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Časopis pro pěstování matematiky, roč. 111 (1986), Praha 

ON FORMAL THEORY OF DIFFERENTIAL EQUATIONS I 

JAN CHRASTINA, Brno 

(Received October 26, 1983) 

Expressively saying; the formal theory of differential equations is not especially 
interested in the existence proper of some actual solutions satisfying certain additional 
(boundary, initial, asymptotic, smoothness, etc.) conditions but deals with other 
topics more closely related to the equations themselves (as are the compatibility 
conditions, canonical forms, group symmetries, laws of conservation, presence of 
variational principle, geometry of characteristics, explicit integrability theory, to 
name a few). We cannot go into the history of the subject, it is however worth 
while to mention the classical results by Cartan, Darboux, Goursat, Lie, Riquier 
and Vessiot, the recent revivification due to Goldschmidt, Guillemin, Spencer and 
Sternberg, and the present development related to the theory of Lie-Backlund 
infinitesimal transforms (Ibragimov), group symmetries (Ovsjannikov), equivalence 
problem and formal integrability (Pommaret), variational complexes (Tulczyjew), 
continuous cohomologies (Tzujishita, Gelfand) and other actual areas of analysis 
and geometry. 

In spite of abundance of various deep and rather complicated results, very little 
is known about the most fundamental problem of the theory which may be indicated 
as follows: Starting with a system 

fk(x\x2
9...9y

1
9y

2
9...9dy1ldx1

9...) = 09 

various substitutions can be performed. For instance, one can take f1 = x1 dy1jdx2
9 

£2 = x1 + sin y2
9... in the role of the new independent variables and, say, f/1 = x1, 

j / 2 = x2 dy1jdx1
9... as the unknown functions. After some unpleasant calculations, 

one can derive certain relations 

^ 1 , ^ 2 , . . . , ' / 1 , ' ? 2 , . . . , <3 '?V^ 1 , . . . ) -=0 

among the new variables. In favourable cases (which we have in mind) there exists 
an inverse substitution carrying the new system q>K = 0 back to the original one 
fk = 0. It follows that both these systems may be considered equivalent in a certain 
obvious sense and the classes of equivalent systems (diffieties) may serve as rather 
natural objects of investigations. 

Following this way, we obtain a remarkable category in which the notions of 
dependent and independent variables (and hence of partial derivatives, jets, usual 
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differential operators, and others) do not make any invariant sense. The arising 
difficulties may be compared with analogous circumstances appearing in algebraic 
geometry (cf. the theory of birational correspondences). But we shall see that this 
rather vague similarity is deeper than one can expect at a glance. (At this place, it is 
of interest to mention the surprising but unsuccessful and forgotten paper [1] and 
remark that our setting of the problem has very little in common with the familiar 
differential algebra [2] which deals with rather special questions of purely algebraic 
character.) At least from the technical point of view, the general theory cannot be 
restricted only to finite sets of differential equations (identities, operators, etc.) 
quite analogously as the algebraic geometry needs some kinds of infinite dimensional 
spaces and necessarily handles polynomials of arbitrarily high degrees. Explicitly 
saying, we shall deal with the infinite prolongation of the general system of partial 
differential equations from the intrinsical point of view. Fortunately, this object 
of our investigations can be completely described by four simple axioms. (We also 
refer to the papers [3], [4] where the above mentioned concept of a diffiety was 
introduced for the first time.) 

The differential equations considered are invariantly rewritten as a Pfaffian system 
and we use the common category of C°°-smooth real manifolds and mappings. Our 
first aim is to demonstrate the advantages of the approach presented as transparently 
as possible by deriving several concrete and nontrivial results. Links to the common 
approach will be discussed later on. (In the meantime, we refer to the already 
mentioned papers [3], [4] and to a forthcomming book of the same author.) 

INTRODUCTION AND BASIC STRUCTURES 

1. The fundamental space. Our considerations will be carried out in a space J 
that is representable by an inverse limit of the type 

(1) J = lim inv J1:... -* Jl+1 -> J1-* ... -> J1 -+j° 

where J1 (/ = 0,1,...) are certain n'-dimensional manifolds and the mappings 
j \ + 1 : Jl+1 -> J1 (I = 0,1,...) are surjective submersions. The manner in which the 
space J is expressed is, however, not a consistent part of the structure under con­
sideration. The same space J may be also represented by an analogous limit 

o J = lim inv J1:... -* Il+1 -> I1 -> ... -> 71 -> I 

with quite other manifolds I1 and mappings i\+1:Il+i -> I1 (temporary notation) 
provided that for every /, k _ 0 there exist integers K(l) = /, L(k) = k and mappings 
pl:IK™ -> J\ qk: JL(fc) -> Ik satisfying 

nl n aK(l) ___ 1+1 jL(K(l)) k L(fc) __ , f c + l ,-K(L(fc)) 
P<>q — 7j o ••• ° I L ( X ( I ) ) - 1 J Q ° P — lk ° ••• ° lK(L(k))-l • 

We refer to [5] for similar reasonings. All the following concepts should not depend 
on the manner in which J is expressed, of course. 
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Denote (for a moment) by Y[11 (/, s = 0, 1,...) the space of all differential s-forms 
on the manifold J1. Owing to the injections ;,l+1*: V[11 -+ ¥^+13, the space *F[n may 
be considered as a subspace of Yl

s
l+11 and hence of all spaces !F^+C] (c = 0, 1,...) 

so that the direct limit 

Ws = lim dir yj11 = yj0 ] u <PJ1] u ... 

makes a good sense. It is called the space of exterior s-forms on the space J. A form 
i/t e !FS may be identified either with an array of the type 

9Jtr*9.(j\+ioj\liy9,... (9eVln) 

or, even simpler, with any form of this array. Every space !FS is a module over the 
ring !F0 = C°°(J) of-functions on J and the direct sum V = Y0 © Vx © .. is an 
exterior graded differential algebra with the common exterior differential 
d : y , - y . + 1 . 

Vector fields on J may be introduced as the derivations of the W-algebra !P0. 
That means, we postulate the familiar rules 

XfeVo, X(f+g) = Xf + Xg, Xc = 0, X(fg) = gXf + fXg 

[f,geV0, ceR), 

for every vector field X e TJ. Alternatively, a vector field X may be identified with 
certain !P0" r i o m o m o rPm s r a s °f t r i e module y« into the algebra !P0- Denoting this 
homomorphism by X_\, we postulate the rules 

XjcpeWo, Xj((p + ip) = Xj<p + Xj<l/, Xj(fcp)=fXj(p 

fafeVufeVo). 

The equivalent approaches are related by Xf = l j d / , of course. Then, following 
the common way, the homomorphism X J can be extended to the familiar derivative 
I j : 1 ? ^ ! / 7 of the !P0-algebra !P, we may introduce the Lie derivative S£x = 
= U d + d I J of the /7?-algebra !F and finally, the space TJ of all vector fields 
on J is a !F0-module and a Lie algebra with the well-known Lie bracket [X, Y~\ = 
= XY — yX (X, Ye TJ). The common rules of calculations are valid without any 
changes. 

Note also that algebraic methods will be often applied at a fixed point of the space J. 
In this case the values of various objects at this point will be denoted by subscripts. 
For example, if z e J, then we have the objects fz = /(z), i/rz e Wz, Xz e TZJ9 and so 
on. Occasionally these subscripts will be omitted for typhographic reasons. 

2. Diffieties. This rather suitable new term denotes the main object of our forth­
coming considerations. In more detail, a !F0-submodule Q of the !F0-module *Ft 

is called a diffiety if it possesses certain properties 2?&cy Qtim, mt&a and 3Fin 
specified as follows: 
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The property ££#c means that a form \j/ e Vt lies in Q if it belongs to Q locally. 
In other words, let \j/ e Wt and for every z e J let there exist a function fe !P0 such 
thatf(z) =t= 09f\j/e Q. Then we postulate the inclusion xj/ e Q. (Note that the property 
S£oc is not an essential one, being of a technical character.) 

The property 3>im means that the codimension of Q in the !F0-module *Ft is locally 
finite. More in detail, we suppose that for every ze J there exist fe !P0 withf(z) + 0 
and £l9..., l;n e XF1 such that we have a decomposition of the type 

# = / i £ i + . . . + / ^ , + o> (fi,...,f„e<F0, coeQ) 

for every form \J/ e }Fl and this decomposition is unique near the point z. Still in 
other wqrds, the factor-module V^JQ is locally free of a certain finite dimension n 
over the ground ring !f0. (The 2im property can be slightly weakened for the needs 
of Cartan's theory of pseudogroups.) 

Before passing to the remaining properties, denote by JF (= horizontal) the !F0-
submodule of TJ consisting of all vector fields X eTJ such that X J co = 0 for all 
co e Q. Owing to S£#c9 every form \]/ e Wt satisfying X U \j/ = 0 (X e Jtf) necessarily 
lies in Q. Owing to Q)im9 the space tfz (consisting of all vectors Xz where I e , f ) 
is an n-dimensional //^-linear space. We also mention the obvious formula 

&xco = X J dco (XeJtf9 coeQ) 

which will be important in the sequel. 

After this small digression, the property <£W<j may be expressed by the inclusion 
[X, 7 ] e J f (X9 Ye Jf)9 that means, Jf is a Lie subalgebra of the Lie algebra TJ. 
One can verify that the mentioned property is equivalent both to the identity 
X J Y J dco = 0 and to the identically satisfied inclusion S£xcoeQ (X9 YeJ^9 

co e Q). (The property <£W4 is the most important one. It exactly corresponds to the 
compatibility conditions for the classical approach and can be neither omitted nor 
weakened.) 

The property SFin is satisfied if the !F0-module Q can be generated from a finite 
number of forms coi9 ...9coceQ by repeated use of the operators S£x (X e 3^). In 
more detail, we assume that there exist forms col9 ...9coceQ such that every form 
co e Q can be expressed by a finite sum of terms of the type 

(2) fS£Xl... sexpt (fe V0; Xt Xsetf; s = 0 ,1 , . . . ; j = 1,..., c) . 

(The last condition ensures that we deal with differential equations involving a finite 
number of unknown functions. Note that the (obvious) local variant of the condition 
3Fin does not bring any essential generalization but leads to some technical dif­
ficulties.) 

3. A way to commutative algebra. One can easily see that the condition !Fin is 
equivalent to the existence of the so called good filtration 
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(3) Q*:... c Q-1 = {0} c -Q0 c fi1 c ... c Ql c Gz+1 c ... c Q = ufl' 

of the ^-module Q by a nondecreasing system of .finitely generated submodules Ql. 
The term good filtration means that every module Ql+1 includes (besides the module 
Ql) all forms of the type S£xco (X e Jf, co e Ql) and moreover, the !P0-

moduIe Ql+ x 

is generated by the mentioned forms co, S£xco (X e Jf, co e Ql) for all / sufficiently 
large. Symbolically: 
(4)i,2 &l + 1 c t f r !£#QX (all /) , Ql+1 = Ql + Sf^Q1 (I large enough). 

The existence of such a filtration is clear, one can take for Ql the sum of all summands 
(2) with s ^ I. (Note that the choice of a filtration (3) corresponds to a specification 
of the family of dependent variables (unknown functions) in the classical theory of 
differential equations. We shall see later on that such a filtration is canonically 
determined if J is a space of 00-jets of sections of a fibered manifold. This is the com­
mon approach to the theory (cf. [3], [4]) but almost a trivial case from our point 
of view. We find it necessary to stress the fact that these filtrations are viewed as 
auxiliary and accidental^ objects and we wish to derive some results which do not 
depend on them.) 

