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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

WEIGHTED INEQUALITIES FOR ANISOTROPIC 
MAXIMAL FUNCTIONS 

V A C H T A N G M I C H A I L O V I Č K O K i L A S H v i L i , T b i l i s i , J I Ř Í R Á K O S N Í K , P r a h a 

( R e c e i v e d A p r i l 4 , 1 9 8 4 ) 

1. INTRODUCTION 

1.1. Let Rn be the n-dimensional Euclidean space of points x = (xl9 ..., x,.). 
By a weight function (shortly a weight) we shall mean a measurable function which is 
non-negative and finite a.e. in Rn. 

1.2. If 1 < p < oo and w is a weight function, we denote by LDJjRn) the weighted 
Lebesgue space of all measurable functions f with the norm 

l j l U = ( f M M x j d x Y ^ o o . 
\J Rn 1 

Similarly, the norm in L^(Rn) is defined by 

||f|ja,w = esssup|f;x)| , 

where the essential supremum is taken with respect to the measure jiw: 

(1.1) fiwe = vv(x) dx , e c Rn measurable . 

The Lebesgue measure of e will be denoted by \e\. The number p is always defined 
by 1/p + 1/p' = 1. 

1.3. Let a = (a1? ..., an) be a fixed vector from /T with at > 0, i = 1, ..., /t. 
For xeRn and r > 0 we define the one-parametric parallelepiped 

E(x, t) = {yeRn; \yt - xt\ = \f\ i = 1, ..., w} 

and by £ = E(a) we denote the set of all E(x91) with x eRn, t > 0. 

1.4. Let f e Ll0C(Rn)- The anisotropic maximal function Mf is defined by 

(1.2) Mf(x) = sup |£(x, 0 | - 1 f |/(^)| d j . 
t > 0 j£(.x,0 
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]f ul = ... = (xn then E(x91) is a cube and Mf becomes the usual Hardy-Littlewood 
maximal function. B. Muckenhoupt [8] gave the complete characterization of the 
weighted spaces Lp

w9 I < p < oo, for which such an operator M: Lp
w -> Lp

w is con­
tinuous. In 1978 B. Muckenhoupt stated the following problems [9]: When, for 
a given integral operator Tand a weight w, is there a weight v such that the operator 
T: LFW -> Lp

v is bounded? And, conversely, when for a given weight v can such a weight w 
be found that T: Lp

w -• Lp
v is bounded? 

In papers of P. Koosis [6], L. Carleson and P. Jones [1], J. L. Rubio de Francia 
[10], W. S. Young [12], E. T. Sawyer [11] and A. E. Gatto and C. E. Gutierrez [3] 
these problems were solved for the Hardy-Littlewood maximal operator and for 
singular integral operators. 

In the present paper we give answers to these questions in the case of anisotropic 
maximal functions (1.2). 

2. THE CHARACTERIZATION OF THE WEIGHT v 

2.1. In Theorem 2.4 we shall characterize weights v for which there exists such 
a weight w that the inequality 

(2.1) [M/ (* ) ] " v(x) dx á c i | /(x)|" w(x) dx 
R" J H" 

holds for all feLp
w(Rn) with a constant c independent off The method of proof 

comes from [3]. 
First of all we shall prove an analogue of the lemma by C. Fefferman and E. M. 

Stein [2] for the following modified maximal functions jcf. [8]): 

(2.2) /*(*) = sup \E(x, t)\"1 f \f(y)\ dy, 
*<T(X) JE(x,f) 

(2.3) f*(x) = sup \E(z, 0 l _ i T IIWI 6y' 
t<2z(x) jECz.t) 

where the supremum is taken over all E(z, t) e x, and 

(2.4) x(x) = i [ l + max (2|x,|) 1 / J i] , x e R". 
i 

Let us note that we can suppose 

(2.5) a, = 1 , i = l , . . . , n , 

since E(x, t) = E(x, f), where y = min â  and £(x, t) = [y eRn; \yt — x\ = 
i 

= %fily), and, consequently, £(a) = E(a/y). 
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> s . 

2.2. Lemma. Let 1 < p < oo and let f g be measurable functions, g finite and 
positive a.e. in Rn. Then the inequality 

(2.6) f [/*(x)]"a(x)dx < c f |/(x)|"6fH!(x)dx 
J R» J /*» 

holds with a constant c > 0 independent of f and g. 
Proof. We shall first prove that the operator fi—>f* is of the weak type (V I ) 

with respect to the measures \ig^ and \ig (see (VI)). 
Let s > 0 be given. We denote 

Hs = {x e Rn; f*(x) > s} , and Htn = Hsn{xeRn; \x\ = m} , m e i V . 

