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1. 

We consider the control process represented by a family of ordinary differential 
equations 
(A, c) dxjdt = Ax + c 

where x, the state vector, is a function of time t ^ 0 with values x(t) e Rn, A is 
a real n x n matrix, and c, the control parameter, is a function of t with values c(t) 
in a subset T of Rn. 

We shall denote by Cr the set of measurable, locally integrable functions of t ^ 0, 
c: t -+ c(t) e r. 

For each ceCr the solution of (A, c) starting from an initial state v e Rn at time 
t = 0 is represented, at time t, by 

(1.1) x(t, v, c) = QtAv + f e ( f - s M c(s) ds • 
In order that c might be considered as a genuine control it must not be constant, so 
that we shall assume that F is not reduced to a single point, or, equivalently, that 

rel int co F + 0 

holds, where co F is the convex hull of F and rel int co T is the interior of co r 
relative to the affine hull of T. • 

A point w e Rn is said to be reachable from the origin O of Rn at time t if there 
exist some ceCr such that x(t, 0, c) = w. 

According to (1.1) the set of points reachable from O at time t is 

W(t9 A, r) = j f e ( f - s M c(s) ds: ceCr\. 

The union of these sets with respect to t > 0, 

w^r) = u^M,r), 
is the set of points reachable from O. Q 
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We say that a pair (A, T) is O-locally reachable if 

(R)o-u>c OeintW(A,r) 
holds. 

We say that (A, T) is O-globally reachable if 

(R)o-,i w(A,r) = ir 
holds. 

Obviously 
(R)0_gl =>(R)0_Ioc. 

In what follows we shall discuss 

Problem P. To find a property (x) of the pair (A, f) such that 

O-loc 

plus (x )o(R) 0 _ f l . D 

2. 

Before we go further let us recall some known properties of reachable sets (see, 
for instance, [Q]). 

First of all (CI S = closure of S), 

(2.1) W(t, A, r) = co W(t, A, r) , "it, A, r, 

(2.2) CI W(t, A, r) = CI W(t, A, CI co T) , Vt, A, T , 

(2.3) O e int W(A, r)o3t> 0: 0 e int W(t, A, T) 

hold. Consequently, 

(2.4) 0 e int W(A, r)oOe int W(A, CI co T) . 

From (2.2) we have also 

ci W(A, r) = ci W(A, ci co r), VA, r 
and since 
(2.5) Cl W(A, r) = W" o w(̂ , r) = RT , 
we obtain 
(2.6) W(A, r) = R"o W(A, Cl co r ) = W" . 

From (2.4), (2.6) we conclude that, in dealing with Problem P, it is not restrictive 
to assume 

r = ci co r , 
as we shall do from now on. D 
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One further remark: (R)o-gi does not imply that 

(h) OeT, 

hence the same applies to (R)0_loc. Therefore, also the condition (x) we are looking 
for must be independent of assumption (h). • 

Let us now review what is known about Problem P. Notice that the results we are 
going to review are originally stated in terms of the pair ( — 4̂, — t) rather than 
(A,t). D 

The first contribution to Problem P is contained in a wellknown paper of J. P. 
LaSalle [1] who proved the following. 

Let r = BUm where Um is a cube, namely 

Um = {ueRm: \ut\ S 1, i = 1,2, . . . ,m} , 

and B is a real n x m matrix. Then (R)o-gi is equivalent to (R)o-ioc plus 

(c1) z * 0 , z*A = Az* => Re X ^ 0 . D 
The same result was obtained independently and almost simultaneously by J. 

Kurzweil and Z. Vorel [2] by means of an entirely different proof. 
Other cases where T = BQ, Q a bounded subset of Rm, were considered by E. B. 

Lee - L. Markus ([3], p. 96), A. M. Formal'skii [4], R. F. Brammer ([5], Th. 3.5), 
S. H. Saperstone ([6], Cor. 5.2); V. I. Korobov - A. P. Marinic - E. N. Podol'skii 
([7], Cor. p. 1978), L. A. Kun - Yu. F. Pronosin [8]. Q 

All these results were finally extended by L. A. Kun [9] who proved that 

(3.2) (R)0-Ioc plus ( c ' H W o - g , 

holds with no supplementary assumptions on F, and that if 

(H0) r is a bounded set 
then the converse 
(3.3) (R)0_loc plus (c ' )^ (R) 0 - g l 

is also true. 
In other words, 

(x)o(c !) 
provided that (H0) holds. • 

Assumption (H0) is quite a reasonable one for applications, but unsatisfactory 
from a theoretical viewpoint. So we must try to get rid of it. 

