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EQUIVALENCE OF VOLTERRA INTEGRAL EQUATIONS

MARKO SVEC, Bratislava
Dedicated to Professor Kurzweil on the occasion of his sixtieth birthday

(Received May 25, 1985)

The purpose of this paper is to investigate the equivalence of the following two
integral equations:
t

(1) §(t) = £12) + j alt, 9) () ds

0

t t
(2) x(t) e f(1) + j a(t, s) x(s) ds + f b(t, 5) g(s, x(s)) ds
(0] 0
where x, y, f: J = <0, c0) - R" are n-dimensional functions, g(t, x): J x R" — 2%"
is a multifunction, a, b: J x R" are matrix functions.
We will also investigate the equivalence of the integro-differential equations

(3) ﬂg:ﬂg+A@ﬂ0+f}@gﬂga,

(4) y@eng+A@40+f}@gﬂgm+j%@gd&4mm

where x, y, F: J - R" are n-dimensional vector functions, 4: J — R"z, Band C: J x
x J — R™ are matrix functions and g as above is a multifunction. || will denote
a suitable vector (matrix) norm.

Definition 1. Let y: J — R be a positive continuous function. We say that (1) and
(2) ((3) and (4)) are y-asymptotically equivalent on J if for each solution y(t) of (1)
(of (3)) existing on J there exists a solution x() of (2) (of (4)) defined on J such that

(5) limy (1) |y(1) — x(t)] =0 as t—> o

and conversely, for each solution x(¢) of (2) (of (4)) existing on J there exists a solution
¥(1) of (1) (of (3)) defined on J such that (5) holds.
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Definition 2. Let  be as in Definition 1 and let p > 0. We say that the equations
(1) and (2) ((3) and (4)) are (¢, p) — integrally equivalent on J if for each solution
¥(t) of (1) (of (3)) existing on J there is a solution x(f) of (2) (of (4)) existing on J
such that . '

(6) () () — x| e L)

and conversely, for each solution x() of (2) (of (4)) existing on J there is a solution
¥() of (1) (of (3)) defined on J such that (6) is true.

Definition 3. Let  be as in Definition 1. We say that a function z: J —» R" is -
bounded on J if

(7) sup (1) |2(1)] < o .
Remark 1. The asymptotic equivalence of (1) and (2) (and of (3) and (4)) was

studied e.g. by J. A. Nohel [1], [2] and by A. C. Lima [3] in the case that g is a real
vector function.

1.

We start with the study of the equivalence between (1) and (2). We first proceed
formally using the resolvent kernel r{t, s) belonging to the kernel a(t, s). That is,
r(t, 5) is a solution of the equation

(8) r(t,s) = —a(t,s) + J"a(t, u)r{u,s)du, 0<s=<t.

s

Then the solution y(t) of (1) is of the form
) ﬂg:ﬂo;f3@gﬂgm.

Let x(f) be a solution of (2). Then there exists a function

(10) v(t)e g(t, x(t)) ae. on J

which is measurable and locally integrable, such that
(11) 4o=ﬂo+jkggﬂga+JE@gqgm,teL
- Jo 0
Applying formula (9) we obtain
x(t) = y(t) + Jw {b(l, s) — J‘tr(t, u) b(u, s) du} v(s) ds
0 s
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or

(12) x(t) = y(t) + JﬂR(t, s)vis)ds, ted

0
where

(13) R(t, s) = b{t,s) — J (1, u) b(u, ) du .

Because all operations used here are reversible we can get (11) from (12). The cor-
rectness of all steps used here is guaranteed e.g. by the assumption of local integrabili-
ty of a(t, s), b(t,s) and f or of local integrability of |a(t, s)|?, |b(t, 5)|” and |£()]",
p > 1. We shall always suppose the continuity of f(t) on J.

Definition 4. Let A = R". Then |A| = sup {|a|: a € 4}.

Notations.

