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SECTION 1. INTRODUCTION 

Consider the scalar equation 

( U ) x" + g(x) = 0, (*" = ^ ) 

where g(x) is smooth for all x e R. Let 

(1.2) G(x)= r^({)d{. 

If there exist a < 0 < b such that G(a) = G(b) = c, G(x) < c for all a < x < b 
and g(a) g(b) #= 0, then there exists a periodic orbit of (1.1) in the phase plane with 
energy c, intersecting the x-axis at (a, 0) and (b, 0). Let the least period of this periodic 
orbit be denoted by p(c), which is called the period function in this note. It is well 
known that p(c) is a smooth function of c. In fact, if g is Cy, y ̂  1, then p is Cy. 
Furthermore, p(c) is given by the following formula 

(1.3) P(c) = V(2) f ,(
 d* • 

J a V(C " G(X)) 
In this note, we will discuss the monotonicity of p(c). This problem has been 

studied by many authors, e.g., Loud [5], Opial [7], Obi [6] and Schaaf [8]. When 
g(x) is a polynomial of degree n, the above problem is a special case of the weakened 
16-th Hilbert problem proposed by V. I. Arnold ([1], p. 303). 

In this note, we will derive some formulae for p'(c) and p"(c) which are useful for 
determining the monotonicity of the period function. In Section 3, we study the period 
functions of (1.1) for different #'s. We will prove the monotonicity of the period 
function of equation 
(1.4) x" + e* - 1 = 0. 

This will complement the results of Wang [9] and will be useful for bifurcation 
problems [3]. 
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SECTION 2. MAIN RESULTS 

Let g(x), G(x) and p(c) be as in Section 1. 
Since we are interested mainly in either the monotonicity or the number of critical 

points of p(c), i.e., the points c at which p'{c) = 0, we may assume that g(x) has been 
scaled by g(x) -* k g(ocx + /?), where kcc > 0. Hence, we will assume g(0) = 0. 

We consider now the periodic orbits which contain only one critical point in their 
interiors. Consider the hypothesis: 

(Hi) There exist — oo <̂  a* < 0 < b* ^ +oo, an integer N ^ 0 and a positive 
smooth function h(x) such that 

(2.1) 
and 

g(x) = x2N+1h(x)9 a*<x<b* 

0 < G(a*) = G(b*) = c* ^ +oo . 

Note that under the above hypothesis, the graph of y = G(x) and the corresponding 
phase portrait of ( l . l) are shown in Fig. 2.1. Furthermore, p(c) is defined for every 
0 < c < c*. 

\y 

ymG(x) 

For simplicity, let 

(2.2) 

Note that 

(2.3) 

(2.4) 

Fig. 2.1 

y(x,c) = 2(c - G(x)) 

dy 

dx 
= -2g(x), 

P(c) 
dx 

Jy'' 
where a* < a < 0 < b < b*, y(a, c) = y(b, c) = 0, y(x, c) > 0 if a < x < b. 

Theorem 2.1. Assume that (Hi) holds. Then for any 0 < c < c*, 
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(2.5) .( \ f R(x) cp(c)= v ' 
x) 

dx 

where a* < a < 0 < b < b*, G(a) = G(b) = c, and 

(2.6) R(x) = g2(x)-2G(x)g'(x). 

Proof. Let 

and 

(2.7) 

Then 

(2.8) 

Hence 

(2.9) 

/ = fV(y)dx, 

^ = J"(r-2c)V(y) 

/ '= f 4-dx, 

dx 

dx = / - 2d' 

J" = - / ' - 2d" 

On the other hand, integration by parts for (2.7) yields 

3 J. /5A 3jfl (dJL 
\8x 

y3'2(g\x)-G(x)g'(x)) 

92(x) 

dy 

~dx 

dx . 

Differentiating the above equality with respect to c twice, we have 

(2.10) J" i 2.g\x)-G{x)g\x) 
d x . 

Then from (2.8), (2.9) and (2.10), we have 

(2.11) 2cF = 2[
b92(x)-G(x)g'(x) 

» R(x) 

dx - / ' = 

L dx 

Note that p(c) = 2V. Therefore (2.11) gives the desired result. 

16 



Remark 2.2. Hypothesis (HI) guarantees that all the integrations in the proof of 
Theorem 2.1 make sense. 

Corollary 2.3. / / ( H I ) holds and 

x g"(x) < 0 (or > 0) , x * 0 , a* < x < b* , 

then 

p\c) > 0 (or < 0 ) , 0 < c < c* . 