Taking for instance r = Rn it is obvious that (R)o-gi holds for every A, so that (c1) 
is no longer necessary and (3.3) is no longer valid. 

In other words (c!) is stronger than the condition (x) we are after. 
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4. 

A weaker condition than (c1), reducing to (c1) when (H0) holds, is represented by 
([7], Theorem 2): 

(cH) z + 0 , z*A = Xz* , Re X < 0 => {z*y: y e T} unbounded , 

and it is easy to show that 

(4.1) (R)0_„=>(c"). 

In fact, w e W(A, T) if and only if w = j ^ csAc(t — s) ds for some t > 0 and c e Cr. 
Let there exist z #= 0 and Q > 0 such that z*A = Xz*, Re A < 0, |z*y| g £ for y e T. 
Then 

hence 

z*w = I eAsz*c(f — s) ds, 

|z*w| ^ j eReAs|z*c(* - s)| ds ^ -^/ReA 

so that (R)o-gi cannot hold. • 
On the other hand, 

(R)o-ioc Plus (cu) => (R)0_gl 

is not true, as is shown, for instance, by 

Example 4.1. Let n = 2 and 

^ = (-l _i)' r = {fri '^): ^ e ^ ' ^ ^ 7 i } . 

It can be shown (see [Q]) that 

W(A, r) = {(wl9 w2): (Wl - 1/2)2 < w2 + 1/2} 

so that (R)0_loc holds, but (R)o-gi does not. 
On the other hand, it is easily seen that (cH) holds. • 
From the preceding we have 

(4.2) ( c ^ x ) ^ " ) . • 

Let us now consider the condition 

(cm) y #= 0 , y*A = Xy* , X < 0 => 

=> 3{yk} in T such that |y*| -* +oo and j ; * / ^ <5|y*| for some <5> 0 ; 
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z 4= 0 , z*A = Xz* , Re X < 0 , Im X # 0 => 

=> 3{y*} in r such that \yk\ -» +oo and |z*y*| ^ 5|y*| for some 5 > 0. 

Obviously, (c1) => (ciH). 
It was proved in [7] (Theorem 2), under the additional assumption (h), that 

(5.1) (R) 
0-loc 

plus (c l ! l)^(R)o- fi 
holds. The proof, entirely analytic, makes use of the properties of almost periodic 
functions. • 

6. 

Recall that (see T. R. Rockafellar: Convex Analysis, Princeton, 1970) the recession 
cone of anon empty convex set S c Rn is defined as the set 0+S = {x: S + x c 5}. 

Then let us consider the condition 

(civ) 0+T is not supported by any y, y*A = Xy*, X < 0; 

0+T is not orthogonal to any z, z*A = Xz*, Re X < 0, Im X 4= 0. 

Recently Nguyen Khoa Son [10] proved, under the additional assumption (h), that 

(6.1) (R)0-,„c Plus (c") => (R)0_fl 

holds. However we can see that 

(6.2) (c")*>(c" i). 

Proof. Assume first that (ciu) does not hold. This gives two possibilities, namely 
a) there exist y, y*A = Xy*, X < 0, such that for any sequence yk e JT, lim \yk\ = 

= +oo, we have 
v*yk 

lim sup Y^- ^ 0 ; 

In 
b) there exist z, z*A = Xz*, Re X < 0, Im X + 0, such that for any sequence 

yk e r , lim |yfc| = + oo, we have 
\Z*M 

lim sup l——-1 = 0 . 

In 
Let us fix y0er. Then for any non-zero yeO+r we have yk &y0 + kyeT 

(k = 0,1,...), lim | / | = +oo and 

lim ± = lim fe(|y0|
2 + 2hy*y + k2\y\2yl/2 = p , . 

\y\ \y\ 

In case a) we have 
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|/| l b I In J H 
or j*y ^ 0, i.e., 0 + F is supported by y. 

The proof in case b) is analogous. 
So we have (civ) => (cHi). Let us now prove (civ) <= (cii!). 
Let yk e r be such that lim \yk\ = + oo. We can assume that ykj\yk\ -> y^, ly^l = 1. 