By (2.2), for each x e H™ there exists t < T(X) such that 

J E(:c,f) 

Applying de Guzman's covering lemma ([4]) we select sequences xU) e H™ and tj > 0, 
j e IV, so that 

(2.8) tj<r(x<»), 

(2.9) U % f ; ) , 0) => ILm , Ix,(x) < 3„, x e / C . 

where #y stays for the characteristic function of the set Ej = E(xu>, tj) and #„ depends 
only on the dimension n. By (l . l) and (2.8) we obtain 

(2.10) fiJ(H?) < £ f a(x) dx < s - 1 X IE,-!"1 f fl(x) dx f | /(j ') | dj-. 
J J Ej J J Ej J Ej 

However, for y € Ej we have (2|j'j — xp^)1 '*' = tj, i = 1, . . . , n, and, according 
to (2.5), 

\xU)Y"" = \yi-x\»yi°> + \y^°>, i = l,...,n. 

Hence, by (2.4) and (2.8), 

tj < T ( X 0 ) ) < 2 T ( X U ) ) - tj = 

= 1 + max(2\x\i)\y1" - max (2\y, - xU)\y"" = 
i i 

<: 1 + max (2\y,\y'" = x(y) . 
i 

Consequently, 

N-1 g(x)dx = g*(y), yeEj9 

Ej 

and from (2.10) and (2.9) we obtain 

(2.11) Hg(H:) < S ' 1 I f \f(y)\ g*(y) dy < ^ s " 1 f \f(y)\ gjy) dy 
J J Ej J R" 

386 



Passing to the limit for m -» oo and assuming that 9n depends only on n we can 
write (2.11) with Hs instead of H"1 which is the weak type (1,1) inequality for the 
operator fi->f* with respect to the measures f.ig and \ig^ 

On the other hand, since g(x) > 0 for a.a. x eRn and so g*(x) > 0 as well, it can 
be easily seen, that the operator f h->f* is continuous from L^(Rn) into L™(Rn) and, 
all the more, of the weak type (oo, oo) with respect to the measures \i and fig. 

The assertion of the lemma now follows from the Marcinkiewicz interpolation 
theorem (see e.g. [13]). 

2.3. Remarks , (i) Let 

(2.12) J0 / (x) = s u p | £ | - 1 f \f(y)\dy, 
J E 

where the supremum is taken over all E e £ which contain the point x. It can be seen 
(cf. [5], Lemma 2.3) that 

(2.13) Mf(x) ^ Mf(x) ^ 2 | a | / 7M/(x) , xeRn, 

where |a| = ax + ... + a„ and y = min af. 
i 

' (ii) Let us define the "anisotropic norm" Q by 

(2.14) Q(X) = ( £ |x I-|2/a0 | a l /2M, xeRn. 

One can easily verify that [1 + O/'(x)]s e Li(Ril) if and only if s < — 1. 

2.4. Theorem. Let v be a weight on Rn and 1 < p < oo. The following conditions 
are equivalent: 

(i) There exists a weight w positive a.e. in Rn and such that the inequality (2.1) 
holds for all f e Lp

w(Rn) with a constant independent off. 
(ii) Let Q be defined by (2.14). Then 

(2.15) f - ^ dx < oo . 

If the condition (ii) is satisfied, the weight w in (i) can be taken in the form 

(2.16) w(x) = ^ (x ) + [1 + Q"(x)f , P>p-1. 

Proof. Suppose first that the condition (i) is fulfilled. Let the function f > 0 and 
the set E e £ be such that 

fp(x) w(x) àx < oo and 0 < f(x) áx 
J Rn J E 

< 00 . 

There exists t > 0 such that E c E(0, t). Then for all y e E we have (2|>-,|)l/ai <; t 
and for xeRn (by use of (2.5)) 
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(2\y, - x,.|)l/"' g 2lf"(\yi\
11" + |x,|""') ^ f + max (2|x(|)

,/*<. 

Thus, for all x e Rn, 

E <= £(x, f + max (2|x,|)I/0"), 
i 

and so 

(2.17) Mf(x) = j£(x, t + max (^l)1 ' " ' )!"1 f /(y) dy . 