Proof. Since R'(x) = -2G(x)g"(x), R(0) = 0, then R(x) > 0 (or <0), x 4= 0, 
a* < x < b*. 

Corollary 2.4. / / ( H i ) ZioMs and 

JR(X) R(A(x)) 
< 0 (or > 0 ) , a* < x < 0 , 

<73(x) 03(,4(X)) 

vv/iere #(x) = g2(x) — 2G(x) #'(x) and A(x) is defined by 

(2.12) <KA(X)) = GW > a* < x < ° ' ° < ^(x) < b* > 
f/ten 

p'(c) > 0 (or < 0 ) , 0 < c < c*. 

Proof. By Implicit Function Theorem, ^(x) e C1 (a*, 0) and 

(2.13) ^ ( x ) = _iW fl*<x<0. 

In the integration 

» R(x) I dx , 

we change variables by x = A(y)9 then 

(2.i4) r *<») dx = r - W - ^ ( * ) < » * • 

From Theorem 2.1 and (2.13), (2.14) we have 

Note that #(x) < 0, a* < x < 0. The conclusion follows. 

Corollary 2.5. Suppose (HI) fcoMs. / / g'(0) > 0 and 

(2.15) H(x) = ^ ( x ) + J ^ j L g3(x) - 2G(x),'(*) > 0 (or <0) 
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x 4= 0 , a* < x < b* , 
then 

p'{c) > 0 (or < 0 ) , 0 < c < c* 

Proof. By L'HospitaPs rule, 

>og3(x) 3(g'(0)Y 

Then H(x) > 0 (or <0) implies 

M < _ 1 i l l < MfO) a* < x < o 
<73(x) 3(g\0)f g3(A(x))' 

R(x) 1 #"(0) R(A(x)) ' n l 

or —^—i- > v ; > — v ; ; , a* < x < 0 , g%x) 3 (^'(0))2 <73(4*» 

since A(x) > 0, xe (a*, 0) and x g(x) > 0 for x + 0, x e (a*, £>*). By Corollary 2.4, 

p'(c) > 0 (or < 0 ) , 0 < c < c* . 

Corollary 2.6. Suppose (HI) holds. If g'(0) > 0 and 

(2.16) V = 5(g"(0))2 - 3 #'(0) g\0) > 0 (or < 0 ) , 

then there exists <5 > 0 such that 

p'(c) > 0 (or < 0 ) , 0 < c < (5. 

Proof. By Taylor's expansion technique, 

H(x) = ~ x 4 V + 0(|x|5) as |x| -• 0 . 

The conclusion follows from Corollary 2.5. 

Theorem 2.7. Suppose (HI) Zio/ds. Then for any 0 < c < c*, 

2c2 P"W = f ~ 7 7 ^ T dx , 
JaVWrW 

w/iere a* < a < 0 < b < b*, G(a) - G(b) = c, and 

(2.17) S(x) = -g4(x) - 4 G(x) 9
2(x) </'(*) - 4 G2(x) g{x) g"(x) + 

+ 12G2(x)(g'(x))2. 

Proof. Let 
(2.18) K = 

and 
9\x) 
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(2.19) L = d x , 
' 2R(X)G(X)VY 

Differentiating (2.18) and (2.19) with respect to c we obtain 

<"> R(x) 
(2.20) 

' - . 

L 

V(rM«) 
r" 2 R(x) GKx) 

V(rM*) 

dx , 

dx 

By Theorem 2.1, K' = cp'(c). Since y - 2c = -2 G(x), -11 = K - 2aK', 
we have 

f/(c) + c//'(c) = K", 

X' + 2cX" = L". 
(2.21) 

On the other hand, integration by parts for (2.18) yields 

* D / ^ G(x) 
(2.22) = _ 2 T K(x) j 

3 j a </3( x) 
dy 3/2 _ 

y3/2d 
R(x) G(x) 

(*) J 
r& ^ 3 / 2 

r3/2st(*) 
04W 

dx , 

where 

(2.23) Sx(x) = #4(x) - 5 G(x) g2(x) g'(x) - 2 G2(x) g(x) g\x) + 6 G2(x) {gf{x))2 

Differentiating (2.22) with respect to c twice we obtain 

rb S,(x) 
dx . (2.24) L" = 2 , 

From (2.20), (2.21) and (2.24), and by Theorem 2.1, 

2c2 p"(c) = L" - 3cp'(c) : 

- r Sx(x) 
dx 

* ( x ) 

2 / 

dx = 
VW 04(*) 

• 2 S t ( x ) - 3 i t ( x ) g
2 ( x ) 

V(rM*) 
The desired result follows from (2.6) and (2.23). 

