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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

A GENERALIZATION OF TICHONOV THEOREM 

JAROMIR SISKA, IVAN DVORAK, Praha 

(Received March 22, 1984) 

1. INTRODUCTION 

In a great number of biological, ecological and sociological systems the variables 
considered change with very different rates. Modelling these systems by ODE's 
leads, in the simplest case, to the following system 

o-o T=f^>y)> 
at 
dy , , 

e — = 9\x> y) > 
dt 

M 1 being a small parameter and x e Rm, y e Rn. Such systems were first 
studied by Tichonov [5], [6]. He supposed that a ^-solution y = cp(x) of the al­
gebraic equation g(x, y) = 0 is such that for each x e Q a Rm, cp(x) represents the 
one point attractor* of the equation 

(I--) Tr^x>y)> 
at 

where x is considered as a parameter. Then, provided some technical assumptions 
are fulfilled, the solutions of the system (1.1) converge, for e -> 0, to the solutions of 
the system 

9(x, y) = 0 . 

If the solution y = cp(x) of the equation g(x, y) = 0 is not a one-point attractor 
for some x, Tichonov Theorem can not be used. This may be the case when solutions 
of the equation (1.2) are attracted by more complicated attractors. The simplest 

*) In other words, the solution y = cp(x) defined on the domain Q a Um of the equation 
g(x, y) =-• 0 is such that for each x the point y = <p(x) is an asymptotically stable point of the 
equation dy/dt = g(x, y). 
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model of such a situation is the system with three independent variables x, i-,, r2, x 
being the slow variable and yu y2 the fast oscillating variables, where the frequency 
of oscillations depends on e. The smaller e, the higher the frequency of oscillations. 
In this highly nonlinear situation, it is difficult to calculate the time dependence of x, 
even by methods of numerical integration. 

For this and even for more general cases a theorem will be given which for the slow 
and fast components of solutions gives an arbitrarily close approximation provided 
e > 0 is small enough. This makes it possible to solve numerically the system (1.1) 
vith a complicated attractor for the fast variable in a very efficient way. 

The paper is organised as follows. Notation and some definitions are recalled in 
Section 2. In the concluding part of this Section the Main Theorem of this paper 
generalizing the Tichonov Theorem is stated. In Section 3 preliminary results neces­
sary for proving Main Theorem are developed. The proof of Main Theorem is given 
in the last Section. 

II. NOTATIONS AND DEFINITIONS 

If X x Y is a Cartesian product of sets X, Y, then the corresponding projections 
will be denoted by n1: X x Y-» X, n2: X x Y-> Y. Supposing S cz X x Y, x e X 
and y e Y, we will denote Sx = {y e Y| (x, y) e S], Sy = {x e X\ (x, y) e S). The 
Lebesgue measure will be denoted by m throughout this paper and with respect to 
the Lebesgue measure we will use the term "almost all" in the generally accepted 
sense. We are not going to mention explicitly the dimension of the Euclidean space 
on which the Lebesgue measure is considered. 

Let M be a compact manifold with a Riemannian metric and let <P: R x M -> M 
be a flow on M. The flow (P is said to be topologically transitive on a closed invariant 
set A if there exists a dense trajectory inside A. 

A fixed point x e M of the flow 0 (i.e. <P(t, x) = x for every t e R) is called a hyper­
bolic fixed point if the tangent bundle at x e M can be represented as the Whitney 
sum of two T<P(t, — )-invariant subbundles — TXM = Es

x + Eu
x, and if there exist 

constants c > 0, X > 0 such that 

a) if ve£*, then \T<P(t, -)(v)\\ = ce-A'||vj| for all t > 0, 

b) if veEu
x, then \\T<P(t, -)(v)\\ = ceXt\v\ for all t < 0. 

Similarly, let A be an invariant set for the flow <P containing no fixed points and such 
that 

i) the restriction of the tangent bundle to A can be represented as the continuous 
Whitney sum of three T&(t, — )-invariant subbundles 

TAM = E + Es + E\ 
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ii) dim Ex = 1 and Fv is the tangent space to the trajectory through x, 

iii) there are constants c, X > 0 such that 

a) if veEs

x, then \\T<P{t9 -){v)\\ g ^""Af | |y|| for all t > 0, 

b) if r e F v , then \\T${t, -){v)\\ S ceXt\\v\\ for all t < 0. 