Let a filtration (3) possessing the property (4)j be given. Introducing the factor-
modules <3X = QX\QX~1

9 one can easily observe that every operator <£x ( l e / ) 
induces a !P0-linear mapping *9X —> <§l+1. This mapping is of fundamental importance 
and will be simply denoted by the single letter X. We summarize: If a form coe Qx 

determines a class co e &l, then the form <£xco determines a certain class from ^ ' + 1 

denoted Xcb, briefly, (<£xco)K = Xcb e <3X+1 (co e Ql
9 cb e <8X). 

It is evident that we may also let the tensor space 

®#e = !P0 © #e © (#e ® «#) © (#e ® # ® #e) © ... 
operate on the direct sum ^ = ^° © <gv © ... by the rule 

(X! ® ... ® Xs) to = Xt(...X^h...) = [SeXl ...<£xpYe<Sl+s (cbe&). 

But the identity 
(<£X<£Y - S£Y<£X) co = &iXtY}co e Ql+1 (X9 Yetf9 coe Qx) , 

clearly implies (X ® y - Y® X) ti> = Oe Ql+1. It follows that 0 is in reality 
a O ̂ -module, where by 

Qtf = !P0 © # © (<& O M) © (W O X O M) © ... 
we denote the graded free commutative ¥Valgebra over the !F0-module Jf. The 
above results may be reformulated as follows: Let 

(5) 3 = Y.Qh...is<£Xix... <£Xia + (...) (Qh...ise Y0; Xii9 ...9Xia e X) 

be an operator of an exact order s, where dots denote some lower order summands 
of the type g&x... S£ Y (X,..., YeJP, less than s Lie derivatives). Consider the tensor 

(6) Z = 10,...., Xit Q...QXt,e Q'tf . 
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Then Zco = (2tco)A e<3l+s for every coeQ1 with the class coe¥. (Note, besides, 
that the set of operators (5) is identical with the familiar enveloping algebra Utf 
of the Lie algebra _>f so that the above interrelation between the family of operators (5) 
and the corresponding tensor (6) is well-known.) 

If we fix a point z e J, then the !F0-algebra Qffl restricted at the point z turns into 
the common polynomial algebra 

(7) Q$ez = w0z ®#ez® (#ez Q $ez) ®... = R®J?Z® (J^Z Q #ez) ® ... 

over the /a-dimensional linear space _?fz. Quite analogously we obtain the graded 
homogeneous ©^fz-module <3Z = <$% ® <$\ ® . . . . (The homogeneity means that 
Zzco e <$l+s whenever Zz e QSJ^Z and co e <3l

z) The condition (4)2 implies that <$ is 
a finitely generated © Jf-module. It follows that <3Z is a Noetherian O ^ - m o d u l e 
and the machinery of the commutative algebra can be put in motion. (The last rea­
sonings are not quite correct, see the note at the page 383). 

4. A way to homological algebra. Let !Pr s be the !P0-submodule of the module Wr+S 

consisting of all exterior forms rj/ e Wr+S of the type 

(8) \j/ = -UO*. A ... A cokr A ij/k (coki9 ..., cokre Q9 \J/ke Ws) ; 

we also put Wrs = {0} whenever r < 0 or s < 0. Clearly, !P00 = W09 W10 = Q9 

¥o,s = ^V The <£S#o assumption clearly implies d*P1)0 = dQ a Wx x and one can 
see that dWVfS c Wrs+1. 

The forms \j/ e !Fr+_ >s_ _ may be characterized by the property X_ J .. . Xs _J \j/ = 
= 0 for all Xl9 ...,XseJ^. It follows that every factor ^r>s = WrJWr+Us^_ may be 
identified with the !P0-module of all skewsymmetric s-forms defined on the W0-
module Jf with values in the space !Fr>0. That means ^r>s = Wr0 ® ( A SJ4?*) and the 
class corresponding to the form (8) is expressed by the sum 

(9) # = Zo)kl A . . . A cokr®\\/k, 

where the class \f/k e <30tS = AsJf * is nothing else but a simple restriction on Jf: 

^(X_, ..., X.) = iMX . , . . . , __.) (Xl9...9XMeX). 

As a result, we get a naturally induced differential 

d :3 r , _ ->3 r , _ + 1 - a|? = ( d | f f f 6 ? r f l + 1 ( ^ e ^ J . 

But the filtration (3) may be also taken into account. To this aim, let <$\s (r > 0) be the 
of all classes (8) specified by the additional requirement 

(10) cokleQl\ ..., cokreQlr and /_ + . . . + /r ___ Z. 

Then the condition (4) ensures d<3\s c= Gr,t+i. Finally, we look at the class in the 
factor-space Pr>s = 9\J<S\~*. Since T[t0 = <S[t0 = <3\ the class of the form (9)is 
expressed by the sum 

(11) $ = Xcbkl A ... Acokr®$ker\tS (/_ + .. . + /, = / ) , 
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where the summands with 1t + ... 4- Ir < I were deleted by the factorization. We 
obtain a naturally induced differential c: Fr>s -» -Tr*i_. (See the next Section 5 for 
explicit formulae.) 

Altogether, we have the following complexes and homologies: 

(12), ••• - y. . . - 1 — <?„ — *r,s + 1 - • • • , IIClOr,, , 

(13), ... -> 9,,,-. -*-* _*,,, -'-> S r , , + , - . . . , ff(.*)r>,, 

(14), . . . - S r - i , - ^ < s - ^ < +
s | , -» ..., H(<S)\tS, 

(is), ...-»r,,_i. - I t — r,,U. -».. . , -?(r)r... 

The first complexes (I2)r play an important role in geometry and analysis and the 
other ones serve as a more simple approximations for their predecessors. The last 
complex (15)r is already a purely algebraic object. Note that these complexes were 
studied only in the particular case when J is a subspace of the space of all co-jets 
of sections of a fibered manifold, see [6]. In this case we have a fixed hierarchy of 
independent and dependent variables on J and the homologies H(T)l

g s are found to 
be Poincare-dual to the familiar Spencer homologies of systems of differential 
equations, see [7]. Note that the Spencer homologies were defined only in this rather 
particular case in current literature and the original definition essentially employs 
the above mentioned hierarchy of variables. But the homologies (15)r d0 not depend 
on the choice of independent variables, hence the Spencer homologies do not 
depend on it, either. This result is rather surprising if compared with the original 
Spencer's definition, see [8]. 

5. Explicit formulae. A point z e J is expressed by an infinite array of the type 

z°=._(zV-.-W.+ 1(-,+1).--- (-'*-")• 
There exist many local coordinate systems on the space J adapted to the representa­
tion (1), each being defined as a sequence fl5f2,... e C°°(J) = W0 satisfying the 
requirement that every part f 1 ? ...,fni (/ = 0, 1,...) of the sequence lies already 
in C™(Jl) = *P0

n and determines a local coordinate system on J1 near the point zK 
Every form \j/ e W can be locally expressed by a finite number of coordinates while 

a vector field X e TJ is identified with an infinite formal series of the type lLgk djdfk9 

where gk = Xfk are quite arbitrary functions. 
Without any loss of generality, we may assume £ t = df1?..., £n = dfrt in the Sim 

condition. Then, using the more advantageous notation x1 = f l 9 . . . , xn = fn, 
y1 = fn+u y2 = fn+2* ••• for the coordinates, and abbreviations 

(oK = coki A ... A cokr, dx1 = dxh A .. . A dx1' 

for the exterior products, the formulae (8), (9), (11) acquire the following more 
explicit expression: 
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# = E / X Adx1 + cp (f'K e W09 coK e <Fr>0, dx1 e ¥0}S9 <p e <F r+1,s.1), 

# = * / > * ® (dx7)" , 

# = £/£<&* ® (dx7)~ (/, + ... + 7r = /, coxe yrp0) . 
Let 
(16) 3, = 3/cV + Ey* a/5j;fc (y* = dty

k) 

be the local basis of Jf dual to the basis (dx1)"",..., (dx")~ and explicitly defined by 
the identity 
(17) d/ = 13 J. dx1 + co (fe W09 coeQ) 

(cf. the Slim condition). Abbreviating il = iix ...is and using decompositions like 
(17), the differential 3 can be concisely recorded by the formulae 

d$ = ( - l ) r I dJK . o>x ® (dx")" + S/i 3coK ® (dx7)" , 

3# = I / i SA* ® (dx7)~ , 

where the forms dcoK e !Pr>1, dtbK e !Fr
+1 may be determined by the usual rule of 

derivation of an exterior product provided the case of the 1-forms is already known. 
As a result, the calculations are reduced to the case coeQ1 c !F1>0, <be <&[0 = <&l 

and we still have to seek the differentials dco e !F14, dd> e <&l+
tl. But according to the 

Q)lm assumption, we may write dco = Sco,- A dx' + <p with certain cot = —3/ J dco e 
e Ql+1 and <p e T2to (cf- condition (4)x) and the definition of the above mentioned 
differentials easily yields the final result dco = .Scof ® (dx')~, d<& = Scô  ® (dx')~ 
with <&i e &l+1. This completely concludes the calculations. 

NOTES ON COMMUTATIVE ALGEBRA 

6. Terminology and several basic results. Although the commutative algebra was 
invented for quite different purposes, the common setting of the theory requires only 
some relatively mild readjustments. Having this in mind, we shall deal with homo­
geneous graded Noetherian A-modules M = M° © M1 © ... (occasionally we 
understand Ml = {0} if I < 0, for technical reasons) over the graded ground ring 
A = A0 © .A1 © ... which, however, stands for a mere abbreviation of the familiar 
polynomial algebra QJ^Z (cf. Section 3) so that A0 = M9 A1 = 3tfz = H (a further 
abbreviation), A2 = 3tfz © dfz = H Q H9 and so on (see (7)). Moreover, following 
the above idea, we consider only homogeneous submodules N = N° © N1 © ... 
(Nl = Nn Nl) of M and the lelated factor-modules MjN = (MJN)° © (M/N)1 © ... 
((M/N)1 = Ml\Nl) without further explicit warning. In particular, we wish to empha­
size that only the homogeneous ideals a = a0 © a1 © ... (a1 = a n A1) are admis­
sible, the maximal ideal m = {0} © A1 © A2 © ... = {0} © H © (H © H) © ... 
being one of them. 
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Following [9], [10], we recall some classical concepts slightly adapted for our 
needs. Ann M is the ideal of all Z e A satisfying ZM = {0}, Nil M is the ideal of 
all Z G A satisfying ZCM = {0} for all exponents c large enough, Supp M is the set 
of all prime ideals p satisfying p ZD Ann M, Ass M is the set of all prime ideals p 
for which there exists a submodule of M isomorphic to the A-module A/p. Note 
that Ass M is a subset of Supp M but the minimal ideals of the set Supp M (ordered 
by the relation of inclusion) lie in Ass M. The set of all minimal ideals of either 
Supp M or Ass M will be denoted by Min M. Given p e Ass M, we denote by M(p) 
a maximal submodule of M possessing the property p £ Ass M(p). Note that it is 
uniquely determined by p, provided p e Min M. Given a subset Q c Ass M, we 
denote by M(Q) a maximal submodule of M for which Ass M(Q) is disjoint with Q. 
Note that one can take M(Q) = nM(q) (intersection over all q e Q). Finally, if £(L) 
denotes the dimension (in the elementary sense of linear algebra) of an arbitrary 
/^-linear space L, it is well-known that the number /(M° © ... © Ml) is a polynomial 
function of the variable / (the Hilbert polynomial), for all / large enough. Omitting 
the trivial case M = {0}, we shall write 

/(M° © ... © Ml) ~ X(M, /) = J l \ + (...) = ^P/v! + (...), 

where /( = /i(M) > 0 (the multiplicity of M) and v = v(M) (the dimension of M) 

are certain integers, I J = /!/v!(/ — v)! is the binomial coefficient and the dots 

denote some inessential summands of lower degree than the leading term. If v(M) > 0 , 
then obviously 

(18) Z(M') ~ X(M, I) - X(M, / - 1) = nr~ »/(v - 1)! + (...) . 

