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časopis pro pěstování matematiky, roč. 111 (1986), Praha 

VARIETIES HAVING DIRECTLY DECOMPOSABLE 
CONGRUENCE CLASSES 

JAROMIR DUDA, Brno 

(Received May 22, 1984) 

A number of concepts was introduced on the Cartesian product of similar algebras. 
Among them the notion of directly decomposable congruences appears comparatively 
often in the literature. There is no doubt that this in particular follows from the fact 
that the varieties having directly decomposable congruences are MaVcev definable, 
see [7]. In the present paper we study the direct decomposability of congruence 
classes. It is shown that also the varieties having directly decomposable congruence 
classes can be characterized by Mal'cev condition, moreover, the identities obtained 
are simpler than those describing the varieties with directly decomposable con­
gruences. Recently, it was proved independently in [11], [6] that the varieties having 
directly decomposable tolerances and directly decomposable compatible reflexive 
relations are also definable by certain identities. Following these results we close 
the paper with Mal'cev characterizations of the varieties having directly decompo­
sable tolerance classes and directly decomposable relation classes (see the definitions 
below for these concepts). 

1. MAL'CEV CONDITION FOR VARIETIES HAVING DIRECTLY 
DECOMPOSABLE CONGRUENCE CLASSES 

Definition 1. We say that a variety *V has directly decomposable congruence 
classes if any congruence class C of the Cartesian product 21 x 23 e 'V can be 
written as a product C -= pr^ C x pr^ C. 

The following auxiliary result will be useful in the sequel. 

Lemma 1. Let C be a subset of the Cartesian product A x B. Then the following 
conditions are equivalent: 

(i) C = prAC x prB C; 
(ii) <x, y}9 <M, v} eC imply <x, i>> e C for any elements x,ue A and y,ve B. 

Proof, (i) => (ii) is obvious. 
(ii) => (i). It suffices to verify the inclusion prA C x prB C c C. To this end take 
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<a, b> G prA C x prB C. Then <a, s>eC nad <f, 6> e C for suitable elements f e .4 
and seB. Applying the hypothesis (ii) we find <a, b) e C as required. 

First we prove the announced Mal'cev condition for varieties having directly 
decomposable congruence classes. 

Theorem 1. For a variety rT the following conditions are equivalent: 
(1) y has directly decomposable congruence classes; 
(2) there exist binary polynomials si9...9sm9 ti9...,tm and ( 2 + m)-ary poly­

nomials ci9 ...9cn such that 

x = cx(x9 y9 st(x9 y)9..., sm(x, y)) , 

x = cx(y9 x, tt(x9 y)9..., fm(x, y)), 

ck(y> x, sx(x, y)9..., sm(x, y)) = ck+i(x9 y9 st(x9 y) ,..., sm(x, y)) , 

ck(x> y> tx(x9 y)9..., tm(x9 y)) = ck+i(y9 x, tx(x9 y)9..., tm(x9 y)) 9 1 = fc < n , 

* = c„(y, x, s^x, >>),..., sm(x, j/)) , 

y = cn(x9 y9 tt(x9 y)9..., tm(x9 y)) 

holding. 

Proof. (1) => (2). Take 21 = 23 = 3y(x, j) , the free algebra in if on free genera­
tors x and y. Denote by C the congruence class [<x, y}~\ 0«x9 y}9 <};, x » of 21 x 23. 
Since <x, y>eC and <y, x> e C the hypothesis of direct decomposability yields 
that <x, x> e C or, equivalently, <x, x>, <x, j>> e 0«x9 y}9 <y, x » . Applying the 
binary scheme, see [3], to the last statement we find that 

<x, x> = yx«x9 y}9 <y9 x » , 

yk«y> x>9 <x, y}) = y f c+1«x, y>9 <y9x»9 1 ^ fc < n , 

<*, y> = yw«y> x>, <x, y) 

for some binary algebraic functions yl9 ...9yn over the algebra 21 x 2J. Using the fact 
that 21 = 23 = 3fy(x, j>) we can express the foregoing equalities in the form 

<x, x> = cx«x9 y}9 (y9 x>, <s1? tt>t..., <sm, fm» , 

ck«y> x>9 <x, >;>, <slf rx>,..., <sm, fm» = 

= c*+i«*> y>, <y, x>, <Si, f t>,... , <sm, tm»9 1 = fc < n , 

<*, y> = cB«j% x>, (x, ;;>, <slf rx>,..., <sm, fm» , 

where s{ = sf(x, >/), tt = ^(x, y), i = 1, . . . , m, and yk«u9 v\ <w, z » = ck«u9 v>9 

<w9z}9 <si(x9y)9 ^(x, y)>,...,<sm(x9y)9 tm(x9 y)}) for some (2 + m)-ary poly­
nomials ck9 fc = 1, . . . , n9 as follows from the definition of an algebraic function, 
see e.g. [8]. 