Remark 2.8. Hypothesis (HI) guarantees that all the integrations in the above 
proof make sense. 
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We will now extend the previous results to periodic orbits whose interiors may 
contain more than one critical points. 

Note that we can also define G(x) as follows: 

^w=r^) d£ + c0 

where c0 can be any real number. 
We need the following hypothesis: 
(H2) There exist - o o ^ a * < a ^ 0 ^ £ < b * ^ +00, integers M ^ 0, AT ^ 0 

and a nonnegative smooth function h(x) such that 

x g(x) > 0, a* < x < a, fi < x < b* , 

0 < G(a*) = G(b*) = c* ^ + 00 , 
and 
(2.25) G(x) = {x - a)2M+1 (x - p)2N+1 h(x) , a* < x < b* . 

The graph of y = G(x) and the corresponding phase portrait of (1.1) are shown 
in Fig. 2.2. 

Fig. 2.2 

Theorem 2.9. Suppose (H2) holds. Then for 0 < c < c*, we have 

where a* < a < a, ft < b < b*9 G(a) = G(b) = c, R(x), y(x, c) are f/ie same as 
those in Theorem 2.1. 

Proof. Define 

J = r(y-2c)V(y)dx 
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Note that G(oc) = G(0) = 0. Hence 

2 r /•« r* 
J = 

3 

= - 2 r r + ny3 /v^)-G^)^))d ; c , 
3LJa J J 9\x) 

+ f ( y - 2 c ) V ( r ) d x . 

The rest of the proof is similar to that of Theorem 2.1. 

Remark 2.10. Hypothesis (H2) guarantees that all the integrations in the above 
proof make sense. 

Corollary 2.11. Suppose (H2) holds. If 

(i) g(x) is odd, 

(ii) ^(a) = 0, 

(iii) g\x) ^ 0, a* < x < a, 

then 
p'{c) < 0, 0 < c < c* . 

Proof. From oddness, (2.26) becomes 

Because #"(x) g 0, so .R'(x) ^ 0, a* < x < a. Therefore 

R(x) ^ £(a) = g\a) - 2 G(a) #'(a) = 0, a* < x < a . 

From (2.27), the conclusion is obvious. 

Theorem 2.12. Suppose (H2) holds. Then for any 0 < c < c*, we have 

where S(x), y(x, c), a9 b, c are the same as those in Theorem 2.7. 

y 5 / 2 ' 

Remark 2.13. Theorems 2.1 and 2.7 are special cases of Theorems 2.9 and 2.12, 
respectively. 
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SECTION 3. APPLICATIONS 

In this section, the results of Section 2 will be applied to several examples to show 
th6 monotonicity of the period function p(c). The following simple proposition is 
useful in applications. 

Proposition 3.1. Suppose (HI) holds. If #'(0) > 0, #"(()) ^ 0, then each of the 
following conditions implies H(x) > 0 (see (2.15)) for x # 0 , xe(ax, b^. 

(i) g\x) > 0 

and 
A(x) = x(g"(0) g'(x) - g'(0) g"{x)) ^ 0 , x e (al9 b±) , 

where a* ^ ax ^ 0 ^ bx ^ fr*; 

(ii) <7"(x)>0, 0m(x)£O, xe(al9b±), 

where a* ^ at S Q S bt S b*; 

(iii) g"(x) < 0, g'(x) ^ 0, 0 ^ ^ < x < bx ^ fc* and H(at) ^ 0; 

(iv) g'(x) ^ 0, 0 < a± < x < bx ^ b*; 

(v) #"(x) < 0, 0"'(x) ^ 0, a* ^ fll < x < bx < 0 and J J ^ ) ^ 0, T / ^ ) ^ 0. 

Example 1. Let 
g{x) = e* — 1, — oo < x < + oo . 

Since #'(x) = g"(x) = e* > 0, - o o < x < +oo, and A(x) = x(#"(0) #'(x) -
— g'(0) g"(x)) = 0, by Proposition 3.1 (i) and Corollary 2.5 we have 

p'(c) > 0, 0 < c < -f oo . 

From the results of Opial ([7]), 

lim P(c) = 2% , lim p(c) = + oo . 

Remark 3.2. It seems that the above result does not follow from the monotonicity 
results in [5], [6], [7] and [8]. 

