X € S, then the equation (E) is said
to be uniformly stable in probability.

— Asymptotically stable in probability, if it is stable in probability and for every
s=0,&> 0and X € S there exists 6 = 5(s, g, X) such that for all Ye S,

Plo(s, X, Y) > 6] < & implies
Plo(t, &%, &%) > 0 for t > 0] 2 1 —&.

If & = &(s, &) can be found independent of X e S and the equation (E) is uniformly
stable in probability, then it is said to be uniformly asymptotically stable in
probability.

— Globally (uniformly) asymptotically stable in probability, if it is (uniformly)
stable in probability and for every s = 0, X e S, Ye S

Plo(t, &%, &'Y) = 0 for t —> 0] = 1

holds.
In this section we shall prove some theorems dealing with sufficient conditions for
the types of stability of the equation (E) defined above. Before formulating the
theorems let us introduce the following notations:

D ={(x,y)eR, x R, |x =y},

W, = {z€R,,|d(z, D) < r} (d — Euclidean metric),
U, ={zeR,,|d(z)<r}, U, ={zeRy|b(z)<r},
0, =R, x(0,\D), 0,=R, x (0,\D),

B, = {zeR,,||z| < r}.

Lemma 2.2. Let s 2 0, x,ye R,, x + y. Then
t=inf{t=s; & =&} =
holds almost surely.

Proof. Suppose first that the coefficients b, ¢ are globally Lipschitzian in x.
Setting V(x, y) = |x — y|’ for pe R, x, ye R,, x * y it is easy to verify that

(2.) Lv(t, x,y) < K, 1|x — y|?
holds for some K, > 0 and all (t,x,y)e<{s, T> x R, x R,, x + y. Let § > 0,
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|x — y| > 6 and consider the process €%, where X = (x, y). Denote by 1,1,
the first hitting time (after s) of

Wy U Ry, \ B, W;,

respectively. Using (2.1) we get by Itd’s formula for ¢ > s:

. 3
Eléi::,u\t - g:::,,,;u" - Ix - ylp -S- Ks,!J‘Eléi,’:_.;Au - éij.aAulp du.

s

Hence, noting that 7, 5 A t > t; A t holds almost surely for m —» oo, we get by
Gronwall’s and Fatou’s lemmas

El S,X  __ ES,Y lp < lx — ylp eKae(t=s)

TsAlL TsAl

Taking p = —1 and using Chebyshev’s inequality we get

Pty < 1] S —2— Kot
x -yl
It follows that P[t; < t] — 0 for 6 — 0+, which implies the assertion of the lemma.
For general coefficients b, o we proceed analogously, approximating b, ¢ by ap-
propriate sequences of globally Lipschitzian coefficients b,, o, respectively.

Theorem 2.3. A. Assume that there exists a function Ve C, ,(0,) for some n > 0
satisfying
(i) ¥(t,%) > 0 for'X — D (for all t > 0),

(i) ¥, =inf ¥(t,%) > O forall 0 < r < 1,

n\Qr

(iii) I:V(f, 5 <0 forall (t,X)e Q,;
then (E) is stable in probability.
B. If, moreover, § = K¢ for some K > 0 and

(iv) lim sup V(2,X) = O for all t > O holds,

=0+ 0O,

then (E) is uniformly stable in probability.

Proof. Let 0 < e <1n, s 2 0, X = (x, y) € U,\ D. Consider the process &% and
denote by t,, T" the exit time (after s) from U,, B,, respectively, and 7,(t) = 1, A ¢,
Tem(f) = T, A 7" A t. Using Theorem 1.2 and Lemma 2.2 we get

EV(ra{1), £ ) S V(s %)
and hence, taking m — oo we get by Fatou’s lemma

3 EV(ai) &5)) < V(s 9).
It follows that N

S .t S,y . V(S, i)
. P[ sup Q(A, él' ’ éi ) > 8] § _
: 'g),g,‘ . . . - Vc
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and taking t - oo we conclude

V(s, X
(2.2) P[sup o{t, &, &) > €] < (‘:/ %) .
tZs e

To prove part A we consider a sequence X,,€ S and a random variable X € S
satisfying