Writing these relations separately in each variable the desired identities of (2) 
readily follow* 
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(2) => (1). Let C be an arbitrary congruence class (say of the congruence !P) 
on the Cartesian product 31 x S e f . Take elements <x, y} and <M, I>> from C. 
By writing u instead of y in identities of (2) containing polynomials sx(x9 y), ... 
..., sm(x, y) and v instead of x in the remaining ones we get 

x = cA(x, M, Si(x, u),..., sjx, u)) , 

v = cx(y, v, tx(v, y),..., tjv, y)) , 

ck(u, x, sx(x, M), ..., sjx, u)) = ck+1(x, u, sx(x, M), ..., sjx, u)) , 

Ck(v> y> tt(v, y), ..., tjv, y)) = cfe+1(y, v, tx(v, y), ..., tjv, y)) , 1 g fc < n , 

x = CB(M, x, Sj(x, M), ..., sm(x, M)) , 

y = cn(v, y, t^v, y), ..., tjv, y)) . 

Simultaneously, we have 

(*) « x , y}, <M, t;» e !F, by hypothesis, 
(**) « M , v), <x, y » e T, by the symmetry of W, and 

(***) «5,(x, M), t{v, y)y, <s,(x, M), ^(t;, j ) » e !P, f = 1, . . . , m, by the reflexity of V. 

Applying the (2 -J- m)-ary polynomials cl9..., cn to (*), (**), (***), and using the 
transitivity of !P, we find that « x , i>>, <x, y » e W or, equivalently, <x, t;> e 
e [<x, );>] !F = C. Lemma 1 completes the proof. 

2. DIRECTLY DECOMPOSABLE CONGRUENCE CLASSES ON n-PERMUTABLE 
AND ON MODULAR VARIETIES 

In this section we first study the direct decomposability of congruence classes on 
n-permutable varieties. Identities obtained for n = 2 and n = 3 are of the greatest 
interest, however, in order to arrange this part conveniently we give here also MaFcev 
characterizations of n-permutable varieties with directly decomposable congruence 
classes for arbitrary integers n > 1. 

Theorem 2. For a variety if and an integer n > 1 the following conditions are 
equivalent: 
(1) if has n-permutable congruences and directly decomposable congruence 

classes; 
(2) there exist binary polynomials sl9...9sm, tl9...,tm and (1 + m)-ary poly­

nomials dl9...9dn-x such that 

x = dx(x9 sx(x9 y)9..., sm(x, y)) , 

x = dt(y9 tt(x9 y)9..., fm(x, y)) , 

dk(y, Si(x, y)9..., sm(x, y)) = dk+ x(x9 s^x, y)9..., sm(x, y)) , 

dk(x9 fi(x, y)9 ..., fOT(x, y)) = dk+1(y9 tx(x9 y)9..., /m(x, >̂ )) , I ^ k < n - 1 , 
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x = 4,-10% 5i(*> y)> • • •> s«(*> y)) > 

y = dn-i(x, ^(x, y)9..., fm(x, y)) 

ho/d in "T. 
The proof depends on a lemma. As usual, the symbol R(a9 b) denotes the smallest 

reflexive compatible relation containing the pair <a, fc>. 

Lemma 2. For a variety "T and an integer n > 1 the following conditions are 
equivalent: 

(i) y has n-permutable congruences, i.e. 0vW=QoYo...(n factors) for 
any 09We Con 21, 21 e iT\ 

(ii) Q(a9 b) = R(a9 b)Q...o R(a9 b) ((n - 1) factors) for any a9 be 21 e 1T. 

Proof. See [4]. 
Proof of Theorem 2. (1) => (2). Analogously as in the proof of Theorem 1 the 

hypothesis of direct decomposability of congruence classes gives that « x , x>, 
<x, y}) e 6)(<x, y}9 <y, x>) on the Cartesian product 2t x 21 = 3f*-(x, y) x 5r(x> y)-
Combining this with Lemma 2 we have « x , x>, <x, >>» e Rn~x((x9 >>>, (y9 x>). Now 
using the definition of the relation product and the functional description of a reflexive 
compatible relation from [2], we obtain unary algebraic functions Si9..., Sn-X over 
21 x 21 such that 

<x, x> = Sx((x9 y}) , 

Sk«y, * » = <5,+1«x, y » , 1 = k < n - 1 , 

<*>y> = <5„-i«y>*>). 