Y() and ¢(t) are positive continuous functions on J;

%(J, R") = {the set of all continuous functions ¢:J — R" topologized with the
compact-open topology};

B, = By(J, R") = {the set of all continuous functions z: J — R" such that

sup ¥~ () J(0)] = 2], < oo}

By, = {z(t) e By: ]y < o}
L, = L(J, R") = {the set of all measurable and essentially bounded functions
on J}, |z]. = esssup |z(¢)|;
J

L, ,(J, R") = {the set of all z: J » R" such that ¥ ~'(¢) z(¢) e L(J, R")}, ||z] .y = -
10 0,
LL,(J, R") = {the set of all functions z: J — R" such that z{t) e L,(I, R") where I
is any compact subinterval of J}.
Let X be a linear topological space and let A = X. Then cf(A4) denotes the family
of all convex and closed subsets of 4.
Let g(t, x): J x R" —> Q'R"), where Q(R") denotes the set of all nonempty compact
subsets of R". Let z(t) € B,. Then by M(z(t)) we denote the set of all measurable
selectors from g(t, z(1)).

Lemma 1. Let §(t), ¢(t) be positive continuous functions on J. Let the following
assumptions be satisfied:
pe(l,©), p7t+qg =1,

a) |R(t, s)|P is locally integrable on 0 <'s < t < oo;
b) there exists a constant K > 0 such that

. J:Il//—l(t)l R(t,s)| o(s)Pds S K?[, teJ
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and

lim{
k-0

uniformly with respect to te J;

c) the function g(t,x): J x R" — Q(R") satisfies the following conditions:

(H,) for each (t,x)e J x R", g(t, x) is convex;

(H,) for each te J, g(t, x) is upper semicontinuous on R";

(Hs) for each measurable function x: J — R" there exists a measurable function
fit J = R such that f,(t) € g(t, x(t)) a.e. on J;

d) the function F: J x J — J is such that

(i) F(t, u)'is nondecreasing in u for each fixed t € J and integrable on compact

subintervals of J for each fixed ue J;

(ii) I Fi(t,c)dt < oo for every ¢ = 0;
0

t+h
j [R(t + h, s)|” ds

t

1,,,+ (J‘(:[R(t + h,s) — R(t, 5)]? ds)w} =0

(iii) lim irlfl Fi(t,u)dt = 0;

uco U Jo

o) lo(t )| 5 o) F(t =20 <
f) the function y:J — R" is continuous and y-bounded, i.e. |y|, = ¢ < co.
Then the operator T defined for z(t) € B, by the relation

(14) T(=(t) = { (i) + J'R(t, ) o(s) ds: oft) € M(z(t))}

0

maps B, into 28 is precompact and upper semicontinuous in %(J, R") and there
exists such B, ,, that T maps B, ,, into cf(B, ).

Proof. Let z(t) € B, and let | z]|, = g,. Then by (H,) and (H,) M(z(¢)) is nonempty
and convex. Respecting the assumptions e), d) (i) we get for v(f) € M(z(t)) the ine-
qualities

lo()] < IM(z(0)] = () F(t ¥~ (0)] 2(9)]) < o(t) F(t, o)

[0l < (f:Fq(t, ) dz)”“.

Thus v{t) € L, ,(J). Then it follows from the continuity of ¢(t) on J and from the
assumption a) that R(t, s) v(s) is locally integrable on J. It means that the operator T
defined by (14) is well defined.

Denote

and

o) = »() + j ;R(t, S o(s)ds, of)e M((1)).
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Then

(15) Vo) €] = v ()] + L"V’(t) R(2, 5)] [o{s)] ds =
<o+ J(jlﬁ"(t) [R(2, 5)| @(s) F(s, eo) ds <

s o+ ([ W0 1R6. 9o O &) (];7s.e0 ds)”" <

0

© 1/q
Se+K (I FY(s, 0o) dS>

0

where we have used the Holder inequality, assumptions b) and d) (ii). Thus &(f) is
a y-bounded function on J.
Let0 < ty,1, =t; + h 20, |h| < 1. Then

(16 [6(t2) — &(t2)] < [9(t2) — »(2)] +
¥ j :\Roz,s) — R(ts, 9] o(s)] ds + | j “IR(t2, 9) os)] 05

(][t # o ds)”“ "

1/

<

< |¥(t2) = (1) +

t
f !|R(t2, s) — R(ty, 5)|P ds
0

1/p q
. < |lt2) = ¥(ty)] +

llp}

#| [T 9 ao | [ o0 £ o e
¥ {<J‘ th(t” s) = R(ty, 5))? ds)l/p + U:IR(tz, s)|7 ds

0

([ tot9 s o x)".