Then we say that A is a hyperbolic set. 
A subset A of M is an attractor of <P if 

i) <P is topologically transitive on A, 

ii) there exists a closed neighborhood U of A such that 

<1>(t, U) c U for t > 0 and 0 #('> U) = A . 
t>0 

We shall say that t/?e attractor A of 0 on M satisfies Axiom A if A is either a hyper­
bolic point or a hyperbolic set which is densely filled with periodic orbits. Let us 
define the basin of attraction of A as the set of points whose co-limits are contained 
in A. (The co-limit of x means f]t d{{Js>t <P{s, x)).) 

Let v be a probability measure on M. Then we define the time average of v as the 
measure 

џ = lim 
T^co 

l£ф(í,v)d.*>; 

we shall call it the Bowen-Ruelle measure. 
The following theorem of Bowen and Ruelle and its Corollary form a basis for 

the proof of Main Theorem. 

Theorem {Bowen, Ruelle [ l]) . If A is an Axiom A C2-attractor with a basin B, 
then for any continuous probability measure v with support in B the Bowen-Ruelle 
measure ji exists, has support A, and is invariant, ergodic, and independent of v. 

Corollary. Suppose that f: B -> R is a continuous function and define the time 
average f off by 

f{x) = lim-1 rf(4>(t,x))dt. 
T-co 7 J 0 

Then there exists B° a B such that m{B - B°) = 0 and for x e B°, 

/(*) fàџ. 

*) This expression means the vague limit of measures 
*T 1 t*T 

џт = i f Ф(t, v) åt, џт(B) = ~[ v(Ф(-t, B)) át 
-* Jo 1 Jo 

for any v-measurable set B. 
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For more information on dynamical systems see Smale [4], Bowen, Ruelle [ l ] 
and references quoted there. 

Now, let us formulate the main result generalizing Tichonov Theorem 

Main Theorem. Assume that U a Rm x Rn is an open set, f:U-+Rm is a C1-
function, g:U -> Rn is a C2-function with a compact support Sg a Rm x Rn. 
Let us consider the system 

(-•-) di=f{x>y)> 
dl 
dy / v 

e — = g\x>y)' 

dt 

denote by <P(t, x, y) the flow on Ux induced by the equation 

(1-2) ^7 = fa y) 

for each x e 7ti(U). Suppose that 

i) B c U is a region such that for each x e n^B) the set Bx is the basin of an A-
axiom attractor A(x) a Bx of the flow <P(t, x, y) on Ux; 

ii) }ix are the Bowen-Ruelle measure on A(x)for each x e 7r,(B) and the mapping 

/O) = ľ f(x, y) dф) 
Jвx 

is defined on n^B) and is Lipschitz on this domain; 

iii) 0 is uniformly Lipschitz in y on the set S = [t e R\ t ^ 0} x B, d<P\dx, 
d<P\dy are uniformly Lipschitz in x and y on S, ||30/3x|| is bounded on S and 
\\d<P\dy\\ > a > 0 on S. Consider the system 

(2.1) Jt=
J{xh 

* ^7 = fa* y) + e ^ (/(*) - / ( x ' y))' 
dt dx 

defined on B and denote, for L > 0, by BL c B the set of the initial conditions 
(x0, y0)for which the solutions of (2.1) are defined on [0, L] and are contained in B 
together with some of their Q^XQ ^-neighborhoods*). 

*) The solution (x(t; x0, y0), y(t, JC0, y0)) defined on [0, L] is contained in B together with its 
( ? ( x 0 , y o ) ' n e i g h b o r h o o d i f t h e s e t Ure[0,L]{(^,y) | | |*— x(t; x0,y0)\\ + ||y - y(t; x0, y0)\\ < 
< Q{x0,yo)} i s included in B. 
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Then for each d > 0, L > 0 and x0 e nt(BL) there exists a set BL Xo a (BL)X0 

such that m((BL)X0 — B2,x0) = 0> and for each y0 e BLxo there exists e0 > 0 such 
that for e e (0, e0) and t e [0, L] the inequalities 

(2.2) ||*(/) - x,(.)| < 5 , 

\\m - MOI < * 
hold, where (xe(t), yE(t)), (x(t), y(t)), are the solutions Of (1.1), (2.1), respectively, 
both satisfying the same initial condition (x0, y0). 

III. PRELIMINARIES TO THE PROOF OF THE MAIN THEOREM 

Let us consider the system 

(3-1) T=/W' 
at 
dy / x 
— = g(t, x, y) 
at 

where (x, y) e U c Rm x Rn, the function f defined on ^(U) belongs to the class 
C1(7r1(U)) and the function g defined on [t e R | t *z 0} x U is continuous and of 
the class C1 in the variables x and y. 