(2:3) Plels, X, X) 2 1/m] < 1/m.
From (2.3) we obtain (X,, X) — (X, X) in probability and hence, denoting by
Hms 1 the joint distribution of (X, X), (X, X), respectively, we have u,, — u. Now

taking A > 0 arbitrarily we find a compact set K < R, such that u,(R,\K) x R,) <
< Afor all m, and a § > 0 such that

W;n(K x R,) = U,

and V(s,x) < A for all Xe W,,h(K x R,). Furthermore, we find m, such that
Hn Ry N\ W;) < A for m = my. Then, for m = mq, we get by (2.2):

P[ sup o(t, &%, &%) > €] = J. P[ sup ot &, &) > €] ua(dx, dy) <
t=s t2s

IIA

t=s

j P[ sup lt, & &%) > &] kuldx, dy) + 24 =
Wsn(KxR,)

__<_J‘ ' KSs-’x’—y)p,,,(dx,dy)+2,l‘§,l(i+2>.
Wsn(KxR,) V

& &

Hence,
P[ sup o(t, &, &%) > €] >0 for m— o,

tZs

which completes the proof of the assertion A.
To prove part B we consider the sequences X,, € S, Y,, € S such that -

Ple(s, X, Y) = 1/m] < 1m.
Denoting by v, the joint distribution of (X,,, Y,), we have v,(R,,\0,,,) < 1/m and
so for m sufficiently large (to fulfil 0,,,, = U,) we get
P sup o{t, &™™, &™) > €] =j P[ sup o{t, &, &) > €] v,(dx, dy) <
2s ’ B 125

é- .l + sup M .
m x€01/m n
Hence

. P[supo(t, &*m, &) > e] >0 for m — o
. t2s

holds which comﬂetés the proof of part B.




Theorem 2.4. Assume that the assumptions of Theorem 2.3. A are fulfilled and,

moreover, lim sup V(t, x) = 0 and the following condition (P) holds:
e=0+ O
(P) For every0 <6 <1< r],er,'\U‘,,s =0

P[&*¢ U,\U, for some t >s] =1 holds.

Then the equation (E) is asymptotically stable in probability. Furthermore, if
¢ = K¢ for some K > 0, then (E) is uniformly asymptotically stable in probability.

Proof. Employing the same notation as in the previous proof, we need to prove
that

(24) - Ple(t, &*m, &%) >0 for t—> o] —>1 for m— .
For simplicity we can suppose that (X, X) € U, and that V is bounded on §,. Then,

using the assumption (iii) of Theorem 2.3, we can easily prove that
() = V(@1): &5 Eiln) » 12 s

are (nonnegative) supermartingales. Thus, there exist

(2:5) &, = limn,(t) almost surely.

t— o0
In the same way as in the proof of Theorem 2.3 we get

EV(s, X X)

P[P e 80,] < -0 for m—- o

and so, denoting by Q,, the set of trajectories of the process E**X) never leaving
U,, we obtain P(Q,) - 1 for m - co.

Now it suffices to show that
o(t, & (), X @) >0 for t— o0, for weQ,.
The assumption (P) yields
(2.6) lim inf V(t, &%, &%)y, = 0.

t— o

By (2.5) and (2.6) it follows that

Enla,, = 0= llm Vi, &%, 6o = 0= o(t, &, &7 )|a,, 4225 0.

Thus, (2.4) holds, which completes the proof. The case of uniform stability can be
treated similarly.

Theorem 2.5. Assume that the assumptions of Theorem 2.3.A are fulfilled,

moreover, lim sup V(t, x) = 0.and the following condition (G) holds:
e=+0+3,
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(G) For every s 20,7 >0, xe R,,\U,
P[&*eU, for some t >s] =1 holds.
Then the equation (E) is globally asymptotically stable in probability. Further-

more, if § = K@ holds for some K > 0, then it is globally uniformly asymptotically
stable in probability.

Proof. We employ the relation (2.2) to find a § > 0 such that
sup sup P[supo(t, &, &%) > e] < A

520 (x,)els 125

holds for a given 4 > 0.