This and the assumption b) imply the continuity of &(¢) at ¢,. Sumarily, we conclude
that all functions of T(z(t)) are continuous on J and y-bounded. Thus T(z(t)) = B,
and T maps B, into 2°¥. From the convexity of M(z(t)), which follows from (H,),
we get the convexity of T(z(f)).

Now we shall consider the set By ,,. Let z(f) € B, ,,. Then for &(f) € T(z(t)) we
have

&e) = ¥(i) + JtR(t, §)o(s)ds, o{t) e M((1)).

0

Repeating the same argument as in (15) we get

(17) VO] S 0 + K ( [RaCED ds)”".

0
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From the assumption d) (iii) we get that for (2K)~' there exists such u, >
> max {29, 1} that

j Fi(t, ug)dt < (2K) % u, .
0

Therefore, taking into account the assumption b) and the monotonicity of F in u,
we get

V) )] < 0 + K i ullt

Because 0 < g~ ! < 1and u, > 1, we have that u% ' < u, and

(18) W) &) < o

Thus |T(z(t))| < u, and because u,, is the same for all z(t) € B, ,, and all 20 < u,
we get

(19) TBy,o = By, -

- This means that all functions from TB, , are uniformly bounded on J.
We shall now prove the equicontinuity of all functions from TB,, ,, on compact
subintervals of J. Let z(f) e B, ,, and

t
K1) = »(1) + I R(t, 5)o(s) s, vt)e M(z(1)) .
0

Then for 0 < ¢, < t, < o0 we get the inequality (16) (¢ substituted by u,). The
expression at the end of (16) is the same for all z(r) € B, .. Therefore, from the ine-
quality (16) we obtain the equicontinuity of all functions from 1B, ,, on compact
subintervals of J. Furthermore, the uniform boundedness and the equicontinuity
on compact subintervals of J yield that TB, ,, is precompact in €(J, R").

For each bounded set 4 = B there exists a bounded ball B, , such that A < B, ,
and TB, , < B, , hold. Therefore, we can conclude from the above considerations
that T is precompact in ¢(J, R").

Now we are going to prove that T'is an upper semicontinuous multifunction on B,,.

Let z,(t), z(t) € By, n = 1, 2, ... and let z,() converge to z(t) in B,, i.e. ¥ ~!(¢) z,(t)
converges to ¥ ~'(f) z(¢) uniformly on J. Therefore, the set {z,(t), z(1), n = 1,2, ..}
is bounded in By, and there exists u = u, such that z,(t)e By ,, n = 1,2,..., z(f) e
€B,,and TB, , = B, , and TB, , is a precompact set in €(J, R").

Let h,(f) e T(z,(t)), n = 1,2, .... Then there exists v,(f) € M(z,(t)), n = 1,2, ...,
such that '

h(t) = »(1) + JwR(t, 5) v,(s) ds

0
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and
[oul. = j "o (1) o0 dt < f “F(1, ) .

Thus the sequence {|v,||,.,} is bounded and therefore the sequence {v,()} is weakly
precompact in L, ,(J, R") (see [4], 1V. 8.4) and there exists a subsequence {v, }
of the sequence {v,/t)} which weakly converges to some v{t) € L, ,/J, R").

From the fact that {z, } converges to z and from the assumption (H,) it follows
that for each ¢ > 0 and for almost every fixed 1 e J there exists N = N(e, t) > 0
such that for n; = N,

g(t, z, (1)) € O{g(t, z'1))

where 0,(g{t, z(1)) is the ¢-neighborhood of the set g(t, z(t)). It means that for
n; 2 N,
v, (1) € 0./g(1, z(¢)) .