We conclude with the Krull-Chevalley-Samuel theorem 

(19) v(M) = sup v(MjM(p)) = sup v(A/p) = sup <r(p) . 

The supremum is taken over all p e Ass M (or over all p e Min M) and a(p) denotes 
the length of any longest strongly increasing chain of the type p c p j c ... c p f f 

(a = o-(p)) consisting of prime ideals. 
In order to make the following exposition easy, we state several simple results 

numbered by Roman numerals for quick references. I: If M =f= {0}, then Ass M is 
a finite and nonempty set. II: Sup M = SuppN u Supp MJN. Ill: Supp M ® M = 
= Supp M n Supp M, in particular Supp MJaM = Supp M ® Aja = Supp M ® 
® Supp Aja. IV: Ass MjM(Q) = Q, AssM(g) = M - Q. V: NilM = nip (p e 
e Ass M, equivalently, p e Min M). VI: The multiplication Z: M -• M is injective 
if and only if Z £ up (p e Ass M). VII: If p, q, q are prime ideals and p D q, p D q, 
q 4= q, then o(p) < a(q), <r(p) < cr(q). VIII: If N, N are submodules of M and 
p G Ass M\(N + N), then p => Nil M/(N + N) 3 Nil M/N u Nil M/JV, hence p => q, 
p ZD q with an appropriate q e Ass MJN, q e Ass M/N. IX: The familiar exact 
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Mayer-Vietoris sequence 0 -* M/N n N -> M/N © M/N -> M/(N © N) -> 0 yields 

(20) x(M/N n N, /) = X(M/N, /) + *(M/N, /) - *(M/(N + N), / ) . 

X: The short exact sequence 0 -» N -+ M -> M/N -> 0 yields #(M, /) = x(M/N,1) + 
+ *(1V, /). 

After more or less standard preliminaries we turn to other topics from commutative 
algebra specially invented for future use. 

7. The concept of regularity. Dealing with a module M = M° © M1 © . . . , we 
may introduce the module M+ = {0} © M1 © M2 © ... with the obvious A-module 
structure determined by a simple restriction so that M+ is a submodule of M, in 
particular A+ = m. A little more intricate -4-module M+ c = (M° ffi ... © Mc) © 
© Mc + 1 © ... is defined for c = 0, 1,... by the following multiplication rule: 

Z£ = 0 whenever Z e m and £ : M° © ... © M c - 1 c (M+c)° , 
the product Zf is retained if Z e R or ^ e Mc ffi Mc+1 © ... . 

The module M+ c is not (in general) a submodule of M. The products Zf may be dif­
ferent if Z e m and £eM° © ... © Mc_1 . Note that (M+c)+d = M+(c+d) and the 
module M+ c + = M C + 1 © M C + 2 © . . . already is a submodule of M. 

We shall often deal with ordered sequences of the type X* = Xi9 ...9XV (v = 
= 0, 1,...) with the terms Xl9 ...9XV lying in H. In this case, (X)k denotes the ideal 
generated by the family Xl9...9Xk (k = 0,..., v; we put (X)0 = {0}). Slightly 
modifying the common concepts from the commutative algebra, we call the mentioned 
sequence Mc-regular if the (naturally induced) multiplications 

(21) Xk: (MJ(X)k^Mc) -> (M\(X)k_ XMC+ *) (k = 1,..., v) 

are injective mappings. The above sequence X* is called M-quasiregular (cf. [11]), 
if the multiplications (21) are injective for every c = 1, 2 , . . . . Finally, X is called 
an M-general sequence (a new concept) if the multiplications (21) are injective 
for all c large enough. (Unfortunately, the classical concept of an M-regular sequence 
X* for which (21) are always injections is almost useless here. We wish to mention 
that, unlike the classical case, the order in the sequence X* is important and cannot 
be changed.) 

8. Existence questions, (i) K* = Xl9 ...9XV is an M-quasiregular sequence if 
and only if Xk ̂  up (pe Ass M+j(X)k-iM

+) for all fc = 1,..., i;. The same se­
quence is M-general if and only if Xk $ up (p e Ass M+c+\(X)k-iM

+c+) for all c 
large enough. 

(ii) Let Mi9M29... be .4-modules and X* = Xi9 ...9XV an Mrquasiregular 
sequence for all i = 1, 2, This sequence may be enlarged to a simultaneously 
Mrquasiregular sequence Xi9..., XV9 Xv+ x if and only if m $ Ass M+\(X)V M+ for 
all i = 1, 2 , . . . . (Trivial, since H n (up) (union over allp e Ass M+\(X)V M+ , i = 
= 1, 2 , . . . and p # m) is a proper subset of H9 cf. I.) 
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(iii) With the possible exception of the maximal ideal m, the sets Ass M, Ass M+ , 
Ass M+c coincide. (Directly from the definition of Ass and the fact cr(p) = 0 if 
and only if p = m, see (19).) 

(iv) m $ Ass M+c+ for all c large enough. Proof: If m £ Ass M, then m £ Ass M+c+ 

according to the definition of Ass. Let m e Ass M. Then v(M/M(m)) = a(m) = 0 
(cf. (19)), hence £(Ml\M(m)1) = 0 for all / large, say, for / = c (cf. (18)). It follows 
that M(m)' => Ml (I ̂  c)9 hence m £ Ass (Mc © Mc+1 © ...) according to the 
definition of M(m). 

(v) The multiplication Z: M+c+ -• M+c+ is injective for all c large enough if 
and only if Z £ up (p e Ass M9p =}= m). A consequence of (i), (iii), (iv). 

(vi) X* = Xl9 ..., Xj, is an M-general sequence if and only if Xk $ up 
(p e Ass M\(X)k-tM9 p * m) for all fc = 1,..., v. (See (v).) 

(vii) Let Ml9 Ml9... be given A-modules. A simultaneously Mrgeneral sequence 
X* = Xl9..., Xv (in particular, the empty sequence for the case v = 0) can be always 
enlarged to a sequence Xl9..., X^, .X^+i which is simultaneously Mrgeneral as well. 
Indeed, the aditional term should be chosen from the complement of the set u(p n H) 
(union over p e Ass M ;/(.&% Mi9 i = 1, 2, . . . ; p 4= m) in the space H (cf. (vi)). 
This is always possible since the complement is nonempty (cf. I). 

9. A property of M/N-general sequence. We begin with elementary considerations. 
Let a be an ideal and N a submodule of M, as usual. Look at the exact commutative 
diagram (22) but without the dotted arrows and the term W (for a moment). 

0 

I 
0 0 u 

(22) 0 -+ aN -> aM -• aMfaN -» 0 

i l l 
0 -> N -> M -> MJN -+ 0 

0 -* V -» N/aN -> M/aM ~> JV —* 0 

0 0 0 

A simple diagram chasing shows that the kernels U, Fare isomorphic. Moreover, the 
four properties 
(23) U = {0} , V = {0} , AT n aM = aN, aM/aN = a(M/N) 

(the last property means a natural isomorphism) can be found equivalent. (Indeed, 
the modules U and V are isomorphic to N n aMjaN and there are isomorphisms 
a(M/N) = (N + aM)lN = aM/N n aM.) If (23) is satisfied, then 

(24) (MlaM)]NlaN) = (MJaM)l((N + aM)/aM) = M/(N + aM) = W, 

(M/N)/(aM/aJV) = (M/iV)/((AT + aM)/N) = M/(N + aM) = W, 
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and the diagram (22) with U = V = {0} may be completed by the above mentioned 
module W. 

In particular, let N = bM, where b is an ideal. Then the third condition (23) may 
be read as aM n bM = abM so that the role of the ideals a, b is symmetrical and the 
last condition (23) yields the identities 

(25) aM/abM = a(M\bM) , bMJabM = b(MjaM) . 

One can observe that the above reasoning is valid also for every fixed level / of the 
gradations. That means, we may substitute the components Ul, (aN)1, Nl, (NjaN)1,... 
for the corresponding modules U, N, aN9NjaN9..., for every fixed degree /. If the 
propeities Ul = {0},..., (aM/aN)1 = (a(MJN))1 corresponding to (23) are satisfied, 
we obtain a linear space Wl (instead of the module W) from the relations (24) and the 
identities (25) for the degree /. Now* according to Lemma 10 below, this modification 
may be accomplished if we choose a = (X)k (fe = 1,..., v)9 where X* = Xl9 ...9XV 

is an (M/N)'" ^regular sequence. Then, abbreviating M* = MJ(X)VM (for any 
module M) the isomorphisms (23), (24) yield the rule M*/N* = (M/N)*. At the same 
time, the second isomorphism (25) can be read as (bM)* = (b . M*)1 so that we have 
the identities (M*jb . M*)' = (M*l(bM)*)1 = (MJbM)1* . 

We shall, however, need only a weaker (but more suggestive) variant of these 
results. To this aim, let us write M ^ M (M c M) for every pair of modules M = 
= M° ©M1 ® ... and M = M° ® M1 ® ... such that Ml = Ml (Ml <=. Ml) for 
all / sufficiently large. One can verify that M ^(z)M implies aM = (c=) aM for 
any ideal a, and #(M, /) = (^) #(M, /) + const. The above considerations can be 
easily reformulated in terms of the relation _̂ . In particular, if X* = Xl9 ...9XV is 
an M/N-general sequence then, according to Lemma 10, we have N n aM _̂  aN 
(a = (X)k), the modified conditions (23) are satisfied and we obtain the following 
result: 

(26) N.tciM*, (M/N)* ^ M /̂N* , (bM)* s b . M* ; 

the last identity corresponds to the special case N = bM. 

10. Lemma. Let X* = Xu ...,XV be an (MJN)c~1-recrular sequence. Then 
(M n (X)k M)c = ((X)k N)cfork=\,..., v. 

Proof. The inclusion 3 is trivial. Passing to the opposite case c=, assume that 
£e(Nn(X)kM)c, that means, £ = X^t + ... + Xk£keNc with (l9..., ^eM0"1. 
It follows that Xhik = £ — X^t — ... — Xk-^k-i a n - the regularity assumption 
implies ffce(N + {X\-lM)e~1

9 that is, £k = rj + X1rj1 + ... + Xk-1rjk-1 with 
rjeN0"1 and rjl9 ...,rjk-1e Mc"2. (Recall the formal convention Ml = {0} whenever 
/ < 0.) Hence 

t = *i(£i + Xktjx) + ... + **-i(£*-i + -3-tf*-i) + Xktj = C + Xktj, 

where f = { - Xktj eNc n ((X)k-tM)c = (N n (__)4_-.Af)c. Since the case k = 1 
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(or even k = 0) is easy, we may proceed by induction on k. So we conclude £ e 
e((X)k^N)c, hence 

• { = C + Xkrj e ((XX^Nf u (X,iV)c) <= ((X)kN)c 

and the proof is complete. 