Now, taking s = 0; X = (x, y) € Ry, \ U,, we consider the process &*. If 7 is the
first hitting time (after s) of the set C1 U, (the assumption (G) guarantees that T < oo
a.s.), then by the strong Markov property we obtain

P[lim sup o1, &, &) > €] =

t— o

) I f P[lim sup o(t, &+, &) > ¢] P[re du, & e d[z,7]] <
u=sdJ (z,r)edls - ]

)
< r f P[sup oft, &%, &%) > €] P[c e du, &% e d[z, r]] < 4.
u=sJ (z,ne0ls *'25
Since 4 > 0 was chosen arbitrary, we obtain
Plo(t, &, &) — 0 for t » 0] = 1.
Thus, if X € S, Ye S, we get
Plo(t, &%, &) > 0 for t > 0] = 1.

In the following theorem we give a sufficient condition for the assumption (G) to be
fulfilled. The Liapunov function H occuring there is analogous to the so called G-
function (cf. Friedman [6]).

Theorem 2.6. Assume that there exist a non-decreasing sequence G, of open
sets, UG,, = R,,, and a function H € Cy,5(Rz,~\ D), H 2 0 such that

() H, = inf  H(t,x,y) > o for m - oo,
R4+ X (R2n\Gm)
(ii) for every m, 6 > O the inequality
LH(t,x,y) S -5, <0
holds for all (t, %, y) € R, % (G, U,). Then (G) holds.
Proof. Taken > 0, (s, x, y) € R, x Rz,\ C1U, and m, such that X = (x, y) € G,
for m = m,. Consider the process €* and let 1, 7,, be the exit times (after s) from
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the sets R,,\ C1U0,, G, \ C1U,, respectively. The condition (ii) implies that
Pltm < 0] =1 _

(see e.g. [3], Theorem 3.7.1). Then, by It&’s formula and Fatou’s lemma we obtaih
similarly as in the previous proofs i
EH(t,, &) < H(s, %) .

It follows that

H(s, X)

Pltn < 7] £ -0 for m— .

Thus, we have
Plt<w]2Pt=s1,]>1 for m- o,

i.e., (G) holds.
For the sake of clarity we summarize the results of Theorems 2.5 and 2.6:

Corollary 2.7. Let there exist a non-decredsing sequence G,, of open sets, JG,, =
= R, and a function Ve Cy 5(R,,\ D) satisfying:

(i) inf V- oo for m— oo,
R+ X (R2,\Gm)

(i) inf V>0 forall r > 0 sufficiently small,

(R+ X Ryy\Or

(i) lim sup V=0,

=0+ @,
(iv) LV(t,x, y) £ —a5,, < O for all m,5 > 0 and (t,x, y) € G,\U,.
Then the equation (E) is globally asymptotically stable in probability. If, moreover,

& = Kp holds for some K > 0, then (E) is globally uniformly asymptoncally stable
in probability.

Remark 2.8. The assumption ¢ = K can be weakened in all theorems in the present
section (e.g., we can assume that for every & > 0 such 6 > 0 can be found that
0, = U, holds). Nevertheless, it cannot be omitted.

3. EXAMPLES

Example 3.1. Set o(t, x, y) (= é(x, ) = &(x, y)) = |x — y| and, for p >0, set
Fy(t,x,y) = p|x — y]P~2 (b(t, x) = b(t, y), x = y) + o
+3Y Ayt x, y) [px — ylP72 65 +
v R

+p(p - 2) i = ) (x5 = yp) | - ¥4, Tl
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where 4 = (4,(t, x, y)) = (o(t, x) — o(t, ¥)) (o(t, x) — o(t, y))T, 8;; — Kronecker’s
delta. Using the function V(x, y) = |x — y|” we see that

I;,V(t, x,¥) = F,(t,x,y)

for all (¢, x, y), x & y. Thus, as a result of the previous section, the following
assertions are obtained:

If there is 6 > 0 and p > O such that
(3.1) F(t,x,y)£0

for all (t, x, y) € R, x (W;\ D), then the equation (E) is uniformly stable in proba-
bility (cf. Theorem 2.3). If

(312) . . ) Fp(t’ X, Y) = —Us,m <0

for all (¢, x,y)eR; x (Wy\W,;), m >0, § >0, then (E) is globally uniformly
asymptotically stable in probability. In particular, if ¢ is Lipschitz continuous in x
with a constant K > 0 and

(b(t, x) = b(t, ), x = y) £ —Llx — y[?
holds for some L > nK?/2 — M, where M 2 0 is such that
Z.“flj(t’ X, .V) (xi - .Vi) (xj - yj) 2 Mlx - ,V|4
i,j .