Further, by the Banach-Saks theorem there exists a subsequence of{v,,j}, n; 2N +
+ 1, denote it by {v; }.j, = N, such that

(20) “l 3 oo

-0 as k- .

k
Because O,(g(t, z(t)) is convex we have o,(t) = Y v; (1) € O(g(t, z(2)), k = 1,2, ....

s=1
By the Riesz theorem we get from (20) the existence of such a subsequence of
{ox(t)} which converges to v(t) a.e. on J. Putting ¢ > 0 we can conclude that v(f) e
€ g(t, z(1)).

Furthermore, v(t) being from L, (J, R"), the function

N

W) = (i) + f R, s)ols) ds, ted,

0

is well defined and h(f) € T\z(t)). In view of the fact that {v
to v(t) and that R(t, -) e LL, ,(J) we get that the sequence

o (1) = ¥(1) + J.tR(t, on(s)ds, j=12,...

0

.,(1)} converges weakly

converges to h(t) on J. In fact, let ¢, € J. Then put R(t,s) = R(t,s) for 0 < s < t,
and R(t;,s) = 0 for s > t,. Evidently R(t,s)e L, ,(J) and

h, (1) = y(t;) + j

0o

t

lR(tl, s) v,(s) ds,
h(t,) = y(t,) + J‘“R(t,, s) v(s) ds
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and
ha(t1) — 1)—Jﬁt1,9) [5) —vs))ds >0 as j— .

We have h, ()€ TB, ,, j = 1,2, ..., The set TB, , being precompact there exists
a subsequence of the sequence {h, (f)} which converges to a function i(t)e TB,,
uniformly on every compact subinterval of J. Thus we get that h(f) = h(t) € T(z(t)).
This completes the proof of upper semicontinuity of T.

To end the proof of Lemma 1 we have only to prove its last statement. Consider
the ball B, ,,. Let z(t) e B, ,, and &(t) € T(z(t)). Then ||&(7)]|, < u, (see (18)) and
by (19), T(z(t)) = B,.,,- By the hypotheses (H,) and (H,), M(z{t)) is nonempty and
convex and therefore T(z(r)) is also nonempty and convex. Let h,(t)e T(z(t)),
n =1,2,... and let the sequence {h,(f)} convergences in the norm |- |,. This means
that {y~*(¢) h,(r)} converges uniformly on J to some continuous function ¥ ~*(f) h(t).
Using the same argument as in the proof of upper semicontinuity of T we get that
h(t) € T(z(t)) which means that T(z{t)) is a closed set.

Lemma 2. ([5], Corollary 2.8.) Let A be a closed, bounded and convex subset of
a locally convex topological vector space X. If T: A — cf(A) is an upper semicon-
tinuous map and if TA is compact, then there exists x € A such that x € Tx.

Theorem 1. Let all assumptions of Lemma 1 except f) be satisfied. Moreover,
assume that

1. lr(t, s)|" is locally integrable on 0 £ s £t < w;
2. there exists a positive constant k such that

t
f W='(1) rt, s) o(s)|Pds < k”, ted,
0

t+h 1/p ‘Lt 1/p
lim {’f |r(t + h,ys)Pds|  + (J |t + h,s) — K, s)|P ds> } =0
h~0 o

t
lim |zp (D) R(2, s) (p(s)|" ds = 0 for every fixed ty, > 0.

t2 o Jo

and

for telJ;

Then there is a Y-asymptotic equivalence between the \-bounded solutions x(t)
of (2) and y-bounded solutions y(t) of (1). If, instead of 3, the condition

4 f ;|¢,-1(t) R(t, 5) o(s)|? dse L,(J)

is satisfied, then there is a (Y, p)-integral equivalence between the Y-bounded
solutions x(t) of (2) and y-bounded solutions y(t) of (1).
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Proof. Let y(f) be a y-bounded solution of (1). Then the assumptions 1 and 2

imply that y(t) is a continuous function on J. Thus, y(f) satisfies the assumption f)
of Lemma 1.