11. Several results on multiplicities, (i) Let Z e As (s = 1), Z £ up (p e Ass M, 
p 4= m). Then the multiplication Z: M* -• Ml+S is an injective mapping for / large 
enough (cf. (v) Section 8) and the exact sequence 0 -> Ml --> Ml+S -> (M\ZM)l+s -> 0 
yields the relation x(M, I + s) = x(M\ZM9 I + s) + x(M91) + const., see X and 
(18). Assuming v(M) = 1, we obtain v(M\ZM) = v(M) - 1, fi(M\ZM) = 5 /z(M), 
by simply equating the leading coefficients. 

(ii) Let X* = Xl9 ...9XV be an M-general sequence. Successively applying (i), 
we obtain v(M\(X)k M) = v(M) - k9 fi(M\(X)k M) = fi(M) for the case 0 = k = 

= v(M) and obviously v(M\(X)k M) = 0 if k = v(M). 
(iii) We are going to prove that v(M\ZM) = v(M) — 1 for every Z e As (s = 1). 

The case when Z lies in some ideal q e Ass M with cr(q) = v(M) is easy. Indeed, in 
this case q e Supp M\ZM = Supp M n Supp A\ZA and it follows that v(M\ZM) = 
= sup <r(q) = c(q) = v(M), according to (19). So, denoting by Q the set of all ideals 
qeAssM with <x(q) = v(M), assume that Z£(Jq (qeQ). Clearly v(M\ZM) = 

= v(M\(ZM + M(Q)) and we have the isomorphisms 

Af/(ZM + M(Q)) = (M\M(Q))\((ZM + M(Q)) = (M\M(Q))\Z(M\M(Q)) . 
• 

Since Z $\Jq (c\e Q = Ass M/M(g), cf IV, point (i) applied to the module M = 
= M\M(Q) yields v(M\ZM) = v(M\ZM) = v(M) - 1, where v(M) = v(M\M(Q)) = 
= sup a(q) = v(M). This concludes the proof. 

(iv) Let Q, Q be disjoint and nonempty subsets of Ass M. Inserting N = M(Q)9 

N = M(Q) into (20), we obtain the additivity formula 
(27) X(M\M(Q u g), /) = x(M\M(Q)91) + x(M\M(Q)9 /) + (...), 

since the last term x(M\M(Q) + M(Q)91) = (...) is inessential (cf. VIII, VII, (19)). 
The formula (27) can be generalized to the case of more disjoint subsets Q, Q9Q9... 
of the set Ass M, of course. 

(v) Continuing the preceding point, let us choose Q = Min M> Q = Ass M — 
- Min M. In this case M(Q u Q) = M(Ass M) = {0} (cf. I) and x(M\M(Q)91) = 
= (...) is an inessential summand (cf. VIII, VII, (19)) so that (27) reduces to the 
relation X(M9 /) = x(M\M(Q)91) + (...). But x(M/M(S), 0 = Zx(M\M(q)91) + 
+ (...) (sum over q e Min M) as follows from the above additivity formula. We have 
the final result 

(28) fi(M) = Xii(M\M(q)) (q e Min M and <r(q) = v(M)) , 

since the summands x(M/M(q), i) with c(q) < v(M) are inessential. (We also refer 
to [12].) 
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(vi) Let Q cz Ass M be a nonempty subset, Q = Ass M — Q, a = C\q (q e Q). 
According to IV, V, we have acM c M(Q) for all exponents c large enough. In this 
case we may write x(M\acM, I) = yfM\M(Q), I) + *(M(Q)/acM, /) (cf. X) and soon 
we shall prove that the last summand in this identity is inessential. So, comparing 
the higher order coefficients, we have 

(29) v(M\acM) = v(M\M(Q)) = sup <j(q) (supremum over c\e Q) , 

li(M\acM) = li(M\M(Q), I) = Z/<M/M(q)) (q e Q, a(q) = v(M\M(Q)) , 

(cf. IV, (19), (28)). Let us return back to the summand mentioned above. Let p e 
e Min M(Q)\acM be arbitrary. Then, on the one hand, there exists an ideal 
q e Ass M(Q) = Q such that p -̂  q (cf. IV, II) but, on the other hand, 

Min M(Q)\acM c Ass M/acM c Supp M/acM = Supp M n Supp A/ac 

(cf. Ill), hence p e Supp A/ac, p 3 ac, p =) a and p r> q for an appropriate q e Q. 
It follows that v(M(Q)jacM) = sup a(p) ^ a(q) <: v(M/M(Q)), according to (19) 
and VII. This concludes the proof. 

(vii) Continuing the preceding point, we mention the particular case of a fixed 
ideal a = q e Min M for which (29) reduces to the equation 

(30) KMtfM) = /<M/M(q)) = <r(q) . 

We assume qcM <= M(q), of course. 

INVARIANCE OF ASSOCIATED IDEALS 

12. Preliminary results. Let (3) and 

(31) Q~*:... c O"1 = {0} c S ° c ... c Qk cQk+1 c ... c Q = \JQk 

be two good filtrations of a diffiety Q. According to &in, for every integer / there 
exist K = K(l), L = L{1) satisfying Ql <= QK <= QL and it follows that 

(32) Ql+C c QK+C c GL+C (c = 0) 

for all / large enough, see (4)2. Recall the -4-module <SZ from Section 3 and let <HZ = 
= #° © <$z © ... (.?* = n*/nk_1) be the analogous objects for the second filtration 
(31). Since t(Ql

z) = <f(S?° © ... © Sj), •(-?) = «f(#2 © ... © f*), we have the ine­
quality x(&z> I + c) = x(#z, X + c) = x(^z, -L + c), that is, 

/.(/ + c)7(/ + e)\ + (...) = KK + c)~7(* + c ) ! + (•••) = 

= / . (L+c)7(L+c) !+ (...) 

valid for all nonnegative c. It follows that the constants v = v(<&z) = v = v(^z) and 
\i = Ii(^z) = /Z = /*(^z) are independent of the choice of the filtrations and are 
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invariants of the diffiety Q itself. (Note that analogous constants are known in 

differential algebra and play the role of a trancendence degree and multiplicity 

of a differential field. They belong to the most important achievements of the the­

ory. For the analytical case of the classical theory of exterior differential systems, the 

meaning of these constants is also well-known: The general solution of the system 

depends on \i functions of v variables, see [12].) Without referring to this preli­

minary result, we are going to prove the following assertion: 

13. Theorem. Let O*, :Q* be good filtrations of a diffiety Q and let a point z e J 

be fixed. Then Min <$z = Min # 2 and //(^z/^2(p)) = p{§zJ$z(v)) for every ideal 

V e Min ^ 2 = Min §z. 

In accordance with, the above invariance, we propose the expressive (but a little 

formal) notation \(QZ) = v(&z), ii{Qz) = fi(9z)9 Min Qz = Min ^ 2 , ii(QzjQz(v)) = 

= /i(^2/^2(p)), replacing the letter ^ related to the accidental object, to the filtration, 

by the letter Q corresponding to the absolute one, to the diffiety itself. 

14. Double filtrations. Before passing to the part proper of the proof, we shall 

consider some interrelations between good filtrations (3) and (31). We begin with 

introducing the !F0-modules 

9l'k = Qln QkjQl~x nQk = (Ql n Qk + Q 1 " 1 ) ^ 1 " 1 , 

9l* = Qln QkjQl n ^ 1 - - (Ql n Qk + D * " 1 ) / ^ - " 1 , 

appearing in the filtrations 

ol,k _ <vЛ,k+l 
cz ... c r' = u^ř,\ 

. . . c #'•* c §l + 1>k c ... c §k = \J§l>k . 

One can observe that the corresponding bigradations are isomorphic, 

^i,k^i,k-i = Gi,k ssgi*jgi-i.k9 

so that the corresponding graded !F0-modules 

. . . © Gl>h © Gl>k+1 © . . . , . . . © Glk © Gl+1* + ... 

consist of the same components. 

A rather important fact is that these gradations are of a finite length. Indeed, 
recall the inclusions (32). They may be rewritten in the form Qk~{K~l) c Qk c 
c Qk+(L~K) with / fixed and k = c + K = K. It follows that 

(33) Qk~c cQkcz Qk+C (all fc, c fixed and large) . 

In particular, Qk~d c Qk~c~x c Qk~x (d = c + 1), hence Qk~d n Qk cz Q^1 and 
consequently <§k~d>k = {0}, provided d _ c + 1. Quite analogously, the inclusion 
Qk c Qk+C c Qk+d (d = c) implies Qk+d n Qk = Qk and consequently §k+d>k = 
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= (Qk + fl'"1)/^-1 = §k. So we have Gk~d>k = Gk+d>k = {0} and the above 
filtrations and gradations take on the following form: 

(34) 0U-C-1 = | 0 j <_ gl,l-c c _ c ^ M + c = ^ ^ 

<gk-C~l,k = |QJ c ^fc-C,fc c _ c ^fc + C.fc = ^ 

(35) . . . e {o} e G1>1~C © . . . © G M + C e {0} © . . . , 

... © {0} © Gk~c>k © ... © Gk+C>k © {0} © . . . , 

where c is a fixed constant. 

Our next aim is to introduce several ©^-module structures. This may be ac­
complished by means of the operators (5). For example, every such operator of 
degree s yields a mapping %: Ql -> Ql+S and the naturally induced mapping Z: 9l -> 
—> <gl+s is unambigously determined already by the tensor (6). We have only repeated 
the reasoning of Section 3, of course, but an analogous procedure can be done with 
&k, <&l*k, §lik and GUk as well. As a result, we obtain the multiplications 

7* <§k —• gk + s <gl>k _-> <gl + s>k + s <gl,k __^ gl + s,k + s Ql,k _^ Ql + s,k + s 

and the O^-module structures on the graded spaces 

9 = ®<S\ 9 = ®f\ <&{l~k) = @^l+5'fc+*5 ^('-fc) = @f-+*.*+* ^ 

Gil'k) = ®Gl+s>k+s. 

They are closely interrelated: &(t) and ^ ( 0 are submodules of CS and ^, respectively, 
we have the filtrations 

(36) ... c: ̂ (r) c &*'» c ... c # = n^ (0. 

... c f(f) c ^ ( t+i ) c... c f = n^(0> 

and the corresponding graded modules are isomorphic to the module G(t): 

(37) gWjgit+i) = G(t) ^ g(t)j§(t-i) m 

The above inclusions cannot be taken literally but only up to certain isomorphisms. 
For instance, the inclusions ^l~k) c ^e-*-1) are direct sums of the injections 

9*-k = (fl 'n fl* + fl'-^/fl1-1 - ( f l ' n r 1 + Q1-1)^1-1 = fl''*+1. 

