
Časopis pro pěstování matematiky

Pavol Brunovský; Jozef Komorník
Explicit definition of an exact measure for the semiflow of a first order partial
differential equation

Časopis pro pěstování matematiky, Vol. 111 (1986), No. 1, 48--53

Persistent URL: http://dml.cz/dmlcz/118263

Terms of use:
© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118263
http://project.dml.cz


Casopis pro p&stovinf matematiky, roc. I l l (1986), Praha 

EXPLICIT DEFINITION OF AN EXACT MEASURE FOR THE 
SEMIFLOW OF A FIRST ORDER PARTIAL DIFFERENTIAL EQUATION 

PA VOL BRUNOVSKY, JOZEF KOMORNIK, Bratislava 

Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday 

(Received May 25, 1985) 

1. INTRODUCTION 

This paper deals with the semiflow S on C[0, l] generated by the first order partial 
differential equation 

(1) ut + c(x) ux = f(x, u) , O ^ x ^ l , 0 < f̂ < oo , 

(2) w(0, x) = v 

and its conjugate — the left shift semigroup Ton C[0, oo). The semiflow S has been 
introduced in [3] as a model of a selfsustaining cell population. As shown in [1, 2], 
S is conjugate to T, the latter being a very useful tool for the study of S. 

In [2] it has been proved that the left shift on C[0, oo) is exact, i.e. admits a non-
trivial probabilistic measure m such that lim mKTt(A)) = 1 for each A a C[0, oo) 

r->oo 

with m(A) > 0. Using the conjugacy # of S and Tthis measure could be carried over 
to certain 5-invariant subsets of C[0, 1] to prove exactness of the restriction of S to 
these subsets. In order to do so a preliminary scaling of the real line was needed 
before <f> could be used. The definition of this scaling, however, was not constructive. 

The purpose of this paper is to remove this shortcoming. In Section 2 we prove 
that a suitable scaling can be defined explicitly using the distribution function of the 
normalized normal distribution. In addition we show that the resulting measure is 
natural in that the marginal cylinder of functions the values of which at a fixed 
point lie in a given interval has the measure equal to the Lebesgue measure of the 
interval. 

To define a measure on C[0,1] via the conjugacy 0 using the measure on C[0, oo) 
constructed in Section 2 a refinement of the stability theorem of [3] is needed giving 
the attraction rate of the stable stationary solution of (l), (2). This is the subject 
of Section 3. 

We conclude this section by a survey of assumptions and results on (1), (2) which 
are necessary for understanding our paper. 
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Assumptions: 
Al. The functions c , / a r e continuously differentiable. 

A2. c(0) = 0, c(x) > 0 for x > 0. 

A3. There exist u_ < 0 < u+ such that / (0 , u_) = / (0 , 0) = / (0 , u+) = 0, 
II / (0, II) > 0 for 0 =j= u e (u_, u + ) , /u(0, II_) < 0, /a(0, u + ) < 0. 

A4. / (x , M) sign w S kx\u\ + k2 for some kl9 k2 > 0, all x e [0,1] and all u. 
Note that the assumptions Al, A2, A4 coincide with those of [2]. Assumption A3 

is a restriction of A3 of [2] to one interval between "stable" zeros of / (0 , u). 
Under these assumptions we have the following 

Proposition 1. (i) For any v e [0, 1], (1), (2) has a unique solution u in C([0, oo) x 
x [0,1]). The map S: [0, oo) x C[0,1] -• C[0,1] defined by (Stv) (x) = u(t9 x), 
where u satisfies (1), (2), is continuous and S0 = id, StoSs = St+sfor all s, f >̂ 0. 

(ii) There exists a unique solution w+(w_) of the stationary equation 

(3) c(x) w' = / (x , w), 0 S x ^ 1 

satisfying w+(0) = u+(w_(0) = w_). For each v e C[0,1~\ such that v(0)e(0,u+~\ 
or v(0) e [w_, 0) one has lim (Stv) (x) = w + or w_, respectively. 

r-*oo 

(iii) 77ie map # : C[0, 1] -* C[0, oo) defined by <P(v) (f) = (Stv) (l) JS continuous 
one-to-one and satisfies 
(4) <!> o St = T, o <£ 

for t ^ 0, vvftere T is the left shift semigroup on C[0, oo) defined by (Ttg) (s) = 
= 9(t + s) for t, s ^ 0, # € C[0, oo). If can fee extended to a map $: C(0,1] -> 
-• C[0, oo) which has a continuous inverse and the following property: There is 
a continuous strictly decreasing function <p from [0, oo) onto (0, 1] such that 
$(vi)(t) > $(v2)(t) if and only if v^t)) > v2{cp(i)). 