Let T be the operator defined by (14). Let B, ,, be as in the proof of Lemma 1.
Evidently B, ,, = B, = %(J, R") is a bounded, closed and convex subset of B, as
well as of €(J, R"). In view of Lemma 1 the operator T is upper semicontinuous,
TB, ., < B,., and TB ,, is compact. Then by Lemma 2 there exists x(t) € B ,,
such that x(f) e T(x(1)), i.e. x(t) is a solution of (2) and there exists vo(r) € M(x(t))
such that

t
x't) = y{t) + J‘ R(t,s)vy/s)ds, tel.
V]

Then

t

Y Ix(0) - ¥(0)] = j YD) R, 9)| [oofs)] ds =

0

< Jlow_l(t) |R(t, 5)| @(s) F(s, uo) ds +

+ jtw'l(t) lR(t, s)| @(s) F(s, uo) ds <

= (J:W—l(’) R(t,5) GD(S)I”dS)”p (J:F“(s, ug) ds)”q +

([amrsors)” (s

Finally, using the assumption b) from Lemma 1 we have

1) x(0) — ()] < ( j ") R(e ) <o<s>vds)”".

0

®© 1/q © 1/q
. (f FA(s, uy) ds) + K (j F4s, u) ds) .
0 to

The first term on the right hand side tends to zero as t - oo by assumption 3. The
second term can be made arbitarily small if we take ¢, large enough. Thus, we conclude
that lim ¥ ~!(¢) |x(t) — y(t)] = 0 as t > oo, which means the asymptotic equivalence
of x(t) and y(t).

Using the assumption d) (ii) of Lemma 1 and the assumption 4, we have

V) [x() = ¥ < j V1) Rt 5)| ols) Fls, o) ds <

0

= ([0 me 9 o as) ([ w0 )"

0
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The first factor is from L,(J) due to 4. Thus x(t) and y(¢) are (y, p)-integrally equi-
valent.

Let now x{t) be a y-bounded solution of (2) and therefore of (11). It means that
there exists such v(t) € M(x(t)) that x(¢) satisfies also the equation (12) where y(¢) is
a solution of (1). Thus we have

y(t) = x(f) — th(t, s)v(s)ds, tel.

0

An easy calculation shows that y(t) is a y-bounded solution of (1). The y-asymptotic
equivalence and the (y, p)-integral equivalence of y(f) and x(f) can be proved as
. above.

Lemma 3. Let Y(t), ¢(t) be positive continuous functions on J. Assume that
o) R(t, s) is measurable and locally essentially bounded on 0 < s <t < o0;
B) there is a constant K > 0 such that

j'w-l(r) IRt 9] o(5)ds £ K forall 1€
0
and

t+h
lim { j |R(t + h,s)| ds
h—0 .
uniformly with respect to te J,;
Y) the function g(t, x) satisfies the condition c) of Lemma 1;
8) the function F: J x J — J is such that
(i) F(t, u) is nondecreasing in u for each fixed te J and is measurable and
bounded on J for each fixed ue J;
(i) lim F(t, ¢) = 0 as t > oo for each fixed ¢ = 0;

(iii) lim sup Y —w uniformly for teJ

u—> , )

n f (:|R(t t hs)— R(t,9)| ds} ~ 0

or

u
iii") lim su
( ) u—*oop F(t, u)
somey, 0 <y <d;
(iv) |g(t, x)| < o(t) F(t, y~*(¢) |x|) a.e. on J;
€) the function y: J — R" is continuous and y-bounded on J, i.e.

=d > 0 uniformly for te J where 2K(d — y)™' < L for

Iy = sup v )y =e < .

Then all statements concerning the operator T defined by (14) in Lemma 1 hold
true.
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Proof. Let zt) € B, and ||z[, = ¢o < o0. For v(f) € M(z(t)) we have

()] = M) S o) Ft =0 [200) = o) Flt o)
Thus v{t) € LL,(J). Furthermore, because ¢~ *(t) |v(t)] < F(t, go), the assumption
8) (i) yields that ¢ ~*(#) v(t) is bounded on J and by 8) (ii) we get lim ¢~ *(f) v(f) = 0
as t —» co. The assumption ) guarantees that the operator T is well defined. For
v() € M(z(t)) we have