By simple estimates we get 
(2.18) \E(x, t + max (2|xf|)

1/a0| = [t + max (2[xi|)
1/orf]|af

 = cx[l + Q
n(x)] 

i i 

with cx > 0.independent of x eR". Hence, from (2.17) and (2.18) we conclude 

= cc2 fP(x) w(x) dx < oo , 
JH" 

which is (2.15). 
Conversely, suppose that the condition (ii) is fulfilled. Since p > 1, by Remark 

2.3 (ii), [1 + Qn(x)]~p dx < oo. Hence, the function v + 1 satisfies the condition 
JR" 

(ii) as well, and so we can suppose that v is positive. 
We can write 

(2.19) Mf(x)£f*(x)+f*(x), 

where /* is given by (2.2) and 

/*(*) = sup |£(x, Ol"1 f |/(y)|dy. 
^ T < * > jE(x,t) 

According to Lemma 2.2 there is a constant c3 > 0 such that 

(2.20) f [f*(x)]p v(x) dx = c3 f \f(x)\p v*(x) dx . 
J R" J Rn 

Similarly as in (2.18) we obtain for t — T(X) the estimate 

\E(x91)\ = c4[l + Qn(x)] . 

By means of Holder's inequality, for p e Rl we get 

/ • (x^crt l + ̂ x)]-1 f |/(.v)|dyg 
J«" 

^ Cl\\ + Qn(x)]-l( f [1 + Q\z)y»'" dzX'" X 
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1/p 

x (j" I/Ml' C1 + « W d ^ 
and, following the Remark 2.3 (ii), for p > p — 1 

(2.21) f [f*(x)]' v(x) dx ^ 
J K» 

= C5f[ [ T T ^ ^ f l/WCi + ct^dy. 
\Jn-[i + eV)]' /Jn» 

According to (2.15) the first integral on the right hand side of (2.21) is finite. 
Since v*(x) is finite for a.a. xeR'\ we conclude from (2.19), (2.20) and (2.21) 

that the inequality (2.1) holds with the weight vv defined by (2.16). 

3. THE INVERSE PROBLEM 

3.1. Now we turn our attention to the question for which weights w there exists 
a weight v such that the operator M defined by (1.2) is bounded from Uw into Lp

v. 
The characterization of such weights and the idea of the proof is due to J. L. Rubio 
de Francia [10]. 

Theorem. Let w be a weight positive a.e. in Rn. Let 1 < p < oo. The following 
conditions are equivalent: 

(i) There exists a weight v positive a.e. in R" and such that the inequality (2.1) 
holds for allfeLp

w(Rn) with a constant independent off. 
(ii) w-p'lpeLloc(Rn) and 

lim sup |K(0, t)\~p' j w~p,'p(x) dx 
ř"*°° JE(0,0 

< 00 . 

Let us recall several assertions which we shall employ in the proof of the theorem: 

3.2. Proposition. (B. Maurey [7], Corollary 5 of Theorem 2). Let E c Rn be 
a measurable set9 0 < q g p g oo, \\q = \\p + l/r, and let I be a set of indices. 
Let {/,; i el} be such a set of functions from 13(E) that 

J £ iel 

for each system {a^e/?1; iel] with 

I h-|p < * . 
16/ 

Then there exists a function g e E(E) such that 

\fl*)9~l(x)\p&x = 1 for all iel. 
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3.3. Let (Y, S, v) be a a-finite measure space, Fa c-algebra of Lebesgue measurable 
sets in Rn. On the c-algebra T x S we define the measure X as the product of the 
Lebesgue measure and of v. For a A-measurable functionf: i?"x Y->il lwe define 
the vector-valued anisotropic maximal function 

M(D/(*> y) = SUP Wx> o r 1 f • \f{z> y)l dZ. 
f > 0 JEOCf) 

In [5], Lemma 3.1 an assertion is proved a special case of which we state here: 

Proposition. Let 1 < 9 < oo. Let a weight w in Rn satisfy the condition A^a), i.e. 

Mw(x) ^ ct w(x) for a.a. x e Rn. 

Then there exists a constant c2 > 0 such that for all s > 0 and for all X-measurable 
functions f: Rn x Y->R\ 

ft, jx E *"; ( f [M(1)f(x, j,)]» dvV* > s\ = 

- ^ s ^ f ( [ |f(x,v)|ddvV /dw(x)dx. 

3.4. The following analogue of Kolmogorov's inequality can be derived in the 
usual way from Proposition 3.3: 

Proposition. Let 0 < p < 1 ^ 3 < o o . If the weight w satisfies the condition A^a), 
then there exists a constant c > 0 such that the inequality 

[ ( [ [AW(*» y)YApl* H<X) dx ^ 

= ^ p ( M 1 _ ' ( f ( f |/(*» J ' ? < ^ V w(x) dxY 

holds for all e c: IT, juwe < oo and for all \-measurable functions f:Rn x y-> /J1. 

3.5. Proof of Theorem 3.1. Suppose that the condition (i) of the theorem is satis­
fied. Since v > 0 a.e. in Rn

9 it can be deduced in the usual way that w~p'lp e L]oc(R
n). 