(iv) The set W = {ve C[0, 1]: v(0) = 0, w_(x) < v(x) < w+(x)} is invariant 
under S. 

For the proofs cf. [3, Sections 1, 2] and [2, Section 3]. 

2. A NATURAL EXACT MEASURE ON C[0, oo) WITH BOUNDED SUPPORT 

Proposition 2. Let X(t) be the Gaussian stationary process with continuous trajec­
tories and triangular autocovariance function 

(5) cov (X(t), X(s)) = max {1 — \t — s\9 0} 

(cf. [2]). Then for every t0 e [0, oo) and x e [0, 1] the process 

(6) . Y(T) = (X(t0 + T) - X(t0))ly/2 

coincides with the standard Wiener process on C[0, 1]. 
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Proof. The process Y(r) is Gaussian, continuous and has the autocovariance 
function 

(7) COV(Y(T), Y(Q)) = mm (T,Q) 

for T, Q e [0 ,1] . 

Corollary 1. Let m be the measure on C[0, oo) associated with the process X 
and let F be the distribution function of the onedimensional normalized normal 
distribution (usually denoted by <P). Then, for any t e [0, oo), 

(8) m({g e C[0, oo)| sup {g(t + t) - g(t) | x e [0, 1]} > a} < 2[1 - F(aj^2)] . 

For the proof cf. [4, p. 227]. 

Corollary 2. For any t e [0, oo) and 0 < a e R we have 

(9) m{g e C[0, oo) | sup {g(t + T) | T e [0, 1]} > a} < 3[1 - F(a\^6)\ . 

Proof. We have 

(10) Mua = {g E C[0, oo) | sup g(t 4- T) | T G [0, 1]} > a} c 

c {# e C[0, oo) | flf(r) > a/V6} u 

u {# e C[0, oo) | sup {g(t + T) - #(0} > a(\ - 6~1/2)} . 

Hence 

m{MtJ £ [1 - F(a/V6) + 2[1 - f (a ( l - 6"1 '2) 2- 1 ' 2)] <; 

^ 3[1 - F(a/V6)] 

because of (1 - 6 " 1 / 2 )2 - 1 / 2 2: 6"1 / 2 . 

Lemma 1. (i) The inequality 

(11) (In)-112 (a-1 - a~3) e- f l 2 /2 £ [1 - F(a)] £ a - V 2 ' 2 ^ ) - 1 ' 2 

holds for a > 0 
(ii) Le* a ^ 3. 77ien 

(12) 1 - F(a) £ [1 - F(a/V6)]6 . 

Proof, (i) The inequality (11) can be obtained simply by integrating by parts 
the formula 

l - F ( a ) = (27r)-1 /2fV^2dx. 

(ii) We have 

1 - F(a) ^ (2TC)-1 / 2 a~\l - a~2) e~°2i2 , 

(2K)~3 63a-6(e-"2/12)6 £ [1 - F(ajy/6)]6 
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because of 

a~2 + 63a~5 ^ 1 for a ^ 3 . 

Proposition 3. For n e Z+ = {0, 1,...} to an = F~\l - [103(1 + n)]"7). T/ie« 
/or 

(13) M = {ge C[0, oo) | <?(*) | ^ a„ /o r n ^ f < n + 1; n e Z+} 

the inequality 

(14) m(M) > 0-985 

holds. 

Proof. We have an > 3 for all rc e Z + . Hence, 

1 - F(aj6) S [1 - F ^ ) ] 1 ' 6 = 10- 3 5(1 + n ) - 7 ' 6 . 
Moreover, 

00 

C[0, » ) - M c U [MH>a„ u ( -M„ , J ] 
n = 0 

where —B = {— g \ g e B) for J5 c C[0, oo). Therefore, 
00 

m(M) ^ 1 - 6 . 1 0 ~ 3 , 5 ^ ( 1 + n)-116 ^ 1 - 14 .10" 3 > 0-985. 
n = 0 

Let D be the set of those g e C[0, oo) for which w_(l) < #(*) < w+(l) for all 
0 ^ t < oo. Define H: D ^ C[0, oo) by 

#10) = h(g(t)) for # e [0, oo), 
where 

h(Z) = F-yi d~\i - n)) for £ ^ n, fc(§) = - F-\2d~\n - £)) for ^ q 

and 

d = i(w+( l) - w_(l)) . 

Then, m0 = nioH"1 is a probabilistic measure on the Borel subsets of D such 
that m0({g(t) | w_(l) + </103(l + n)" 7 ^ #(*) ^ w+(l) - 4 l 0 3 ( l + / i ) ]" 7 for re [n 
n + 1]}) > 0-985 and the marginal probabilities of cylinders satisfy 

m0(g | g(t) e [a, b]) = d~\b - a) 

for each w_(l) < a S b < w+(l), i.e. they are proportional to the standard Lebesgue 
measure on R. 