K0+I§@9%®m

0

< @] + £ e0)] -

IR 91000 s 5 b0 + 166 0ol K ()
which means that °
qa=AQ+Ik@g¢gaeudn.
Further, we have . ’
JH0) 0] £ 670 O] + HK 5 ¢ + HK
where H = sup F(t, 0,). Thus we get that all functions &(f) € T(z(t)) are y-bounded

by the same constant ¢ + HK.
Let 0 < ty, t, =1t + h 20, |h] < 1. Then

(1) &) = &(ta)] S |¥(r2) = ¥(t)| + Ln|R(‘2:s) = R(ty, 5)| |o(s)| ds +

< |y(t2) = ¥(ty)] +

+ I J :lR(tz, )| [o(s)] ds

ty t2

+ H sup |¢s)| {f |R(t2, s) — R(ty, 5)| ds + U |R(t,5)| ds } .

<0,t2> 0 t
In virtue of €) and B) we get that &(f) is continuous at ;. From this fact we conclude
that all functions of T(z(t)) are continuous on J. Thus T(z(t)) = B, and T maps B,
into 2%¥. The convexity of M(z(t)) implies the convexity of T(z({)). It follows from
the assumption ) (iii) that there exists such ¢, > ¢ that F(t, 29;) < K™ 'g, for all
te J. We remark that g, can be chosen arbittarily large. Consider the ball B ,,,.
If z(t) € By 5, then for &(f) € T(z(t)) there exists v(f) € M(z(¢)) such that

&) = y(1) + I'R(t, s) v{s) ds

0

and

wwomméé+j@*mmu9wa@momée+mgzm.
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Similarly, from &) (iii’), for given y, 0 <y < d, there exists ¢; > ¢ such that
F(t,20,) < (d — y)~* 2g, for every t € J. Then

sup F(t,20,) < (d — y)™* 204

and
YOO = e + _['l//"(t) [R(t, )| @(s) F(s, 2¢5) ds =

So+(d-1v)"12,K < 2.

Thus we have that TB, ,,, = B, ,,,. It means that all functions from TB, ,,, are
uniformly y-bounded. Let 0 < ¢, < ¢, < L < o0 and E(t)eTB.,,,m. Proceeding in
the same way as in (21) we get

|4(12) = &(ea)] = |(t2) = ()] + sup (1) sup (1, 20,).

131 2
{ f IR(12, 9) = R(ty, s)| ds + f IR(t5,9) ds}.
0 ty
Thus the functions (f) of TB, ,,, are equicontinuous on compact subintervals of J.
" Now, the uniform y-boundedness and the equicontinuity on compact subintervals
of J imply that TB, ,,, is precompact in (J, R").
From our considerations it follows that for any bounded set A = B, there exists
a ball B, , such that A < B, , and TB, , = B, , hold and TB, , is precompct in
%(J, R"). Thus T is precompact in %(J, R").
Now we are going to prove that T is an upper semicontinuous function on B,.
Let z,(t), n = 1,2,...,2(f) € B, and let the sequence {z,} converge to z in B,.
Therefore, the set {z,(t), n = 1,2, ..., z(f)} is bounded in B, and there exists u > 0
such that {z,({),n = 1,2, ..., z(t)} = B, ,and TB, , = B, , and TB, , is precompact
in %(J, R"). :
Let h,(t) e T(z,(t)), n = 1,2, .... Then there exists v,(f) € M(z(¢)) such that

(22) h,(t) = y(t) + J.tR(t, 5) v,(s) ds

0

and |v,(1)| < o(t) F(t, u). Thus v,(f) € LL,(J) and the sequence {v,(f)} is bounded
in Ly(€0, L)) for every L > 0. If {E,}, E, = <0, L) measurable, is a nonincreasing

Sequence such that N E, = 0, then
k=1

Then (see [4], Th. IV. 8.9) it is possible to choose from the sequence {v,(f)} a sub-
sequence {v,(f)} which weakly converges to a function »(t) € L,(<0, L}).

lim

k=00

<lim | |v(s)| ds < lim J o(s) F(s,u)ds = 0.

k= o0 Ex k=
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From the fact that v, (t) e g(t, z,(f)), k = 1,2, ..., and that {z,(#)} converges
to z(t) in B, and from the hypothesis (H,) it follows that for ¢ > 0 and for given
t e J there exists N = N(s, t) such that for any n, = N we have

g(t, 2,(1)) = Og(t, (1))

where O,(g(t, z(t))) is e-neighbourhood of the set g(t, z(f))). It means that for all
ny 2 N9

v, (1) € O(g(t, 2(1))) .