Since 21 = g*-(x, y) these equalities can be expressed in the form 

<x, x> = d!«x, y}9 <s1? tj>,..., <sm, O ) > 

dk«y, x>, (si9 tt>9..., <sm, O ) = 4k+i«x> y>, <si9tx\ ..., <sm, O ) , 

1 = k < n - 1 , 

<X, y> = d- , -^0 , *>, <S!, ^>, ..., <Sm, O ) 

for some binary polynomials st = s,{x, j;), ff = t((x9y)9 i = 1, . . . , m, and suitable 
(1 + m)-ary polynomials di9...9dn_x of ir. Writing these relations separately in 
each variable we immediately get the identities of (2). 

(2) => (1). Conversely, assume the identities (2). Then it is easy to check that the 
ternary polynomials pi9..., pn„i given by pk(u9 v9 w) = dk(v9 tx(u9 w),. . . , tm(u9 v))9 

fc = l , . . . , n — 1, satisfy the identities 

u = pt(u9 w, w) , 

pk(u9u9w) = ^ - - . ( M , W, W), l = fc<n-l, 

w = .Pn-i(w,",w). 
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By [9], r has n-permutable congruences. 

Finally, the direct decomposability of congruence classes is ensured by (2 + m)-ary 
polynomials ck(u9 v9 wl9..., wm) = dk(u9 wl9..., wm)9 k = 1 , . . . , n — 1, see Theorem 
1 (2). The proof is complete. 

Perhaps the most important consequence is 

Corollary 1. For a variety r the following conditions are equivalent: 

(1) r has permutable and directly decomposable congruences; 
(2) r has permutable congruences and directly decomposable congruence classes; 
(3) there exist binary polynomials sl9...9sm9 ti9...9tm and a (1 + m)-ary poly­

nomial dx such that 

x = dx(x9 st(x9 y),..., sm(x9 y)) , 

x = dx(y9 tx(x9 y)9 ..., tm(x9 y)) , 

x = dx(y9 s^x, y)9..., sm(x, y)) , 

y = dlvx, fi(x, j;), ...,tm(x,y)) 
hold in r . 

Proof. The identities characterizing varieties with permutable and directly 
decomposable congruences, see [5], coincide with those of Corollary 1 (3), hence 
we have (1) o (3). The equivalence (2) o (3) follows directly from Theorem 2. 

Similarly, Theorem 2 and [5] yield 

Corollary 2. For a variety rT the following conditions are equivalent: 

(1) r has 3-permutable and directly decomposable congruences; 
(2) r has 3-permutable congruences and directly decomposable congruence 

classes; 
(3) there exist binary polynomials sl9...9sm9 tl9...9tm and (1 + m)-ary poly­

nomials dl9 d2 such that 

x = d1(x,s1(x9y)9...9sm(x9y)), 

x = d1(y9t1(x9y)9...9tjx9y))9 

di(y, sx(x, y),..., sm(x, y)) = d2(x, st(x, y)9...9 sm(x9 y)) , 

di(x, tx(x9 y)9..., tm(x, y)) = d2(y, tx(x, y),..., tm(x9 y)) , 

x = d2(y, st(x, y),..., sm(x, y)) , 

y = d^tfay),...,^))) 

hold in r . 
B. Jonsson [10] has shown (see also [8; p. 30]) that any algebra with 3-permu­

table congruences is congruence modular. Hence the following Theorem 3 is 
a strengthening of Corollary 2. 
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Theorem 3. Let Vbe a congruence modular variety. Then the following conditions 
are equivalent: 

(1) f has directly decomposable congruences; 
(2) i^ has directly decomposable congruence classes. 

Proof. (1)=>(2) is trivial. 
(2) => (1). Take the congruence class C = [<a, &>] 6>«a, b}9 <a', fc'» on the 

Cartesian product ?I x S e f . Since <a, b> e C and <a', b'> e C the hypothesis 
of direct decomposability yields <a, b'> e C and thus also « a , b>, <a, 6 ' » e 
e 6>«a, b}9 <a\ b'». It is known, see [12; Proposition 3, p. 100], that the last 
statement is equivalent to the direct decomposability of congruences on congruenc 
modular varieties. 

We close this section with some 

Examples . 1. The variety of rings with 1 has simple polynomials ensuring 
permutability and direct decomposability of congruences: Take d1(a9 b9 c) = 
= a . b + c and st = 0, s2 = x, tx = — 1, t2 = x + y. 