3. EXPONENTIAL ATTRACTION OF THE STABLE EQUILIBRIA OF S 

In this section we prove 

Proposition 4. $(W) z> H'\C[09 oo)). 
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This proposition expresses the meaning of the results of Section 2 for S, since it 
allows to define the exact measure \i on Why \i = m0 o # with ra0 defined in Section 
2. In virtue of Proposition 3, in order to prove Proposition 4 it suffices to prove 

Proposition 5. There exists a y > 0 such that if 

w_(l) + Ke~yt ^ g(t) ^ w+(l) - KQ~yt 

for some K > 0 then g e <P(W). 
For the proof of Proposition 5 we need 

Lemma 2. Let v(0) e (0, w+(l)). Then for each a < — / t t(0, u+) there exists a p > 0 

A similar statement holds for v(0) e (w_(l), 0). 

Proof. Denote by x = ^(r, £) the characteristics of (1) passing through the point 
r = 0, x = £. That is, \j/ satisfies dil/jdt = c(^), \j/(0, £) — £. Note that by Assumption 
A2, \l/(t, 0) = 0, \j/(t, {) is strictly increasing for f > 0. Choose £ > 0 and denote 
w i (0 = M('> *K^ £))> M 2(0 = w(*K*> 0 ) ' where M solves (1), (2). Both ut and u2 

satisfy the differential equation 

d i i / d r = / ( ^ , { ) ,«) , 

so 

(15) li^r) - u2(t) = f /^ ( r , «), «a(0 + 3(Wl(0 - «a(0)) da(Ml(r) - u2(t)). 

There is a d e (0, min {1, u+ — v{0)} such that in Qd = {(x, 11) | 0 ^ x ^ d> 
w+(x) — d g M ^ w+(x)} we have/u(x, w) ^ —a. Consequently, by (15), 

d/d<Wl(0 - t/2(r)) ^ - a ( W l ( 0 - u2(r)) 

whenever (\j/(t, £), uf(f)) e <2d for i = 1, 2. Thus, we have 

(16) «x(r2) - «2(*2) ^ e - * " - " ^ , ) - u2(tl)) 

if ty(t, £), « f(0)e Qd for r . ^ t g f2, i = 1, 2. 
Consider the solution y(t) of the equation 

(17) y=f(o,y) 

satisfying y(0) = v(0). Since y(0) is in the domain of attraction of the equilibrium u + 

of (17) there is a t\ > 0 such that >>(*i) = «+ — d. By the continuous dependence 
theorem for ordinary differential equations there is a 0 < dt :g d such that if 0 ^ 
S ^ ^ dx then for some t^) ^ t[ + 1 we have i^(*i(£), £) ^ d, " i (0 = d. 

Let f2, r3 be given by \j/(t2, £) = d, ^(f3, £) = 1, respectively, and let L = 
= sup {/u(x, M) I 0 ^ x ^ 1, inf w_(x) :g w ̂  sup w+(x)}. Note that f3 — f2 = r 
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is given by XJ/(T, d) = 1 and, therefore, is independent of £. Thus, from (16) we have 

(18) 0(v) (*3) - w+(l) = u(f, 1) - w+(l) = ut(t3) - ii2(*3) ^ 

^ e ^ 3 " ^ ^ ) - u2(t2)) ^ e L t e" a ( , 2 - , | ' - 1 ) d. 

For £ -• 0 we have t3 -» oo (Proposition 1 (iii)), so (18) proves the lemma. 

Remark. The proof of Lemma 2 can be used to prove the inequality 

u(t, x) ^ w(x) - Pe~xt 

for a solution w of (1), (2) with v(Q) > 0 and 0 ^ x ^ 1. It can be readily checked 
that /? can be chosen independently of x. This refines slightly [3, Theorem 2] in that 
it gives an estimate of the rate of convergence of the solutions of (1), (2) to the stable 
equilibrium of the equation. 

Proof of Proposition 5. Let q> be as in Proposition 1. Take a e (y, —/„(0, u+)). By 
J.emma 2, for every s e (0, w+(l)) there exists a /? > 0 such that #(e) (t) ^ vv+(l) — 
— pe~at (a is to be understood as the constant e-valued function). Therefore, we have 
g(t) < $(s)(t) for t ^ T sufficiently large. Consequently, $~\g)(x) ^ e for x e 
€ <p-1(T). This proves 

(19) limsup^-1(^f)(x) ^ 0 . 

Similarly, from the analogue of Lemma 2 for the case v{0) e (M_, 0) we obtain 

(20) liminf $'\x) ^ 0 . 
x->0 

From (19), (20) we have lim $~\g) (x) = 0, so $~\g) e W. 
x-+0 
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