Note that 

(38) <$W = {0} (f > c) , ^(f) = 9 (t = - c ) , ^ ( 0 = {0} (* < - c ) , 

# ( 0 = f (t = c), 
as follows from (34). 

Inserting the lower index z, we can localize the above objects at a point ze J. 
The O^f-modules turn into Noetherian ^-modules interrelated by various filtrations, 
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gradations and A-homomorphisms. Since the reasonings are obvious, we need not 
go into details. See the note at the page 383. 

15. Proof for the ideals. Recall that our aim is to prove that the minimal ideals 
of the sets Ass 9Z and Ass 9Z are the same. Owing to the symmetry of assumptions, 
it is sufficient to verify that an arbitrary ideal q e Ass 9Z contains a certain ideal 
q e Ass 9Z. One can also observe that this happens if and only if the intersection 
f|p (p e Ass 9Z) is contained in the intersection flP (p e Ass 9Z). In other words, 
assuming Zef)p = Nil 9Z, we wish to prove that Z e f|P = Nil 9Z. Note that it is 
sufficient to deal with a homogeneous element Z e As under the stronger assumption 
Z e Ann 9Z, otherwise we take an appropriate power of Z instead of Z. 

We come to the mairi part of the proof. The assumption Z e Ann 9Z clearly implies 
Z e Ann 9z

l), hence Z e Ann Gz
(r) for all t. Then, passing to the dashed filtration, the 

last inclusion means that the multiplication by Z turns every module 9Z° into the 
module 9Z

%~1) and it follows (see (38)) that the iterated multiplication by the product 
Z ...Z = Zlc sends every module 9z

l), in particular the module 9Z
C) = 9Z, into zero. 

So we have Z e Nil 9Z and the proof is complete. 

16. Proof for the multiplicities. Recall that our aim is to verify the equality 
fi(9zJ9z(q)) = fi(9zJ9z(q)) for every ideal q e Min 9Z = Min 9Z. The connection 
between these multiplicities is provided by the usual double filtrations, of course, 
but the ideal q under consideration must be isolated and taken under control. 

Following this strategy, the above modules 9z
f) and 9Z

X) will be replaced by the 
more complicated 

G(0 = 9z
t)\9z

t)(^ ( if q e A s s 0(0) $ G(r) = | 0 J ( i f q £ A s s ̂ (0) 

and analogous modules G(r) for the second filtration. Within the same filtration, these 
modules are closely related since 

(39) 9z%q) = 9? n ^z(q) (q e Ass 9^) , 9z
l) cz 9z(q) (q * Ass 9?) 

and analogously for the modules 9(r)(q). It follows that there are filtrations 

(40) ... c G(r) c G^-^ c . . . , ... c G(r) c G ( r+1) c ... 

exactly corresponding to the original filtrations (36). But unfortunately, the module 
^z(q) seems to be unrelated to 9z(q) and the existence of isomorphisms which should 
correspond to the relations (37) is not clear. For these reasons, we introduce simpler 
modules 

pit) = 3(0^(0 y f (0 = 9f\qc9z
x) 

with c large enough, ensuring 

(41) q^'><-^'>(q), q'f <'> <= ^f)(q) 

for the cases when q e Ass 0j° , q e Ass .?<°, respectively (the existence of c follows 
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from IV, V). One can verify that these modules F(r), r(t) approximate the modules G('>, 
G(t) in the following sense: If q e Ass ^ ( , ) , then v(G(r)) = v(F(r)) = a(q) (a con­
sequence of III and (19)) and fi(G(t)) = fi(r(t)) (see (vii) Section 11). If q £ Ass ^ ( r ), 
then v(r(t)) < c(q) as follows from III and VII (this is a trivial case). Analogous 
results are valid for the dashed modules G(t)

9 t(t). 
All modules needed for the proof are now available. In terms of these modules 

we wish to equate the multiplicites ii(&2\<gz(q)) = ^(G(~c)) = fi(r(~c)) (cf. (38)) 
with the dashed multiplicities /i(#r/£2(q)) = li(G(c)) = /^(F(c)) or, briefly, we wish 
to prove that fi(r(~c)) = 1*(F(c)). 

A promising way consists in decomposing the modules r(~c)
9F

(c) into certain 
isomorphic factors, in other words, in establishing some substitutes for the relations 
(36) and (37) but with modules F(0, F(0. But unfortunately, the behaviour of the last 
modules is not so simple and it calls for a more intricate and less straightforward 
methods. We shall employ the achievements of Section 9 introducing a sufficiently 
general sequence X* = Xl9 ...9XV of the length v = c(q) — 1. (The term swf-
ficiently general means that X* should be an M-general sequence for a certain broad 
family of various modules M appearing in the course of proof; see (vii) Section 8, 
for the existence of X*.) We shall mention several properties of such a sequence X*, 
successively directed towards the proof of the above equality of multiplicities. 

We begin with the following reformulation of the approximation property: If 
qe Ass^ ( 0 , then v(G(*°) = v(F(*°) = 1 (cf. (ii) Section 11) and the dimensions of 
the homogeneous components of the gradations are ^((G*0)') = fi(G(t)) = fi(r(t)) = 
= K-Ti0) = 4(-T(*0)') (cf. (18) and (ii) Section 11). If q$ Ass ^(r), then v(G(*°) = 
= v^P) = 0 and /((G^)') = /((F(*°)') = 0 for all Marge enough (tiie same rea­
soning). Analogous results are valid for the modules G(r), F(0. 

We continue with the observation that the filtrations (40) lead to the inclusions 

(42) ... £ G<p S G(r1} S ..., ... £ 5<f> £ G<?+1) £ . . . , 

as follows from (26) and the assumption that K* is a G('-1)/G(0- and G(f+1)/G(r)-
general sequence. An analogous reasoning applied to (41) yields the inclusions 

(43) ef9$ £ ^'>(q)„ , q'fjg £ f <'>(q)* 

provided q e Ass ^z, q e Ass §z9 respectively. But we already know that the dimen­
sions of the factor-spaces 

* w w = (G*°)'. (̂ *7<«)' = w 
are equal for / large enough. It follows that the inclusions in (43) may be replaced 
by the equalities =. Then, according to (39), we have 

One can observe that the relations G^ £ I*? are (trivially) satisfied also for the 
case q $ Ass £?<*>. Analogous results are valid for the dashed modules, of course. 
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We come to the final part of the proof. According to the last result, (42) may be 
rewritten as 

~ r(0 ~ r ( f _ 1 ) ~ ~ r(0 ~ f(- + 1) ~ 
• •• c - * c - * <z ••• » ••• c -i * c •- * <--•••• 

The existence of such a filtration is not a self-evident fact and is equivalent to the 
relations 
(44) q^<2 S <?<-,> n q ^ " » , q<§ <!> ~* $<!> n qcf <'«,-» . 

These relations lead to the crucial isomorphisms 

r?!n+1) = W l ) 

exactly corresponding to (37). (Besides an elementary verification of the last assertion, 
an approach based on Section 9 is possible, too. Indeed, let us put M = ^(*\ N = 
= ^z*

+1\ <* = qc- Then (44) is identified with (23) and the isomorphisms (24) 
together with the rule (26) and the isomorphisms (37) lead to the result 

rjf>/n,+ 1) = MlaM)l(NJaN) £ (MJN^MJN) = G(2/qcG(2 . 
Analogously F^/F^"0 = G^/qcS(2 from the symmetry of assumptions.) 

The proof is concluded by the equation 

n[r<-*) = /((/<«-<>)') = ^((r^in+1))1) = 

= 2y((n'+,)/n0)') = 4(I,*))0 = !<f(c)) • 
We employ the finiteness (38) rewritten for the modules F(0 and T{t) and the 
obvious inclusions q e Ass ^ ("c ) = Ass ^z , q e Ass @z

c) = Ass #z. 

17. Corollary. The *dea/s q e Ass 0Z w/fh cr(q) = v(&z) are invariants of the 
diffiety Q and the number fi(&z) = 2^(^z/^z(q)) (sum over q 6 Ass ^z, <r(q) = v(0z)) 
does nof depend on the used filtration, either (See (28) for the last sum.) 

18. A formal concept of prolongation. Consider filtrations (3) and (31) of a diffiety Q. 
The filtration Q* is called a prolongation of the filtration Q* if Ql <= Ql for all /. In 
particular, if only the filtration Q* is given, then the special filtration Q* defined 
by Ql = {0} (/ < 0), Ql = Ql+C (I = 0) is called a normal c-prolongation of Q* 
and is denoted by Q* = Q*+c. Usually we assume c = 1, 2, . . . and the case c = 1 
is named a normal prolongation. 

According to 3Fin condition, for every pair Q*9 Q* of (good) filtrations of Q there 
exists a constant d such that Q*+d is a prolongation of Q*. (Indeed, look at the inclu­
sion (32) which implies Qc c Ql+C cz Qd+C (d = K(l) + /) with / fixed and large 
enough.) One can easily see that the graded © ̂ -module derived from the normal 
c-prolongation Q*+C is identical with the module <§+c (which explains the seemingly 
artificial definition of multiplication for the last module, cf. Section 7.) According 
to (iii) Section 8, all associated prime ideals different from the maximal ideal m are 
preserved under all normal prolongations. On the other hand, non-minimal ideals 
(the so called embedded ideals) need not be preserved. Since the case of the maximal 
ideal is easy, we shall state another and less trivial example. 
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19. Example. We wish to construct certain filiations Q*9 Q* satisfying UP * UP 
(the unions are over p e Ass ^2 and p #= m, p e Ass §2 and p 4= m). Indeed, then the 
sets Ass ^2, Ass §2 surely differ by a non-maximal ideal. 

Let an arbitrary (good) filtration Q* of a diffiety Q be given. We shall assume 
/(H) = v(A) = v(&2) = 2. Let X, Ye tf be such vector fields that the sequence 
X* = X29 Y2 is ^2-quasiregular. (Note that the last assumption is inessential since 
it is satisfied if X29 Y2 is a ^-general sequence and we take an appropriate c-normal 
prolongation Q*+c instead of Q*.) Moreover, we assume Ql+1 = Ql + SexQ

l + 
+ Z£yQx (I = 0, 1,...) which is again an inessential restriction, see (4)2. 

We come to the part proper of the construction. By virtue of v(&2) > 1 we have 
X2<3\ * .^ 2 and there exists co° e Q° such that Y2&°iXz<3°. Put recurrently col+1 = 
= gyo)1 (I = 0). Clearly © l + 1 e Ql+1 and <b\+1 = Yz&\ e <3X+1 for the classes. One 
can verify that d>\+1 = Y2&\ $<3\ due to the quasiregularity assumption. Now, 
consider the filtration Q* defined by Ql = {0} (/ < 0), Ql = Ql + $£XQX (I = 0). 
It is possible to prove that Q* is a good filtration. Nevertheless, we have cox e Ql

9 

S£xio
xeQx

9 S£Y(£>1 = col+1 $Ql and, temporarily denoting by dash the classes 
corresponding to the second filtration, we have a32 e §\9 X2co\ e %\9 Y2co\ $ §\. It 
follows that Xz e UP> hut clearly X2 $ UP since Xz9 Y2 is a 0z-quasiregular sequence. 