2. The variety of implicative algebras can be used as a suitable example of 
a 3-permutable variety with directly decomposable congruences (recall from [9] 
that an implicative algebra is a groupoid satisfying the identities (xy) x = x9 (xy) y = 
= (yx) x, x(yz) = y(xz) and thus also (xx) y = y). In this case we take dx(a9 b9 c) = 
= (ca) b9 d2(a9 b9 c) = (ba) c and sx = s2 = tx = x, t2 = y. 

Then 

di(x, sl9 s2) = (xx) x = x , 

di(y> ti, t2) = (yy) x = x , 

di(y, si9 s2) = (xy) x = x = (xx) x = d2(x9 sl9 s2) , 

di(x9 tl9 t2) = (yx) x = (xy) y = d2(y9 tl912) , 

d2(y, sl9 s2) = (xy) x = x , 

d2(x, tl9 t2) = (xx) y = y. 

3. Further, the important variety of commutative BCK-algebras (see [1] and 
references there) has 3-permutable and directly decomposable congruences (recall 
from [1] that a commutative BCK-algebra is a groupoid with a distinguishing ele­
ment 0 satisfying the identities xx = 0, xO = x, x(xj>) = y(yx), (xj;) z = (xz) y 
and hence also x(0j>) = x). Take dx(a9 b9 c) = b[(ac) (ab)]9 d2(a9 b9 c) = c[(ab) (ac)] 
and sx = s2 = tx = x, t2 = y. Then 

dx(x9 sl9 s2) = x[(xx) (xx)] = x , 

di(y, ti9 t2) = x[(yy) (yx)] = x , 

di(y, sl9 s2) = x[(yx) (yx)] = x = x[(xx) (xx)] = d2(x, sl9 s2) , 

di(x, tl9 t2) = x[(xy)(xx)] = x(xy) = y(yx) = y[(yx)(yy)] = d2(y9 tl912) , 
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d2(y> sl9s2) = x[(yx) (yx)] = x, 

d2(x9 ti9 t2) = )>[(xx) (xy)] = y 

is a concrete form of the identities from Corollary 2 (3). 

3. TWO GENERALIZATIONS: DIRECT DECOMPOSABILITY OF RELATION 
CLASSES AND TOLERANCE CLASSES 

The aim of this section is to show that the direct decomposability can be studied 
not only on congruence classes but also on classes of more general compatible binary 
relations. As a result two new Mal'cev conditions are obtained. First we need 

Definition 2. Let R be a reflexvie compatible binary relation on an algebra 3t, 
a e A. Then the subset [a] R = {x e 31; <x, a> e R} is called a relation class. 

In particular, [a] Tis called a tolerance class provided Tis a tolerance (i.e. a reflex­
ive compatible and symmetric binary relation) on St. 

Definition 3. A variety if has directly decomposable relation (tolerance) classes 
if any relation (tolerance, respectively) class C of the Cartesian product 31 x 33 e if 
is of the form C = pr% C x pr^ C. 

Now we are ready to characterize varieties having directly decomposable tolerance 
classes. 

Theorem 4. For a variety rT the following conditions are equivalent: 
(1) if has directly decomposable tolerance classes; 
(2) there exist ternary polynomials si9 ...9sm9 tl9 ...9tm and a (4 + m)~ary poly­

nomial f such that 

x = f(x9 y9 z9z9 si(x, y9 z) , . . . , sm(x9 y9 z)) , 

y = f(x9 y9 z9 z, tx(x9 y9 z ) , . . . , tm(x9 y9 z)) , 

z = f(z9 z, x, y9 sx(x9 y9 z ) , . . . , sm(x9 y9 z)) , 

z = f(z9 z, x, y9 tt(x9 y9 z ) , . . . , tm(x, y9 z)) 
hold in r . 

Proof. (1) =>(2). Denote by Tthe smallest tolerance on the Cartesian product 
3y(x, y9 z) x %r(x9 y9 z) containing the pairs « x , x>, <z, z » and « y , y}> <z, z » 
(i.e. T = T ( « x , x>, <z, z » , «>;, y}9 <z, z>»). Then the tolerance class rfC = 
= [<z, z>] T contains the elements <x, x>, <>>, y} and thus, by hypothesis, also 
<x, y} e C. Equivalently, « x , y}9 <z, z » e T holds. Now applying the well-known 
functional description of tolerances, see e.g. [2], to T we get that 