Let y e r and & ̂  0. Then 

Since yk,y e T and 3 / | / | e [0, 1] if k is sufficiently large, we have 

hence 7 + Sy^ e r = CI co F, so that yw e 0+T. 
If (cUi) holds, then y*yo0 ^ d > 0 for every y, y*A = ky*9 X < 0, and Iz*?^ ^ 

^ <5 > 0 for every z, z M = Az*, Re A < 0, Im X 4= 0, so that neither 0+T is sup­
ported by y9 nor 0+T is orthogonal to z, i.e., (civ) holds. • 

From (6.2) we conclude that (5.1) and (6.1) are equivalent results. It should be 
noticed, however, that, unlike the proof of (5.1) in [7], the proof of (6.1) in [10] is 
entirely geometric and makes use of Schauder fixed point theorem. • 

7. 

We shall now show that assumption (h) can be omitted to obtain (5.1), i.e., (6.1). 
To see this let 

(7.1) W(A9 T, x) = W(A9 r + Ax) + x 

denote the set of points which can be reached from a given x e Rn: in particular, 
W(A, r, 0) = W(A, r). 

Let also define the set 

<2 = {x: — Ax; e rel int cof} . 

Then it can be shown [11] that (R)o-ioc implies Q #= 0 and 

(7.2) x e int W(A, r,x)9 xeQ, 

hence, by (7.1), 
O e int W(A, r + Ax) , x e Q . 

Since xe Q imphes O e r + Ax we can use condition (cm) or (civ), i.e., (5.1) or (6.1), 
to obtain 

W(A9 r + Ax) = Rn , xeQ. 
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Hence 
(7.3) W(A, r , x) = R\ XEQ. 

On the other hand, it can also be shown ([11]) that if x e int W(A, JT, x), y e 
e int W(A, F, y), then W(A, F, x) = W(A, F, y), so that (R)0_loc, due to (7.2), 
yields 

W(A, r) = W(A, r, x), x e G , 
and from (7.3) we have W(A, F) = ff\ i.e., (R)0-gi- D 

8. 

The following example shows that condition (cm) = (civ) is not necessary for 
(R)o-,i to hold. 

Example 8.1. Let A be the same as in Example 4.1 but let, instead, F be the 
union of the cone F ' = {(yl5 y2) : 7i = ^ ?2 ^ 0} and the closed region F" = 
= {(?!, 72): 7i ^ 0, y2 ^ p(?i)}, where 9(7) = (|y| + 1) log(|y| + 1) - |y|. 

Since 0+T = T' we see that (civ) does not hold. 
Obviously F = F ' + F", so that W(t, A, F) = W(t, A, F') + W(t, A, F"), Vf > 0. 

It is readily seen that CI W(t, A, F') = F ' : namely, W(t, A, F') is F ' without the 
points wt < 0, w2 = 0. 

Taking yx(t — s) = es — 1, y2(t — s) = ^(^(f — s)) = ess — es + 1 we obtain 
the point 

pt = (t - 1 + e_ r , -t + 2- 2e_f - te~f) e W(t, A, F") 

so that CI W(t9 A , r)=> r + Pt. 
As t goes from 0 to + 00, Pt describes a curve in the region wt > 0, w2 < 0 going 

from the origin to the asymptote wt + w2 = 1, and it follows that W(A, F) = £?2. 
P 

Summing up, (4.2) can be replaced by the stronger implication 

(8.1) (c i i i)o(c iv)=>(x)=>(c i i) 

and the arrows are not invertible. • 

9. 

Let us recall that the barrier cone Ks of a convex non empty set S c Rn is the 
convex cone with vertex at 0 defined by 

^ = {^6 Rn: sup y*x < + 00} . 
oceS 
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Ks is not necessarily closed even if S is closed. Also, Ks = Rn if S is bounded. There­
fore the assumption (H0) is stronger than the assumption 
(Hi) the barrier cone of T is closed. 

Nguyen Khoa Son [10] noted that if (Hx) holds then 

(c")<-(R)o-,.. 

In fact, if (civ) does not hold there are two possibilities: 
a) there exist y 4= 0, y*A = X*y, X < 0, such that y*x ^ 0 , VxeO+r, which 

means ye(0+r)°, the polar cone of 0+T. But (cf. T. R. Rockafellar, loc. cit. p. 
123) we have 0+T = (Kr)°, hence (0+r)° = (Kr)

00 = CI Kr. Therefore if CI Kr = 
= Kr we have y e Kr, against condition (cH); 

b) there exist z 4= 0, z*A = Az*, Re A < 0, Im X * 0, such that z*x = 0, x e 0+T, 
so that Re z, Im z e (0+r)°, hence Re z, Im z e Kr, against (cu) again. 

Therefore, in our notation 
(x)^>(c i v)o(cm) 

provided (H^ holds, i.e., Problem P is solved under the additional assumption (Hi)* 
'As far as we know, the solution is still unknown when (H^ does not hold. • 
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