holds for all (¢, x, y) (n is the dimension), then (3.2) is valid. To prove the last
assertion it suffices to note that we have '

K2 » 2 2K2
Fy(t,x,y) £ —pL|x — y|* + % |x = y|P + p_r;__ |x = y]? = pM|x — yJ7,

so choosing p > 0 sufficiently small we obtain
Fy{t%,3) S —ofx = o
for some a > 0 and all (¢, x, y) and thus, (3.2) holds. Furthermore, if the dimension
n=1and p = 1, we have
' Fy(t,x,y) = (b(t, x) — b(t, y)) sign (x — y).

Hence, if the function b(t, ) is non-increasing for all ¢ > 0, then (E) is stable in
probability (for all o). :

Example 3.2. Set o(t,x,y) = |x — y|. If o(t, *) € C,, b(t,*)eC, for all t 20
and the corresponding first and second derivatives are bounded uniformly with
respect to t, and if for some a > 0 and all vectors v = (vy, ..., v,) € R,, |v| = 1 and
(t, x) e R, x R, the inequality : «
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(3.3) Zgﬂi(t, x)vv; +

i,j x"

+ 1 oo, (t, x) _(?ZJ',' (A x) (v,v,‘a,.j - 2V‘Vkvivj) S —a
2 i, k,r,1 0% 0x,

holds, then the equation (E) is uniformly asymptotically stable in probability. De-
noting by B the matrix (db,/0x; (1, x)) and by A4,, r =1,2,...,1, the matrices
(0a,/0x (1, x)) we can express the condition (3.3) in the form

1 1
(Bv,v) + 1) |A,v|2 =Y (4w, v)?* £ —a.
r=1 r=1

The proof of the assertion can be obtained by applying the Liapunov function
V(x,y) = |x — y|’, 0 < p < 1. From (3.3) we obtain for some R, >0, R, > 0
(independent of p) and all (t, x, y) e R, x (R,,\ D):

—2 b,
Lv(t,x,y) < plx — yP~? L= ») (x5 = yi)(xi = yi) +
i.j j
1 00 ;

0 ir r -
+-p Y o (ty) =Lt ¥) (xx = y) (xs = »)) [5ij|x -y +
2 i,jikr,1 0X; 0x,

(P =2 (xi—y)(x; = y) [ —y*T +
+ Rylx — y]P*t + Ry|x — yP*2 <

oo;, do;,
<ple—yP(—a+2 ¥ () T (ty) (5 = 9) (xi - )
2 i,k 10%, 0x,

A= y) (= y) |x - y|_4> + Ryfx = y|P* 4 Ryfx — yfP*2.

Now, choosing p sufficiently small we have
(34) Lv(t,x,y) £ —L|x — y|f

for some L> 0, A > 0 and all (¢, x, y) € R, x (W, \ D). Now, by Theorem 2.4 we
conclude that the equation (E) is uniformly asymptotically stable in probability.
(Indeed, (3.4) guarantees that the condition (P) is fulfilled — see e.g. [3], Theorem
3.7.1). ‘

In the one-dimensional case for | = 1 the condition (3.3) has the form

0 0 2

—b(t,x) —i(—o(t,x)) £ —a.

ox Ox
In particular, we have obtained that every one-dimensional ordinary differential
equation (with a sufficiently smooth right-hand side) can be “‘stabilized” by adding

an appropriate diffusion coefficient — compare with Example 4.1 below.
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Example 3.3. The notions of the global asymptotical stability and the asymptotical
stability of the equation (E) introduced in Definition 2.1 above coincide in the de-
terministic case (i.e. for o = 0). This is not the case in general, as the following
example shows: Set ¢{x, y) = Ix - y|, dimension n = 1 and consider the equation

(3.5) dé, = ||&] - 1] dw,.

The equation (3.5) is uniformly asymptotically stable in probability (we can obtain
this result from Theorem 2.4 by using the function V(x, y) = |x - y| and noting
that the condition (P) is fulfilled, because the set M = {—1, 1} is globally asympto-
tically stable in the sense defined in [6]). However, (3.5) is not globally asymptotically
stable in probability as it has two distinct stationary points.