Example 2. Let g(x) be a quadratic polynomial. We can consider the normal 
form ([4]): 

g(x) = x(x + 1) , — 1 < x < + oo . 

Since g"(x) = 2, g'"(x) = 0, by Proposition 3.1 (ii) and Corollary 2.5 we have 

p'(c) > 0, 0 < c < c* = £. 
Because c* corresponds to a homoclinic orbit, so limc_*c*_ p(c) = + oo. By the result 
of Opial [7], limc_0+ p(c) = 2n. 
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Example 3. Let g(x) be a cubic polynomial. For periodic orbits with only one 
critical point in their interiors, we may consider the following normal forms: 

(3.a) g(x) = - ( x + a) x(x - 1), 0 < a ^ 1 , -a < x < 1 ; 

(3.b) g(x) = x(x + a)(x + 1), 0 < a ^ 1 , - a < x < +oo ; 

(3.c) g(x) = x(x2 + bx + 1), 0 ^ b < 2 , - oo < x < + oo ; 

(3.d) a(x) = x 3 , — oo < x < + oo . 

For (3.a), g(x) = - x 3 + (1 - a) x2 + ax. Then 

g"(x) = -6x + 2(1 - a ) , 

9"'{x)= - 6 < 0 . 

By Proposition 3.1 (ii), (iii), (iv) and Corollary 2.5, 

p'(c) > 0 , 0 < c < c* = G ( - a ) . 

For (3.b), a(x) = x3 + (1 + a) x2 + ax. Then 

g\x) = 6x + 2(1 + a ) , 

a'"(x) = 6 > 0 . 

Hence g"(x) > 0 if and only if x > —-£-(1 + a). Further, 

A(x) - x2[6(l + a) x + 4(1 + a)2 - 6a] ^ 

^ x2[6(l + a) ( - J ( l + a)) + 4(1 + a)2 - 6a] = 

= x2[2(l + a)2 - 6a] ^ 0 , x > - J( l + a) . 

By Proposition 3.1 (i), (v) and Corollary 2.5, we conclude 

p'(c) > 0 , 0 < e < c* = G(-fl) . 

For (3.c), if b = 0, then a(x) = x3 + x, #"(x) = 6x. Then by Corollary 2.3, 

p'(c) < 0 , 0 < c < + oo . 
If 6 > V(9/10), then 

V = 5(a"(0))2 - 3 a'(0) 0*(O) = 20b2 - 18 > 0 . 

By Corollary 2.6, there exists 8 > 0 such that p'(c) > 0, 0 < c < 5. On the other 
hand, by a result of Opial ([7]), p(c) -» 0 as c -» + oo. This implies that p(c) is not 
monotone. 

For (3.d), g\x) = 6x. Then by Corollary 2.3, 

p'(c) < 0 , 0 < c < + oo . 

Remark 3.3. In [4], Chow and Sanders proved that there are at most 3 critical 
points of the period function when g{x) is a polynomial of degree 3. 
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Example 4. Let g(x) = — x4 4- x3, — oo < x < +1. A direct calculation shows 
that 

S(x) = 5~(156x16 - 624x15 + 896x14 - 550x13 + 125x12) . 

Hence S(x) > 0 for x < 0. Furthermore, 

S(x) = ^x12[156(x - 0-65)4 + 218-4(x - 0-65)2(l - x) + 

+ 4-879025(1 - x) + 2-439025(1 - x) x + 0-659025x2] > 0, 0 < x < 1 . 

By Theorem 2.7, 
p\c) > 0, 0 < c < c* = G(l) = ^ . 

Since 
lim p(c) = lim p(c) — + oo , 

c-»0+ c->c*-0 

p(c) has exactly one critical point. 
Example 5. Let g(x) = x(x2 — l)2 and 

G(x)= fV«)d{-i . 

Then 
G(x) = i(x 4- l)3 (x - l)3 . 

Since g(x) is odd, #(-1) = G(- l ) = 0, and g\x) = 20x3 - 12x < 0, x < - 1 , 
by Corollary 2.11, the period function of the periodic orbits with 3 critical points 
in their interiors is decreasing for c e (0, + oo). 

If we let 

G(x)= fV«)d{, 

then by Proposition 3.1 (i), (hi), (iv), (v), we have H(x) > 0 for x ={= 0, x e ( — 1, 1). 
Therefore 

p'(c) > 0 , 0 < c < c* = £ . 

We conclude that there are no critical points of the period function of the equation 

x" + x(x2 - l)2 = 0 . 
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