CHARACTERISTICS AND COMMUTATIVE ALGEBRA 

20. Definition and classification. Let a filtration Q* of a diffiety be given and let 
a point z e J be fixed. A linear subspace Lof the space H = «?f2 is called a charac­
teristic subspace (to the filtration Q*9 at the point z), if there exists no ^-general 
sequence X* = Xl9 ...9XV of length v = /(L) with terms Xl9 ...9XV lying in L. 
More in detail, let us denote by Aw(^2) (in short, Aw9 where u = 1, 2 , . . . and w = 
= 0, 1,...) the family of all linear subspaces L c H of dimension /(L) = w + w 
such that there exists a ^-general sequence X* = Xt,..., Xw in Lwhich is a maximal 
^-general sequence in L, i.e., the enlarged sequence Xl9 ...,XW9XW+1 cannot be 
^-general for any Xw+l e L. 

We shall prove later on by homological methods that every maximal ^-general 
sequence lying in the space LeAw is necessarily of length w. Taking this fact for 
granted, it is obvious that the sets Aw are mutually disjoint and may be determined 
by the following construction: 

AQ with M ̂  1: A subspace La H belongs to AQ if and only if there exists no Xt e L 
such that the multiplication Xt:9

l
M -* &\+1 is injective for / large enough. That 

means, X: &+c+ -* (3+c+ (c is large) cannot be an injection for any X e L or, equi-
valently, L c U(p n H); the union is over p e Ass ^2, p 4= m (see (v) Section 8). It 
follows that a characteristic subspace Le AQ is determined by the choice of an ideal 
p 6 Ass &z9 p 4= m, and some linearly independent vectors Xi9 ...9Xuep n H. If 
this choice cannot be realized, then AQ is empty. 
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Aw with u = 1 and 0 < w < v(^2): We begin with an arbitrary ^-general sequence 
Xl9 ...9XW. Note that these vectors are linearly independent since v(9zj(X)1 <$z) = 
= v(»x) - 1,..., v(9zj(X)w 9Z) = v(9z) - w > 0(cf. (ii) Section 11). Then we choose 
an ideal p e Ass 9zj(X)w <&z9 p + m, and some vectors Xw+l9...,Xw+U such that the 
total sequence Xl9 ...9XW+U consists of linearly independent vectors. The last 
sequence spans the desired space LeAw. The family Aw may be empty, of course. 

Aw with u = 1 and w = v(^2): If X* = Xl9 ...9XW is a ^-general sequence of 
length w = v = v(^2), then v(&zl(X)v 9Z) = 0 (cf. (ii) Section 11), hence 
v($zl(X)w 9Z) = 0 as well, and ^[\(X)W <$l~x) = 0 for all / large enough. It follows 
that the sequence X* may be enlarged by an arbitrary vector Xw + 1eL9 it is never 
maximal and Aw is empty. 

The general concept of characteristics was clarified in E. Cartan's work, but he 
explicitly considered only the particular case denoted here by Aw which exactly 
corresponds to the unpleasant boundary value problem to which the Cauchy-
Kowalewska theorem cannot be applied (cf. [13]), and his definition is reasonable 
only for the involutive case (see Section 35 below). Note that unlike the classical 
differential geometers, the contemporary experts on partial differential equations 
usually deal only with rather special problems and, as the general concept of charac­
teristics is concerned, many ambiguities are present in current literature. 

Note, finally, that a linear subspace Lof H is called regular (to the filtration Q*9 

at the point z), if Lis not a characteristic subspace, that means, if there exists a ̂ 2-
general sequence X* = Xl9 ...,XW of length w = /(L) in L. Note that in this case 
any maximal ^-general sequence in Lis of length at least *f(L). The set of all regular 
subspaces Lis denoted Aw(&z) (Aw9 in short) and is very rich (cf. (vii) Section 8). 

21. Invariance of characteristic subspaces. Repeating once more the construction 
of Aw (u = 1, 0 = w < v(^2)), let us choose a ̂ -general sequence X* = Xl9 ...9XW 

and look for the ideals from the set Ass <SZ\(X)W <§z. Little can be said about the gener­
al case, but the minimal ideals constituting the set Min 9zj(X)w <8Z can be described 
more easily since they coincide with the minimal ideals of the set 

Supp 9J(X)W $z = Supp 9Z n Supp A/(X)W 

(cf. III). It follows that q e Min 9Z if and only if there exists an ideal q e Min 9Z 

such that q is a minimal ideal in the set of all ideals including both p and (X)w. 
According to the first assertion of Theorem 13, the set Min 9Z does not depend on 
the auxiliary filtration Q* and we conclude that the same is true for the set 
Min 9zj(X)w gz of all above mentioned ideals q. As a final result, if we choose some 
vectors Xw+l9 ...9XW+Ue qn H linearly independent of Xl9...,Xw9 then the linear 
span L of the family Xl9..., Xw+U is a characteristic subspace for all good filtrations 
ofthediffietya. 

The second assertion of Theorem 3 concerning the multiplicities cannot be 
employed for the theory of characteristic subspaces in such a simple manner. It is 
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nevertheless true that 

(45) fi((9zl(X)w 9,)I(9ZI{X)W 9,) (q)) = /i((f ,/(X)„ 9t)l{9J(X)w 9t) (q)) 

for any two good filtrations -2* and .0* of the diffiety .0, provided X* = Xj , . . . , Xw 

is a sufficiently general sequence. The above constant (45) may be taken for the 
multiplicities of the above mentioned characteristic subspaces derived from the 
ideal q by the above procedure. (Note that the understanding of the term suf-
ficiently general sequence X* is a little different than in the previous sections. The 
sequence X* is apriori given, of course, and the above statement means that the 
multiplicities of the characteristic subspaces can be regularly calculated if we use certain, 
not too special, filtrations of Q.) 

The invariant sense of characteristic subspaces is a rather important fact for the 
classification theory of general systems of partial differential equations. Eventually, 
the concept of an elliptical, hyperbolical, etc. system is proved invariant for a very 
wide category of transformations. Some modifications permit to include the case 
of complex characteristic subspaces, but we do not follow this (rather obvious) way. 

22. On the multiplicity of characteristics. Our aim is to verify the equality (45) 
for any ideal q e Min 9Z\(X)W <&z = Min ^2*/(K)w ^z* and a sufficiently general 
sequence X* = Xl9..., Xw of length w < v(9z). One can observe that (45) is a gener­
alization of the second assertion of Theorem 13 which formally arises for the parti­
cular case w = 0. It follows that the strategy of the proof should consist in replacing 
all modules M appearing in Section 16 by the factors M* = M\(X)W M. 

As an example, we obtain the inclusions 

• •• c ^z* c '-5r
2* c ••• > ••• cz ^ r * c: « ẑ* c . . . 

standing at the place of the original filtration (36). (We suppose that X* is 9z
t^1)\^z

t)-
and ^(

z
r+1)/#<r)-general here. This is the only assumption on the sequence X* needed 

in the proof.) Then the ideal q is isolated by considering the modules 

G(0 = &M (if q 6 Ass S<2), G<'> = {0} (if q * Ass S<2) 

and the auxiliary approximating modules 

F«) = grJ2/q'*i8 with q'Sf<2 c 9% (if q e Ass 9Z% . 

After these mild arrangements, the other part of the proof runs quite analogously 
as in Section 16 and therefore is omitted. 

23. A particular case- The above construction of characteristic subspaces cannot 
usually start with an arbitrary (not ^-general )sequence X* = Xl9 ...9XV but there 
is the following important exception: Let Xi9...,Xv e H be a sequence satisfying 

(46) y(9j(X)p <SZ) > v(^) - t(L) > 0 , 

where L denotes the linear span of the family Xu..., Xv. One can prove by contradic-
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tion (cf. (ii) Section 11) that such an Lis always a characteristic subspace (to all 
filtrations). Moreover, adjoining some quite arbitrary vectors Xv+l9 ...9XV+U whose 
number is u < v{9z) — <f(L) to the sequence Xl9...9XV9 the linear subspace L' 
spanned by the total family Xl9...,Xv+U is characteristic as well since 

v{9z\{X)v+u 9Z) = v{{9z\{X)v 92)\{X)V+U 9Z) > 

> v{9z) - t{L) - u > v{9z) - <f(L') = 0 

and the criterion (46) is satisfied. 
It is interesting that this reasoning can be related to the construction of Section 21 

for the particular case of the ideal p e Min 9Z satisfying CT(P) = v(^z). Indeed, if 
X* = Xl9 ...9XW is a ^-general sequence of length w < v(q) = v{9z), then 
v{9zj{X)w 9Z) — w > 0 and the linear subspace Lspanned by the family Xl9 ...9XW 

together with some additional and linearly independent vectors Xw+l9 ...9XW+Ue 
e p n H ( l _ M = v(^z) — w) satisfies the inequality 

v{9z\{X)w+u 92) = v{9zj{X)w 92) > v{92) - w > v{9z) - t(L) _ 0, 

identical with the criterion (46) above. 

24. The Cauchy characteristics. We begin with a fixed filtration Q*9 as usual. 
Let %>l be the set of all vector fields I G / satisfying £?xQ

l c Ql. One can see 
that <€x is a *F0-submodule and a Lie subalgebra of #?. If (4)2 is satisfied for a certain 
degree /, then <€l c <gl+1. It follows that <gl = <%l+i = ... for all / large enough. 

Passing from analysis to algebra, let us fix a point ze J and consider the linear 
subspaces #z of H = 3tfz. Clearly Xz9

l
z = {0} for every X e (€l. Denote (for a mo­

ment) by Cz the linear subspace of H consisting of all vectors YzeH satisfying 
Yz9

l
z = {0}. Clearly #z c= Cl

z9 but if the dimension /(Cz) is a constant independent 
of z, then every vector Yz e Cz can be realized by a vector fieldXe^1 (i.e., Yz = Xz) 
and this implies the converse inclusion #z 3 Cz. Hence #z = Cz and both the analytic 
and algebraic approaches are equivalent. 

Obviously <6Z = n # z = H n Ann^z, hence # z e J 0 (M = S(VZ)). The space #z 

may be called the Cauchy characteristic subspace (to the filtration Q*9 at the point z). 
Unfortunately, it need not be preserved even after standard prolongation. The 
subspaces Jfz = H n Nil 9Z e A0 (w = ^(^V2)) are, however, independent of the 
choice of the auxiliary filtration of Q9 

(47) Jfz = HnNH9z = H n Nil^ z = Jf29 

as follows from V and from the first part of Theorem 13. One can find it interesting 
that a straightforward proof of the equality (47) avoiding the double filtration from 
Section 14 is possible under very mild additional assumptions. (Note that this 
approach yields another proof of the first part of Theorem 13.) 

25. An outline of the invariance proof. Consider two filtrations Q*9 Q* of Q. We 
are going to prove the equality Nil 9z = Nil §z. Assume Xz 6 Nil 9Z. Our aim is 
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to verify that X2 e Nil §29 too. The homogeneous case of Xz is quite sufficient and 
then Z2 = (X2)

1 e Ann 0Z n A5 for an exponent / large enough. Assume in addition 
that there exists a tensor (6) such that Zz e Ann &z for every point ze J. (One can 
see that this assumption is fulfilled if the dimension <f(Ann <§z n As) is independent 
of the choice of the point z.) Then any of the corresponding operators (5) satisfies 
%Ql<zQl+s-\ hence %rQl c Ql+rs~r, by iteration. Now, recall the inclusion 
Ql~~c cz Ql cz Ql+C (cf. (33)), where / is arbitrary and c large enough. It follows that 

£ZrQl~c cz &rQl cz Ql+rs~r cz Ql+rs~r+c . 