Denoting E = E(0,t) and f(z) = w~p/p(x)/£(x), where XE -S the characteristic 
function of the set £, we have 

Mf(x) ^ ctSif(x) = Cl\E\-x f w~p'lp(y) dy , x e E , 

(cf. Remark 2.3 (i)) and 

f fp(x) w(x) dx = f w~p'lp(x) dx . 
J Rn J E 
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Hence by (2.1), 

f v(x) dx(\E\'pf w'p,fp(x)dx\p'1 = c2 , 
JE V JE / 

and the second condition of (ii) follows since 

lim sup v(x) dx > 0. 
E(0,ř) 

On the contrary, let us suppose that the weight w satisfies the condition (ii) of 
Theorem 3.1. We cover Rn by a sequence of non-overlapping parallelepipeds Ej e £ 
and for each j we shall prove that there exists a weight vE. positive on Ej and such 
that 

(3.1) f [Mf(x)]p vEj(x) dx = f | / (x) | ' w(x) dx . 
J Ej J R'» 

oo 

Then the inequality (2A) holds with v(x) = £ 2~J vEj(x) XEJ(X)-
I = i 

So, let E e £ be given. There exists T > 0 such that 

(3.2) 

(3.3) 

E <= £(0, T), 

|Е(0, ř ) | -" ' v,'-p'lp(x)áx й K < oo for t = T. 
JE(0,t) 

Given a number t > 0 we set t -= 21 / rt, y = min af. For f e Lp

w(Rn) we denote f"(x) =-
/ 

= f(x) XE(O,T)(X) and f'(x) = f(x) - f"(x). If y e F(0, T) and t > 0 then for z e 
e F(y, t) we have 

ì.e. 

N = bil + bí - z , | = i r " + ¥*', i = 1, . . . . n , 

f i T " for ř ^ T, 
z, ^ 

ft*' for t > F. 

So we get 

(3.4) 

(3.5) 

and, moreover, 

3.6) |£(0,7)| = 2'«'/"|£(0, *)] . 

It follows from (3.2)-(3.6) that for x e £, 

£(>>, <) c £(0, Ť) for ř ^ T, 

E(y, t) c £(0, ř) for t > T, 

Mf'(x) Z sup \E(0,t)\-1 f ITWIdy 
Í > T J£(0,ř) 
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g 2 | l | /y sup |£(0, ?)|_1 ( f w-p''\y)dy] " x 
•>T VJffO.f) / 

*(T \f'(y)\'*ty)dy)U' £2"»KpYl„. 
\J R" J 

Integrating this inequality over E we obtain 

(3.7) f [MT(x)]p \E\~1 c, dx ^ f \f'(x)\> w(x) dx , 
J E J Rn 

where cx = 2'^pIyK'ppf. 
Now, we shall seek the weight for estimating Mf" by means of Maurey's factoriza­

tion theorem (Proposition 3.2). Let H = {ht; iel} be the set of all functions h e 
6 IfjR") with supp h a E(0, T) and such that 

(3.8) f |/7(x)l'vv(x)dx ^ 1. 
J R" 

Let {a< eRl; iel} be such that £ |a(|
p < oo and let 0 < q < 1. By Proposition 3.4 

16/ 

there exists c2 > 0 such that 

(3.9) f ( X \aMht(x)\py"' dx ti 
JE *I 

fk-^-\EV-<([ ( iM^jir '^y. 
1 - i VJR- •-' / 

Using the Holder inequality and the Fubini theorem we obtain 

(3.10) f (z^hwydx* 
JRn iel 

*([ ShH x ) \ p *(x) d x T P ( f *-p'lp{x)dx)17' . 
\JE(0,f) ieI J \jE(0,T) J 

From (3.3), (3.8), (3.9) and (3.10) conclude that 

f ( £ \*tMhJ{x)\'Y* dx = c3( £ {*,]')«' < co , 
JE ieI > ieS 

where c3 depends on c2, p, q, w and T. Since the last estimate verifies that the set 
{Mh;heH} satisfies the assumptions of Proposition 3.2, there exists a function 
g e E(E), 1/r = l/q - 1/P, such that 

I [Mh(x)]p |ø(x)ľ* dx ^ 1 for all h є H 
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In particular, if we take h = /"|/"||P,w' w e obtain 

(3.11) f [M/"(x)]p \g(x)\-> dx g f |/'(x)|" w(x) dx . 
J E J H'» 

If we put Vz(x) = 2l"pmin (|flf(x)|"|F, cJFI"1), x e E, the estimate (3.1) follows 
from (3.7) and (3.11). 
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