<x, >>> = <p«x, x>, <y, y>> <z, z>, <z, z » , 
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<z, z> = <p«z, z>, <z, z>, <x, x>, <>>, y», 

where cp is a suitable 4-ary algebraic function over 5^(x, y9 z) x gy(x, y, z). By the 
standard technique we obtain 

<x, y> = f«x, x>, <y, j/>, <z, z>, <z, z>, <sx, r t >, . . . , <sm, r,„>) , 

<z, z> = f«z, z>, <z, z>, <x, x>, <;>, ,y>, <sl9 tt>9..., <sm, rm» 

for some ternary polynomials s,-= s,(x, y, z), tt = t{x9y9z)9 i = l , . . . , m, and 
a (4 + m)-ary polynomial f Writing the above equalities componentwise we im­
mediately get the desired identities from (2). 

(2) => (1). Conversely, consider an arbitrary tolerance class D = \_<zl9 z2>] S 
on the Cartesian product 21 x iB e T7". Choose elements <x, y>9 <w, v> e D. By 
Lemma 1 it suffices to show that also <x, t;> e D. To this end we write w instead 
of y9 zx instead of z in the identities from (2) containing sl9..., sm and, further, 
v instead of y9 y instead of x and z2 instead of z in the remaining ones. In this way 
we get that 

x = f(x, w, zl9 zl9 st(x9 w, z x ) , . . . , sm(x, w, zt)) , 

v = f(y, v9 z2, z2, tt(y9 v9z2)9 ..., tm(y9 v9 z2)), 

zt = f(zl9 zl9 x, w, s t(x, w, z t ) , . . . , sm(x, w, zt)) , 

*2 = /(^2, z2> y> v9 tx(y9 v9 z2), ..., tm(y9 v9 z2)) . 

Simultaneously, we have 

(*) «*>y>> < z i , z 2 » e S , 

« w , v>9 <Zj, z 2 » e S by hypothesis; 

(**) « Z l , *2>> <*> y» e S, 

« Z j , z2>, <w, i?» e S by the symmetry of S and 

(***) «Sj(x, w, Zj), *,(>>, u, z2)>, <sivx, w, Zi), *,(>>, i>, z 2 ) » e S9 i = 1, . . . , m, by the 

reflexivity of S. 
Applying the (4 + m)-ary polynomial f to (*), (**) and (***) we conclude that 

« x , v>, <z1? z 2 » e 5. Hence <x, v> e D which was to be proved. 
Our last theorem characterizes the varieties having directly decomposable relation 

classes. The proof of this statement follows the same line as that of Theorem 4 and 
is therefore omitted. 

Theorem 5. For a variety Y the following conditions are equivalent: 

(1) Y has directly decomposable relation classes; 
(2) there exist ternary polynomials sl9..., sm, tl9 ...9tm and a (2 + m)-ary poly­

nomial g such that 

x = g(x9 y9 sx(x, y, z ) , . . . , sm(x, y, z)) , 
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y = g(x, y, tx(x, y, z ) , . . . , tm(x, y, z)) , 

z = g(z, z, sx(x, y, z ) , . . . , sm(x, y, z)), 

z = g(z, z, tt(x, y, z),..., tm(x, y, z)) 

hold in r . 
For illustration we present 

Example 4. The variety of lattices has directly decomposable relation classes: 
Take g(a, b, c, d) = (a A C) V (b A d) and st = x v z, s2 = x A Z, tt = y A Z, 
t2 = y v z. 

Then 

g(x, y, su s2) = x v (x A y A z) = x, 

g(x, y, tu t2) = (x A y A z) v y = y, 

g(z, z, su s2) = z v (x A z) = z, 

g(z, z, tu t2) = (y A z) v z = z . 

Notice that also sx = t2 = xvyvz, s2 = tx = xAyAz can be used. 

4. CONCLUDING REMARKS 

(i) The original Mal'cev condition characterizing the varieties with directly de­
composable congruences, see [7], involves some ternary polynomials. Our Theorem 3 
shows that in the case of congruence modular varieties binary polynomials are 
sufficient. This fact was for the first time observed by H. Werner [12]. 

(ii) Evidently, the direct decomposability of congruences, tolerances, etc. imply the 
direct decomposability of the corresponding relation classes. Using Mal'cev condi­
tions, this fact is clearly visible: Mal'cev conditions from our Theorem 4 and Theorem 
5 arise from those of [6,11] by identifying z = w. 

(iii) In a recent paper we have shown that regularity of tolerance implies permu-
tability of congruences on a given variety. Unfortunately this phenomenon holds 
neither for direct decomposability of tolerance classes nor for relation classes. 
Counterexample: lattices. 
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