The inclusion between the extreme terms may be rewritten as 

&rQl a Ql+rs~r+2c , hence £?rQl c fi'+-"-i 

for every exponent r j> 2c + 1. It follows that Z2 e Nil §29 hence Z2 e Nil &z and the 
proof is complete. 

CHARACTERISTICS AND HOMOLOGICAL ALGEBRA 

25. Definitions and notation. The fundamental homological concepts will be 
introduced only for the usual case of a homogeneous graded and Noetherian 
A-module M = M° ® Ml ® ... over the polynomial algebra A = A0 ® A1 ® ... 
(A0 = "?, A1 = H9 A2 = H O i f , . . . ) . We shall nevertheless need a relative variant 
of the theory. To this aim, we choose a fixed linear subspace L of H9 /(L) = m ^ 

= S(H) = n9 and introduce the polynomial algebra B = B° ® Bl ® ... (B° = R9 

Bl = L9B
2 = L O L,. . .) freely generated by L. Since B is a subalgebra of A9 M may 

be considered both as A- and B-module. It is of great importance that the module B 
will play the role of the ground ring while A will be considered as a mere ring of 
certain automorphisms. (Note that M need not be a Noetherian 5-module. We shall 
simplify the situation by identifying L= H9B = A later on.) 

Now let K be the familiar Koszul complex 

(48) 0 - > 5 ® AmL-> . . . ->-9® A 2£-> -9® L - > 5 - ^ fi-^0 

(the tensor products are taken over R). Introducing the complex M ®B K: 

(49) 0 -> M ® Am^-> ... -• M ® A 2£-> M ® L - » M - * f f - > 0 

and deleting the last but pne term R9 the homology of the arising complex at the place 
M ® ASL will be denoted by TOTB ("?, M)5. Quite analogously, introducing the com­
plex Hom^(iT, M): 

(50) 0 •- M ® AmL* <- . . . +- M ® A2£* «- M ® L* <- L* 4- HomB (H, M) <- 0 

and deleting the last but one term Hom5 ("?, M), the homology at the place 
M ® A*L* is denoted by ExtB (ff, M)s. (Note that we use the isomorphisms 
HomB (B ® ASL, M) = M © Ak-k* where L* is the dual space to the ~?-linear 
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space L. The B-module structure on R is determined by the condition B+R = {0}9 

i.e., we identify R = R° ® Rl ® ... = R° ® {0} ® ... as a graded fl-module.) 
The gradation of M gives rise to graded homologies, of course. Namely, (49) leads 
to the family of complexes M ® Kl+S: 

(49)'+s . . . ^ M ' " 1 ® As+1L-+Ml® ASL-»MI + 1 ® A S _ 1 L-*. . . 

with the homology TorB (R9 M)l, and the complex (50) is decomposed into the family 
HomB(K9M)l+n-s: 

(50)l+"-s ... <- Ml + 1 ® /\S+1L* <- Ml ® ASL* <- M'" 1 ® A*"1*-* <- •-. 

determining the homology ExtB (W, M)'. The differentials in the complexes (49) are 
expressed by 

(51) d(co ® (K0 A ... A Xs)) = H-iyXito ® (X0 A ... i... A Xs) 

where the roof denotes the omitted /-th factor Xt. The differentials in the complexes 
(50) are explicitly expressed by the dual formula 

(52) 3(C0 ® ( ^ A ;.. A Q) = ^(-lyZiCO ® (C« A « t A ... A {,) 

where Z 1 ? . . . , Zm and Ci,..., Cm a r e some dual bases in Land L*, respectively. (That 
is, we suppose d(Zj) = <5l7 and the last differential does not depend on the choice of 
these bases. We refer to [7] for an intrinsical definition of these differentials.) 

Finally, note that using the mentioned explicit formulae, one can verify the com-
mutativity of the diagram 

identity ® (jlLl) 
M' ® ASL* v ' "» Ml ® A" 

(53) д 

identity ® ( j | L | ) 
м ' + 1 ® A s + I ь* 5--I-17-* м ' ® A m _ s _ 1 J 

where we denote \L\ = Zx A ... A Zm. Since the vertical arrows may be inverted 
by the mapping identity® J (i A ... A Cm> we obtain the Poincare isomorphisms 
ExtB(R9M)l

s = TorB(R9M)l

m_s9 cf. [9]. Owing to this duality, it will be sufficient 
to deal with the homologies TorB (R9 M), and the notation is abbreviated by writing 
Tor* (R9 M)l

s = H(M)l

s. (Note that the homologies ExtB (R9 M) will be useful later 
on since they form a natural link between analytic and algebraic areas of the theory 
of diffieties, see [7] for a preliminary account.) 

26. A survey of fundamental results. (i)H(M)o = M^LM1'1 (easy), hence H(M)C

0 = 
= 0 if and only if Mc = LMc~l (c is fixed here) and the identity H(M)l

0 = 0 (/ = s) 
means that the B-module M is generated by the subspace M° ® ... ® Mc~l. 

(ii) H(M){ = 0 means that for every identity Z1co1 + ... + Zmcom = 0 (where 
col9..., com e Mc and Zl9..., Zm is a basis of L) there exist coi} eMc"x (i9 j = 1,..., m) 
such that coij = —coji and coj = WZ^^. 
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(iii) H(M)m-i = 0 if and only if every system of identities Z ^ . == Zj(ot (i,j = 
= 1, . . . , m; (ou ...,(ome Mc; Zl9..., Zm is a basis of L) is satisfied only in the case 
when (ot == Zt(o with an appropriate o e Mc"x. 

(iv) The space H(M)l
m consists of all products (o ® (Zt A ... A Zm) with (oeM1 

satisfying X(o = 0 (X e L), hence H(M)m = 0 if and only if the conditions co e Mc, 
X(o = 0(XeL) imply (o = 0. 

(v) If v(M) = 0 and H(M)l
m = 0 (/ 4= 0) then M+ = {0}. Proof. t(M° 0 ... 0 

© Ml) ~ fi(M) = const., hence Ml = {0} for / large enough. Assume Mc 4= {0} but 
M c + 1 = {0} and let co e Mc, co * 0. Then Xo = 0 for all X e L, hence H(M)£ # 0 
(cf. (iv)) and we conclude that c = 0. 

(vi) Multiplication by Z (Z e B) naturally induces a chain mapping of the Koszul 
complex' K9 hence a B-module structure on every space H(M)S = ©H(M)j. But 
ZeB+ = {0} © L © ( L 0 L) © ... operates trivially on the ^-module R9 hence 
on the above mentioned module H(M)S = ®H(M)l

s = TorB (R9 M)l
s9 since the multi­

plication behaves functorially with respect to the first argument R of the functor 
Tor. At the same time, A operates on the module H(M)S = Tor^ (R9 M) through 
the second argument M and one can verify that the former .B-module structure is 
a mere restriction of the latter .A-module structure. So it follows that H(M)S is in 
reality a 0(H/L)-module. We shall express this result in elementary terms by saying 
that X . [h] e H(M)l+ x for every X e A1 = H, \h~] e H(M)l

s and X. [h] = 0 in the 
particular case X e L. We refer to [14] for general principles and to [11] for analogous 
results; nonetheless, a straightforward and elementary verification of all the above 
assertions is also possible. 

(vii) Let XeH and assume that the multiplication X: Mc -» M c + 1 (c is fixed) 
is injective. By the most general principles of homological algebra, the exact sequence 

0 -• Mc £ M c + 1 - Mc+ljXMc - 0 

determines the connecting homomorphism S of the sequence 

X% b 
(54) H(M)C

S"x » H(M)C
S > H(M\XM)C

S * 

, H(M)C_ t — H(M)c
stI . H(M\XM)c

stI 

and the remaining mappings are obvious. (Note for certainty that the homology 
class [ft] e H(MJXM)C is represented by heMc ® /\?L with the boundary dh e 
eXM° ® AslL. Then, owing to the injectivity, the last space may be identified 
with the space Mc ® AsiL so that the boundary dh represents a cycle from the 
space Mc ® A5""1-^ that is, an element from H(M)c^l. This is the desired 5h.) The 
sequence (54) is exact. We omit the (standard) verification (see [11]) specifying only 
the following fact needed in the proof: Assume (o e M c _ 1 , Xo = 0. Since X: Mc --• 
-> M c + 1 is an injection and XYco = YX(o = 0 for every Ye H9 we have Yo) = 0 
(Ye H). As a result, the space M c _ 1 admits a direct decomposition Mc"x = N ®N, 
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where the subspace IV consists of all coeM0"1 satisfying Yco = 0 (YeH) and N 
is a (not uniquely determined) complementary subspace with an injective mapping 
X: N -• Mc. 

(viii) Continuing the preceding point, assume in addition X e L. Owing to (v), we 
have the exact sequences 

S 
(55) 0 - H(M)C -> H(MJXM)C * H(M)C

S_ t - 0 

and 0 - H(M)C+J --> H(M\XM)c
s+{. 

27. Lemma. Let w = 1. If H(M)C = 0 (e is fixed, s = m - w,+ 1,..., m), then 
euery maximal Mc-regular sequence X* = Xt, ...,-K., in Lis of /engfh t? ^ w. 

Proof. The assumption H(M)m = 0 implies the existence of Yt e L such that 
Yx: M

c -> Mc+1 is an injection. (In particular, we may choose Yt = Kj if v ^ 1.) 
Let w = 2. Then the sequence (55) together with the assumptions yield the relations 

//(M/YiM)^ = ... = H(M\Y1M)c
m_w_2 = 0 and the first of them implies the exis­

tence of Y2 e Lsuch that Y2: McJYtMc~* -* Mc
+1/YtMc is an injection. (In particular, 

we may choose Y2 = X2 if v — 2.) 
Let w ^ 3. Then the sequence (55) together with the preceding relations yield 

H(M\Yl9 Y2)M)c
m = ... = H(Mj(Yl9 72)M)C_W.3 = 0 and the first of them implies 

the existence of Y3eL such that Y2:M
C\(YU Y2)M

c~l -» Mc+1/(Yl5 Y2)M
C is an 

injection. (In particular, we choose Y3 = _K3 if v = 3.) 
Following this way, the proof is concluded after w steps. 

28. Lemma. Let w = 1. If there exists an Mc-regular sequence X* = Xu ...,XW 

of length w in L, then H(M)C = Ofor every s = m — w + 1,..., m. 

Proof. Point (iv) of Section 26 yields 

tf(M)< = ^(M/X.M)^. = ... = H(M/(X)W_.M)S, = 0, 
hence 

HfAffc.,. = HtMlX.M)^ = ... = H(Ml(X)w_2M) = 0 , . . . , tf(M)c_w+1 = 0. 

29. Theorem. The following three assertions are equivalent: (i) H(M)J = 0 
(/ = 1, 5 = m — w + 1,..., m). (ii) £u£?ry maximal M-quasiregular sequence in L 
is of length at least w.(iii) There exists an M-quasiregular sequence inL of length w. 

30. Theorem. The following three assertions are equivalent: (i) H(M)l
s = 0 

for all I large enough and s = m — w + 1,..., m. (ii) Every maximal M-general 
sequence in Lis of length at least w. (iii) There exists an M-general sequence in L 
of length w. 