Consider the sequence {v,,}, n, = N. Then (see [4], Corollary V. 3.14) it is possible -
to construct such convex combination from v,,, n, = N, denote them g,(f), m =
=1,2,..., that the sequence {g,(f)} converges to v(t) in L,(<0, L)). Then by the
Riesz theorem there exists a subsequence {g,,(f)} of {g,(f)} which converges to
u(f) a.e. on <0, L). From the convexity of O,(g(t, z(t))) and from the fact that
v,(2) € 0(g(t, z(1))) it follows that g,,(f) € 0(g(t, z())), i = 1,2, ..., and therefore
() € O(glt, z(1))). If we let ¢ - 0 we conclude that o(t) € g(¢, z(t)). We recall that
in our consideration ¢t was a fixed point and that g(t, z(¢)) is a convex compact
subset of R". Thus the function

, .
h(t) = y(t) + j R(t, s)v(s)ds, te<0,L)
0

is well defined and h(r) € T(z{t)) for t € €0, L). Taking into account the fact that the
sequence {v,, } weakly converges to v on <0, L) and the assumption o) we get that
the sequence

(h, (0} = {y(t) + f ;R(t, ) b (s) ds}, k=12,...

converges to h(f) a.e. on <0, L.

The functions h,(f), k = 1,2, ..., being uniformly bounded and equicontinuous
on (0, L), it is possible to choose a subsequence of the sequence {h,,(f)} whichcon-
verges on <0, L) uniformly to a function A(t). Hence h(f) = h(t) a.e. on <0, L).

The number L > 0 being chosen arbitrarily, we conclude that from the sequence
(22) it is possible to choose a subsequence which converges to a function h(f) uni-
formly on every compact subinterval of J and h(t) € T(z(t)) for t € J. This completes
the proof of upper semicontinuity of T.

The proof of existence of such a ball B, ,, that T maps B, ,, into cf(B,,,) is
similar to that in the proof of Lemma 1.

Theorem 2. Let y(t), ¢(t) be positive continuous functions on J. Assume that
1. |r(t, s)| is locally integrable on 0 < s < t < oo0;
2. there exists a constant P > 0 such that

I"/'"(t) |r(t, s)| @(s)ds < P forall teJ
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and

t+h
lim {U |r(t + h, )| ds
h=0 .

for te J;
3. all assumptions of Lemma 3 are satisfied except €);

to
4. 1im | ¢~Y(1) |R(t, 5)| o(s) ds = O for every fixed t, > 0.

t=wo Jo

+ Jﬂlr(t + h,s) — r(t,s)| ds} =0

0

Then there is a y-asymptotic equivalence between the y-bounded solutions x(r)
. of (2) and Y-bounded solutions y(t) of (1). If instead of 4 the condition

5. J”ulﬁ—l(t) |R(t, 5)| o(s) ds e L(J), pe(0, )

is satisfied, then there is a (Y, p)-integral equivalence between the y-bounded
solutions x(t) of (2) and W-bounded solutions y(t) of (1).

Proof. Let y(f) be a y-bounded solution of (1). Then the assumptions 1 and 2
imply that y(¢) is a continuous function on J. Thus the assumption &) of Lemma 3
is satisfied.