In the rest of this section we deal with the one-dimensional autonomous case, i.e.,
we consider the equation

(3.6) dé, = b(&) dt + o(£,) dw,,

where b and o are Lipschitz continuous scalar functions.

Example 3.4. Assume that ¢ > 0 and set-

y z
J. exp[—2f %] dz
x 00

Then the equation (3.6) is uniformly stable in probability.

Q(x’ y) =

Proof. Setting V(x, y) = ¢(x, y) = (= é(x, y) = &(x, y)) we use Theorem 2.3
(noting that LV = 0). .

As a consequence we get the following result, which concerns a certain “relative
stability” with respect to compact sets:

Example 3.5. Assume that ¢ > 0 and X € S, K = R are arbitrary, K is compact.
Then for every ¢ > 0 such a § > 0 can be found that for every Ye S

P[|X — Y| > 6] <6 implies
Plsup |&- — &f| > €] <&, where 0= {t20, £ eK}.
[}

y z
f expl:—ZJ %] dz
x 00
Taking ¢ > 0 we find 6 > 0 such that

(3.7) (RxK)nU,= (R x K)n W,

Proof. Set
o(x, y) (= é(x, ) =

holds. Now, consider a sequence X,, € S such that

P[|Xn — X| 2 1/m] < 1/m.
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It follows that for every A > 0,

Plo(Xm X) 2 A] >0 for m— 0.
Thus, by the previous example, we have

P[sup o{¢f", &) = 6] >0 for m— .

120

which, together with (3.7), concludes the proof.
Let us recall that if an equation admits a solution which is a stationary Markov

process, then we say that the weak stochastic stability occurs.

We conclude this section by establishing the connection between the weak stochastic
stability and the stability defined above in the one-dimensional case:

Theorem 3.6. Let o(x, y) = |x — y| and assume that for some K > O the inequality
|b(x) = b(y)| = K|x - y]

holds for all x,yeR. Let Ay >0, A, > 0 and Xy < 0\x) < A, for x € R. Then, if
the equation (3.6) admits a stationary solution, it is stable in probability.

y z
J exp[—ZJ‘ %:I dz
x 00

V(x,y)—> 0 for (x,y)- D,
LV=0 ontheset R,\D.

Proof. Setting

V(x,y) =

we see that

To fulfil the assumptions of Theorem 2.3 it remains to prove that

inf V(x,y)>0
Ix=y|2é

holds for all (sufficiently small) 6 > 0. We have
inf V(x,y) 26 infexp[-—z-[ _”i]
|x~yl2é z 00

hence to conclude the proof it suffices to prove the following lemma:

Lemma 3.7. Under the conditions of Theorem 3.6 the function
*2b
CHE

00

is bounded from above.
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Proof. Assuming that the above assertion is false, we find a sequence x,, € R
such that y(x,) = m. Let

0=——— and

7 (Xms X + 8) if Y(x,) 20

Un = N (xm — 6, x,) if Y(x,) <O.

By the mean value theorem we get for x e U,,
2
W) 2 ) = e = 2 = 2 1
. 1

1

From (U,,) we choose an infinite subsequence U,, containing only disjoint intervals.
Then

_[ em[{[ -%]dxgz e®dx26Y e =0,

0O k=1 ) U, k=1

Thus, we have ]
[ a0
f o~ 3(x) '™ dx 2 ,12'2-[ & =00,
- 0 -0

which cannot hold in view of the existence of a stationary solution of the equation
(3.6) (the function ¢~ 2e is the density of the stationary distribution).

4. INSTABILITY

In this section we keep the notation and the assumptions made at the beginning
of Section 2. First we formulate the following theorem on instability:

Theorem 4.1. Assume that for some n > 0 there exists a nonnegative function
Ve Cy 5(0,) such that

(i) liminf V(t, X) = oo,

e=0+0,
(i) LV(t, x, y) £ 0 for (t, x, y) € O,
Furthermore, let the following condition (P') be fulfilled:
(P’) There exist 6o > 0, Ay > J, such that for alln > A > 25,0 <6 < 8y, s 20,
xe0,\0,
P[&* ¢ U,\U, for some t >s] =1 holds.

Then, for all Ay < A < n,X €S, Ye S such that P[X = Y] = 0 we have
Plsupe(t, &5, &) > 4] =1.
t20
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Remark. In particular, the assertion implies that the equation (E) is not stable in
probability. However, the assertion is stronger; it is a kind of ‘“strong instability”.