Both theorems easily follow from Lemmas 27, 28. Note that the equivalence of 
points (ii) and (iii) fills the gap in Section 20 concerning the classification of charac­
teristic subspaces. Now we pass to the last important concept discussed in this part 
of the paper, to the concept of involutiveness. 
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31. Going-down lemma. Let w = 1 and assume H(M)m = 0 (c is fixed, s = 
= m — w + 1, . . . , m). Then every Mc+1-regular sequence X* = Xl9 ...9XW in L 
is Mc-regular as well. 

Proof (by contradiction). Assume Xxto = 0 with co e Mc
9 co 4= 0. Since H(M)m = 

= 0, there exists Ye L such that to = Yto 4= 0. Then X^co = YXxto = 0, which is 
impossible. So we conclude that co e Mc9 co 4= 0 implies Xtco 4= 0, that means, the 
one-term sequence Xt is Mc-regular. Note that the assumptions of the lemma and 
(55) imply H^jX^X, = ... = H t M / ^ A f ) ' - ^ = 0. 

Owing to the last identities, we may continue the reasoning with the module 
Mj(X)i M = MJXt M instead of M. Quite analogously as above, the assumptions 
X^eX^M0, toeMc9 to 4= 0 prove to be contradictory to the presumed Mc+1-
regularity. It follows that Xl9X2 is a two-term Mc-regular sequence and 
H(M\(X)2 M)m = ... = H(M\(X)2 M) m _ w + 3 = 0. 

Continuing in this way, one can verify the lemma. 

32. Going-up lemma. Assume H(M)c
0
+l = H(M)J+1 = 0 and let Zl9..., Zm 

be a basis of L. If the sequence Z* = Zl9..., Zm is Mc-regular9 then Z* is Mc+1-
regular as well. 

Proof. Our aim is to verify that the inclusions coeMc+1
9 Zkcoe\Z)k„lM

c+1 

imply coe(Z)k^l Mc for every k = 1, . . . , m. We begin with the case k = 1, that 
means, we wish to prove that co = 0 provided co e Mc+1 and Zxco = 0. 

First of all, according to (ii) Section 26, there exist to^ e Mc9 co^ = — CQji (i9j = 
= 1, . . . , m) for which 

(56) to=ItZitoil9 0 = lZiCOij (j = 29...9m). 

In particular, 0 = YZiCoim with cowm = 0, and applying the presumed Mc-regularity, 
we conclude that com_1>m = ^Z{nim (sum over i = 1, . . . , m — 2) for certain nim e 
e Mc~*. One can then eliminate co m . l m and comttn^1 = — cam_1$m from the relations 
(56) with the following result: 

m-2 

co = £ Ziton + Zm-1(5m_ltl + Zmcom>1 , 
I 

m — 2 

0 = £ ZitOij + Zm-<Jom-x%i + Zmo3mJ (j = 2 , . . . , m - 2) , 
I 

m—2 m - 2 
0 = £ -^i^i,m-l > 0 = £ Z{(Oim , 

1 1 

where we denote 

^ i . m - l = ~ w m - l , i — Wi,m-1 "~ -̂ m îm > 

^im = -&mi = G>im + Zm-XUim (i = 1, ..., m - 2) . 

So we have the same relations as (56) but without the terms corresponding to tom-1>w 
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and wm>m_i. Repeating this procedure, one can successively eliminate c0w,m-2 = 

= - W m - 2 , m » •••> G>«,1 = -<*>l,m> t h d l G > w - l , m - 2 = - C0m_ 2 , m _ i , . . ., Om- 1,1 = 

= —a)ltm-i9 and so on up to co^ = 0. Hence co = IZ,-colsl = 0 and the case k = 1 
is concluded. 

Look at the case k = 2. Assuming w e M c + 1 , Z 2 O > G Z 1 M C + 1 , we wish to prove 
the inclusion co e Z±MC. This is achieved by applying the preceding construction to the 
module M\ZXM instead of M. It is only necessary to verify the modified assumptions 
i ^ M / Z - M ) ^ 1 = f^M/Z-M)^ 1 = 0 but they follow from (55) and from the just 
proved Mc +^regularity of the one-term sequence Zv 

The remaining cases k -= 3 , . . . , m follow quite analogously by considering the 
module M\(X)k-x M instead of M. It is necessary to verify the modified assumption 
H(M\(X\_l M)c+1 =:H{Ml{X)k-± M)c

+l = 0, of course. 

33. Corollary. If H(M)C = 0(c is fixed, s = 1, . . , m) and H(M)C
0
+1 = H{M)\+1 = 

= 0, then H(M)C+1 = 0 (s = 0, ..., m). 

Proof. Lemma 27 ensures an Mc-regular sequence X* = X 1 ? ...,XW. Slightly 
modifying this sequence, the Mc-regularity is preserved and X1 = Z l 5 . . . , I m = Zm 

is basis of L. According to Lemma 32, X* is Mc + 1-regular and Lemma 28 concludes 
the proof. 

34. The involutive case. We shall deal only with the particular case L = If, B = A 
from now on, so that M is an A-module and H(M)l

s = ToxA (R9 M)l
s. The module M 

is called involutive if H(M)l
s = 0 for every / ;> 1 and arbitrary s. (Compare with [8] 

and [11].) Repeating use of Corollary 33 yields the result that M is an involutive 
module if only H(M)l = 0 (s arbitrary) and H(M)[ = H(M)l

0 = 0 for / = 1. (This 
is a rather interesting result which provides a connecting link with a little different 
classical understanding of involutiveness, see [13], but we postpone this theme to 
another place.) 

The equivalence of points (i), (iii) in Theorem 29 claims M to be an involutive 
module if and only if there exists an M-quasiregular sequence X* = Xl9 . . . , I „ of 
length n = £(H). Since every M-general sequence is (M+c)-quasiregular for all c 
large enough (trivial) and M-general sequences of arbitrary length surely exist 
(cf. (vii) Section 9), the module M + c is involutive for all c large enough. The last 
assertion corresponds to the classical theorem of prolongation of a system of partial 
equations to an involutive system; it is almost a tautology in our approach. (Note 
that there exists quite another proof based on homological algebra, see [11]: Since 
H(M) = ®H(M)l

s is a trivial m-module (cf. (vi) Section 26) and a Noetherian A~ 
module at the same time, we have £(H(M)) < oo, hence H(M)l

s 4= 0 only for a finite 
number of / and s, hence H(M)l

s
+c = H(M+C)l

s = 0 for all / ^ 1 and c large enough.) 
The involutive case is rather important for the practice of calculations since they 

may be reduced to a few initial terms of the filtration. We shall deal with a typical 
example of such a reduction concerning the characteristic subspaces and M-general 
sequences (but there exist other examples, cf. [7]). 
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35. Theorem. Let M be an involutive module, La linear subspace ofH of dimen­
sion *?(L) = w + u, w — 1. The following assertions are equivalent: (i) Le AW(M). 
(ii) Every maximal M-general sequence X* = Xl9 ...,X0 in Lis of length v = w. 
(iii) There a maximal M-general sequence in Lof length w. (iv) The same as (ii) 
but with M-quasiregular sequence, (v) The same as (iii) but with M-quasiregular 
sequence, (vi) The same as (ii) but with M1-regular sequence, (vii) The same as 
(iii) but with Mx-regular sequence. 

Proof. We already know that (i) —(iii) are equivalent assertions (even without the 
assumption of involutiveness) and Lemma 31 ensures that the concepts of an M-
general and an M-quasiregular sequence are equivalent for the involutive case. Since 
(v) clearly implies (vii) and the points (vi), (vii) are equivalent (cf. Lemmas 27, 28), 
it is sufficient to verify that (vii) implies (v). 

So let X* = Xl9..., Xw be a maximal M1-regular sequence in L. Slightly modifying 
the vectors Xl9 ..., Xw (if necessary), we may assume that they are linearly indepen­
dent. According to Lemma 27, the above mentioned sequence X* may be enlarged 
into an M1-regular sequence Z* = Z1 ( = Xi),..., Zw (=XW), Zw + 1, ...,Z„ in the 
space H. We may again assume that Zl9 ..., Zn are linearly independent vectors. 
Repeating use of Lemma 32 in the particular case L = H shows that Z* is an M-
quasiregular sequence. It follows that X* is quasiregular, too, and one can easily 
prove that X* is a maximal sequence of this type. 

36. Theorem. If M is an involutive module, then the concepts of M-general, 
M-quasiregular and M1-regular sequence coincide. 

Proof. Lemma 31 ensures that a sequence is M-general if and only if it is M-
quasiregular. Since every M-quasiregular sequence is M^regular, it is sufficient to 
prove the converse inclusion. 

So let X* = Xl9 ...,XV be an M^regular sequence and abbreviate v(M) = v. 
According to (iii) Section 11, we have v(MJ(X)k M) = v — fc for every fc = v — 1. 
Since the module M is generated by M° (cf. (i) Section 26), it follows that 
M1j(X)k M° =j= {0} for these values fe, and the M^regularity then implies that 
Xl9..., Xv (or, Xl9 ...,XV for the simpler case v > v) are linearly independent vectois. 
Then, slightly modifying the reasoning of the last part of proof of Theorem 35, one 
can verify that Xl9..., Xv (or Xl9 ...,XV for the case v > v) is an M-quasiregular 
sequence. (We repeat this reasoning for reader's convenience: According to Lemma 
27, there exists an enlargement Z* = Zx (=X^), ..., Zn of the sequence Xl9 ..., Xv 

(or Xv) into an M^regular sequence. Then, slightly modifying the last terms (if 
necessary), we may assume that Zl9..., Zn is a basis of H. Lemma 32 shows that Z* 
is an M-quasiregular sequence and the same must be true for the original sequence 
X!, ...,XV (orX ! , ...9XV).) 

The proof is concluded if v = v, so assume v > v. In this case, using the exact 
sequence (55) together with the just proved M-quasiregularity, one can find the 
homologies H(MJ(X)V M)\ = 0 (I = 1). Point (vi) Section 26 applied to the module 
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M\(X\M then yields the result (M/(X)VM) + = {0}.(Note that v(M/(X)v M) = 0 
according to (ii) Section 11). So it is clear that every enlargement of the sequence 
Xl9„99„Xv (in particular, the original seqnence X*) is M-quasiregular. 

Correction added in proof. The O^f-module structure on the space ^ induces the Ojtz-
module structure on the localized space $z only if the implication coz = 0 => (Xco)z = 0 is valid 
for every Xe Jf, co e @. Indeed, only then we may correctly define the product Xz. coz = (Xco)z. 
An analogous trouble appears at the end of Section 14. Fortunately, it may be removed as 
follows. 

Lemma. Let Jt be the Y0-module of ail cross-sections of a vector bundle over the base space J 
with finite dimensional fibers. Let L: Jt'—> j \ r be a W Q-homomorphism into a WQ-module JV. Then 
Hz = 0 implies (L//)z = 0,for any ne Jt, Ze J. (Hint: Consider L acting on the free generators 
of Jt.) • 

The Lemma may be applied with Jt = &1 (1 fixed) and L = Xe 2F. If the dimension of the 
-^-linear spaces ^* is constant for all ye J lying near z (such a point z is called & -regular), 
then the assumptions are locally satisfied and the existence of the multiplication by Xz is proved. 
Existence of ^-module structure is ensured if z is ^'-regular for all 1, i.e., on a set of second 
Baire category in J The localized multiplication appearing in Section 14 can be analyzed quite 
analogously. 
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