Let T be the operator defined by (14) and let B, ,, = B, be such that TB, , <
< B, ., Such B, ,, exists (see the proof of Lemma 3). B, ,, is a bounded, closed
and convex subset of B, as well as of ¢(J, R"). Due to Lemma 3 T is upper semi-
continuous in ¥(J, R") and TB, ,, is compact. Then by Lemma 2 there exists x(f)
€ B, ,, such that x(t) e T(x(f)), i.e. x(¢) is a solution of (2). Therefore there exists
such v{t) € M(x(t)) that

t

x(1) = y(¥) +J R(t,s)v(s)ds, tel.
Then ’

VO k0 =501 5 [ W0 IR 9] ] o5 3

< ﬂ.p-l(t) IR(t, 5)| 9(s) (s, o) ds

Using the assumption §) (i) from Lemma 3 we get

to

wm@—w@meﬁwwwmmww

0

toSs<wo

+ sup F(s, ug) J. t\#“(t) |R(t, 5)] @{s) ds .

1]

The first term on the right hand side tends to zero as t — oo by the assumption 4.

The second term is not greater than sup F(s, u,) K. In the above considerations
. toSs<wo

to > 0 was an arbitrary number. Using the assumption 8) (ii) in Lemma 3 we get

198



that for any ¢ > 0 it is possible to find such t, > 0 that sup F(s, u) K < e.

tgSs<o
From all these considerations we can conclude that lim ¢ ~*(¢) |x(t) — p(f)] = 0
as t — oo.
On the other hand, using the assumption 8) (i) in Lemma 3, we get that

t
w”@hﬂ%—ﬂm§SpF@uQJ¢‘WHMLN¢®dL

0

By the assumption 5 of our theorem we see that

V() [x(1) — ¥(1)] e L(J) -

Now, let x(t) be a y-bounded solution of (2). Then there exists v(t) € M(x(¢)) such
that

x(f) = y(1) + JtR(t, s)v(s)ds, telJ

0

where y(f) is a solution of (1). The proof of the y-asymptotic equivalence and
. (, p)-integral equivalence of x(f) and y(z) is the same as above.

2.

Now, we will consider the equivalences of the equations (3) and (4). We suppose
that A(t) e LL,(J), B(t, s) € LL,(D), C{t, s) € LLy(D), where D = {0 < s < t < o0}.
Integrating (3) we get

(23) o) = ¢ +J:F(s) ds + [ 0 [A(s) + f "B(u, ) du:l ¥(s) ds,

teJ.

Denote f(t) = & + [5 F(s)ds, a(t,s) = A(s) + (; B(u, s) du, and let y(t,s) be the
resolvent kernel belonging to a(t, s). We see that f (t) is a continuous function on J,
a(t, s) and 9(t, s) are locally integrable on D. Then

(240 0 =10 + [[al,9 59 0
and _
(25) W) = £(1) — 'f W(t, $) () ds .

Let x(f), x(0) = &, be a solution of (4). Then there exists such v(f) € M(x(t)) that

(26) x'(f) = F(t) + A(f) x(f) + J"B(t, s) x(s) ds + J.tC(t, s)v(s)ds.

0 0
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Integrating this equation we have

*(i) = € + J' 'F(s) ds + j ' [A(s) + .['B(u,s) du] () ds +

+ L ( f :C(u, ) du) ofs) ds

@) x()=f01) + f ‘a(t, 5) x(s) ds + J' (.['c(u, ) du) ofs) ds .

0 0 s

Using (25) we get

(28) (i) = »(0) + '[ 0 { J' ' [C(u, $) = o(t, u) L"c(r, 9 dt] du} ofs) ds .

s

If we denote

(29) J.‘[C(u, s) — ¥(t, u) j:C(t, 5) d1::| du = I(t, )

s
we have

t
(30) x(i) = yit) + f I(t, 5) ols) ds, x(0) = &.

0
Thus we have a situation similar to that represented by (9) and (12). Therefore, the
following theorem holds true.

Theorem 3. Let Y{t), ¢(t) be positive continuous functions on J. Let y(t, s) fulfil
the same hypotheses as rt, s) and I'(t, s) as R(t, s) in Theorem 1 (Theorem 2) and
let g(t, x) be the same as in Theorem 1 (Theorem 2). Then there is a y-asymptotic
equivalence and a (, p)-integral equivalence, respectively, between the set of all
y-bounded solutions of (3) and the set of all y-bounded solutions of (4).
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