Proof of Theorem 4.1. Let ¢, 4 be such that 0 <e <y <o <A <n, let
% = (x, y) e U;\U, and consider the process &*. Let t,, 7, ,, be the exit times from
0,70, (0,\0,) n B,, respectively, and let t° be the first hitting time of Cl 0,. Using
1t6’s formula we get

EV(Tem A 1, & A0) S V(0,X).
Taking m — oo we obtain by Fatou’s lemma
EV(t. A t, &) = V(0,X).
By the assumption (P’) We have 7, A t — 7, almost surely for t — oo, Thus, we get
EV(z., &) £ V{0, %).
It follows that

EX € . V(O’ )_C)
(4.1) P[& ¢ 0U, for te0,1%)] £ V)
Ql

For ¢ - 0+ the right hand side of (4.1) tends to zero. Furthermore, t* — co for
¢ - 0+4,since () 0, = D and D is nonattainable (cf. Lemma 2.2).

0=ZLe<i
Therefore, from (4.1) we obtain

P[sup o(t, &, &) < A] < P[& ¢80, for te (0, )] = 0.

It is easily checked that this implies the assertion of Theorem 4.1.

Example 4.2. Suppose that Q(t; x,¥y) = |x — y| and let
G(t: x, ) = —(b(t; x) = b(t, y), x = y) |x = ¥| 7 +
+ %ngu(t, X, ¥) [206 = y) (5 = v)) [x = y|7* = dylx — ¥| 771,
where A(t, x, y) = (Ai{t, x, y)) = (o(t, x) — a(t, y)) (a(2, x) — a(2, y))T. If for some
«a>0p=0,17>0,
(4.2) G(t, x,y) < —alx — y|f

holds for all (¢, x, y) € R, x W, then the equation (E) is not stable in probability.
Moreover, the assertion of Theorem 4.1 is valid with all 0 < 4, < n. Indeed the
function V(x, y) = k — log |x — y|, where k is a suitable positive constant, satisfies
the assumptions of Theorem 4.1 (note that LV = G). Using the same Liapunov
function we can also see that (4.2) implies (P’) (cf. [3] Theorem 3.7.1).
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In particular, set | = n? and consider the equation
dé; =bft,&)dt + 0. &AWy ppnsys i=1,2,..,n
i=1

(6 — constant). We have

j‘j=02|x—y|2(s"j, i,j=l,2,...,n.
Hence

G(t, x,y) = —(b(t,x) — b(t, y), x — y) |x — y|72 + o*(1 — in).

Thus if we assume that b is (globally) lipschitz continuous in x uniformly with respect
to t and the dimension is n = 3 then the ordinary differential equation x = b(t, x)
can always be “destabilized” by adding an appropriate diffusion. Note that this is
not valid in the one-dimensional case (cf. Example 3.1).

Example 4.3. Set ¢{t x y) = |x — y| and assume that b(t, *)eC,, a(t, *) € C,
for every t > 0, the corresponding first and second derivatives being bounded uni-
formly with respect to ¢ > 0. Denoting by. B the matrix (db,;[0x; (t, x)) and by 4,,
r = 1,2, ..., l the matrices (do,,/0x; (t, x)) suppose that for some a > 0 the inequality

1 1
(4.3) (Bv,v) + 1Y AP = Y14y, v)> 2 a
r=1 r=1

holds for all v € R, with |v| = 1 and (1, x) e R4 X R,. Then the assertion of Theorem
4.1 holds for some 4, > 0. In particular, the equation (E) is not stable in probability.
The proof proceeds similarly as in Example 3.2, using the function V(x, y) =
=k — log|x — y|.

Example 4.4. Set g(t, x, y) = lx - y| and consider the one-dimensional auto-
nomous equation '

(4'4) dé, = 1, dt + U(ét) dw,,

where o(x) = 1 for x £ 1, 6(x) = x otherwise. Then the assertion of Theorem 4.1
is valid with arbitrary 4, > 0.

Indeed, we can set V(x,y) =k — log |x - y| for a suitable k > 0. Setting
H(x,y) = M — |x — y| for a suitable M > 0 we obtain ([3], Theorem 3.7.1) that
(P') is fulfilled.

On the other hand, we have

J-exp[—zj. —ba:ldz—v 400 for x> +00,
0 00

and thus, any solution of (4.4) is a recurrent Markov process (cf. [3], Example
3.8.2) — compare with Example 3.5 above.
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5. STABILITY IN THE MEAN

We use the same notation as in Section 2. Let b and o satisfy the conditions of
Theorem 1.1 and let us assume that for the function ¢ introduced at the beginning
of Section 2,

&(xy) < K(1 + [x[* + [y[?)
holds for some K > 0 and all x, y e R,.

Definition 5.1. We say that the equation (E) is

— Stable in the mean, if for every s = 0, ¢ > 0 there exists § = 5(s, a) > 0 such that
forall X, YeS '

Eo(s, X, Y) < & implies Eg(t, &%, &) <& forall t>s.

— Asymptotically stable in the mean, if it is stable in the mean and for every s = 0
there exists A = Als) > 0 such that for all X, Ye S,

Eo(s,X,Y) < A implies Eg(t, &%, &) >0 for t— .

— Exponentially stable, if for some K; > 0, K, >0 and all X, Ye S, t = s the
inequality
Eolt, &%, &) < K, exp { ~Ka(t — )} Eq(s, X, ¥)
holds.

Denoting Q = R, x (R,,\ D) we have the following

Theorem 5.2. Let there exist a continuous function Ve C, ,(Q) such that for
some M > 0, N > 0 the inequalities

(5.1) Mg < V£ Ng

(5.2) and LV(t,x,y) < o(t, V(t, x, y))

hold for all (8, x, y) € Q, where (p R, x R, - R is a function satisfying
(5.3) lo(t, @) — o(t, B)| < Ky« — B, Kr>0,

for all t,a,feR,, t < T, ¢(t,0) = 0 and ¢(t, *) is a concave function for all
teR,.

Then the equation (E) is stable in the mean provided the trivial solution x = 0
of the ordinary differential equation

(D) % = ¢t, x)

is stable in the Liapunov sense. If the trivial solution of (D) is asymptotically
stable, then the equation (E) is asymptotically stable in the mean. If ¢(t, x) =
= —cx for some ¢ > O, then (E) is exponentially stable.

Proof. Let (s, X)e Q and consider the process &*. Denoting by 7, , the exit
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time (after s) from B,, 0 (Rz,\ CIW,), 1, (t) = 1., A tand using It6’s formula and
(5-2) we get for 1 = 0 = s:

(54) EV(tmo(1), &%) = EV(1.,m(0)s &Y ) +
T, e(t) Te,m(t)
+ EJ. EV(“: 6‘ x) du EV(TE m(e) E .(0)) + EJ‘ (P(u, V(u, Ez'i)) du .
%e,m(0) Te,m(8)

Taking m — o0, ¢ = 0+ and using Lemma 2.2 we obtain by the dominated conver-
gence theorem

t
EV(t, &%) < EV(0, &) + J Eo{u, V(u, &) du .
. ]
Jensen’s inequality yields

EV(r, &) < EV(6, &%) + J olu, EV(u, &%) du .

[}

Thus, setting Y, = EV(t, &%), t 2 s, we have
t

(5.5) 0SSy, Sy, + [ (P(“a ‘/’u) du
Jo

for s £ 0 < t. We can easily complete the proof by (5.5) and (5.1) noting that ¢
is a continuous function.

Corollary 5.3. In particular, if a function Ve C, ,(Q) satisfies (5.1) and LV < 0
holds, then (E) is stable in the mean.

Theorem 5.4. Let there exist a continuous functzon Ve Cy,5(Q) such that for some
M >0, N > 0 (5.1) holds and

Lv(t, x, y) 2 n(t, V(t, x, )
is fulfilled for all (1, x, y) € Q, where n: R, x R, — R satisfies

[n(t, @) — n(t, B)] < K7l — 8|, Kr >0,

forallt,a, BeR,, t < T, n{t,0) = 0 and (t, +) is a convex function for all t 2 0.
Then the equation (E) is not stable in the mean provided the trivial solution x = 0
of the ordinary differential equation % = n{t, x) is not stable in the Liapunov
sense.

The proof is similar to the previous one and can be omitted.

Example 5.5. For g{x, y) = |x — y|, 0 < p < 2, by taking V = ¢ we can easily
obtain the following results (using the same notatlon as in Example 3.1):
If for all (¢, x, y) € Q,
F,(t, x, y) £ 0, then (E) is stable in the mean;
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B. F,(t,x,y) < —k|x — y|**(1 + |x — y|?)~* for some k > 0, then (E) is asympto-
tically stable in the mean;

C. F,(t,x,y) £ —c|x — y|? for some ¢ > 0, then (E) is exponentially stable;

D. F,(t,x,y) 2 k|x — y|** (1 + |x — y[")"*, then (E) is not stable in the mean.

Thus, for p = 2 the equation

dé, = (—aé, + ky) dt + (0, + k) dw,,
where 62 > 2a > 0, ky, k; € R, is not stable in the mean, although (cf. Example 3.1)
it is stable in probability.
Example 5.6. Set o(x, y) = |x = y|. The equation
d¢, = & dr + 2(|&] + 1) dw,

is an example of an equation having a (nontrivial) stationary solution, which is not
stable in the mean (after setting V = ¢ we can use Example 5.5D with p = 1).
We shall prove the following simple converse theorem:

Theorem 5.7. Assume that b(t, *) e C,, o(t, *)eC,, ot, ) eC, and the cor-
responding first and second derivatives are continuous in (t,x) and bounded.
Furthermore, suppose that

(5.6) |Lo(t, x, y)| = ke(t, x, )

holds for some k > 0 and all (1, x, y) € Q. Then there exists a function Ve C; 5(Q)
such that

(5.7) Mg £ V= Npg
(5.8) and LV(t,x,y) £ —cV(t,x, )

hold for some M > 0, N > 0, ¢ > 0 and all (t, x, y) € Q provided the equation (E)
is exponentially stable. -

Proof. Set
T= - 1 log 1 (K4, K, from Definition 5.1)
K, "2K,
and
t+ 7T
V(t, x,y) = j Eo(u, &%, £?)du, (t,x,y)eQ.
t
We have

t+

T
Kyo(t, x, y) e %"V du < No(t, %, y)

(5.9) V(t, x, ) < J

t

for a suitable N > 0. Furthermore, from (5.6) we get

V(t,x,y) 2 — %J'

t

t+

T
ELo(u, &%, £7) du =
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1 . 1
== _]; (Eg(t + T, 6::0-T’ ::—vT - Q(‘ »Xs y)) 2 2_l; Q(t’ X, y) ’

and so (5.7) holds. To complete the proof it remains to note (cf. [1]) that Ve Cy,2(Q)
and
Lv(t,x, y) = Eo(t + T, &fr, &) — elts %, ) +
t+T
+ LEo(u, &, &) du = Eo(t + T, &y, E21) —

t

1
—ot,x,y) £ —do(t,x,y) £ — —V(t,x,)).
e(t, x, ) Jo(t, x, ) N (1, x, )

Remark 5.8. Assume that the first derivatives of the functions b(t, *), o(t, *) are
bounded unfiromly with respect to t. Then for o(x,y) = |x — y|*, p >0, (5.6)
holds with some k > 0.

Remark 5.9. Combining Theorems 5.7 and 2.5 we obtain for sufficiently smooth
b, o, ¢ that in the case § = K¢ (cf. Remark 2.8) the exponential stability implies the
global uniform asymptotical stability in probability ((G) is guaranteed by (5.8)).

We can easily establish the relation between the various concepts of stability intro-
duced in this paper for ¢(x, y) = |x — y|’, p > 0, in the linear case, i.., for the
equation

]
(5.10) dé, = (B, + m)dt + Y. (0,8, + k) dw(t),
r=1

where B and o, are constant n x n matrices and m, k, € R,. From Lemmas 6.4.1,
6.4.2 and 6.4.3 in [3] we obtain that if the equation (5.10) is asymptotically stable
in the mean, then it is exponentially stable (and thus, globally uniformly asympto-
tically stable in probability). On the other hand, if (5.10) is asymptotically stable in
probability with g(x, y) = [x — y|?, p > 0, then it is asymptotically stable in the
mean with g(x, y) = |x — y|%, ¢ > 0 (possibly g < p).
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