Let x(t; x0, y0) = x(t; x0), y(t; x0, y0) be the solution of (3.1) such that 
x(0; x0, y0) = x0, y(0; x0, y0) = y0. We will suppose that all solutions are defined 
for t = 0. 

Let Nx <= Ux be given for every x e n^U). Since x(t; x0, y0) e n^U) we can define 
Kxo, yo) = {tel | y(t; x09 y0)tNxitixOtyo)} for every interval I = [0, T], T > 0. 
Then the following lemma holds. 

Lemma. If m(Nx) = 0 for every x e n{(U) then the set Q = {y0 e Uxo | I(x0, y0) 
is not dense in I = [0, T]} fu/f/5 m(Q) = OfOr every x0 e nx(U) and T > 0. 

Proof. Let T > 0 and x0 e n^U) be given and denote Qn = {y e UXo\ there is 
t o e [ 0 , T] such that y(t, x0, y)eNxittXo>y) for every te(t0 - ljn, t0 + ljn)nl}. 

It is easy to see that Q = \JneN Qn. Let us show that m(Qn) = 0 for every n e N. 
Let us suppose on the contrary that m(Qn) > 0 for some n e N and take the intervals 
j k = [k/3n, (k -1- l)/3n]. Define Qnk = {y e Qn\ there exists t0 e Jk such that for 
y(t;x0,y)eNx(ttXOty) every te(t0 - ljn, t0 + l / n ) n / } ; then there must exist k 
for which m(Qn>k) > 0. To complete the proof, take the map F(t, x0): Uxo -± Ux(tjXo) 

defined by F(t, x0) (y) = y(t; x0, y). This is a one-to-one map and thus 
m(F(t, x0) (Qn,k)) > 0- Hence a contradiction is obtained since at the same time 
F(t> *o) (Qn,k) <= N

X(t,X0)
 h o l d s f o r e a c h t e Jk. u 
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This lemma will be used in the proof of the following theorem which treats the 
case of partial averaging provided the time averages exist for almost all initial con­
ditions. The theorem slightly generalizes the well-known fundamental theorem on 
averaging, cf. [2], [3]. 

Theorem. Assume that U c Rm x Rn is an open set and that X, Y are functions 
defined on {t e R I t _ 0} x U with values in Rm,Rn, respectively. Suppose the 
following properties are satisfied: 

i) X(t, x, y), Y(t, x, y) are bounded, continuous in the variable t and satisfy the 
Lipschitz condition in x and y uniformly with a constant M; 

ii) fOr every x e n^U) and for almost all y eUx the limit 

X0(x, y) = lim -
T->oo T 

1 <-т 

X(t, x, y) át 

exists and is independent of y, i.e. X0(x, y) = X0(x); 

iii) the function X0(x) satisfies the Lipschitz condition with constant N. 

Denote by (x(t), y(t)) the solutions of the system (e > 0) 

(3.2) - = sX(t, x, y) , 
dt 

^ = eY(t,x,y) 
dt 

defined for t _ 0. 
For L > 0 denote by SL c U the set of initial conditions (x0, y0) such that the 

solution (x(t), y(t)) with (x(0), y(0)) — (x0, >'0) Of the system 

(3.3) ~ = eX0(x) 
at 

^ = sY(t,x,y) 
dt 

is defined on [0, Le-3] and contained in U together with some of its Q(XO^-neigh­

borhoods. 

Then for every L > 0, 3 > 0 and x0 e 7i1(SL) there exists a set SLxo c: (SL)Xo 

such that m((SL)Xo — SLxo) = 0 and for each y0 e S£ ^ there exists e0 > 0 such that 
for t e [0, Le_1], 0 < e < e0 the inequalities 

\\x(t) - x(*)|| < 5 , 

lly(0 - y(OII < <* 
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hold where (x(t), y(t)), (x(t), y(t)) are solutions of (3.2), (3.3), respectively and 
(x(0),j<0)) = (x(0),KO)) = ( x 0 , r o ) . 

Proof. Let d > 0, L > 0 and x0 e 7^(5) be given. Let us denote by Nx a Ux the 
exceptional sets of zero Lebesgue measure for which the time averages 

1 Ґ г 

X0(x, y) = lim - X(t, x, y) át 
T-ooTjo 

do not exist. Let us set I = [0, L); using the preceding lemma we can conclude that 
the measure of the set Q = {y e Uxo | I(x0, y) is not a dense subset in I} is zero. 
We define S°^0 = (SL)A o - (NXo u Q u {y0 e SXo \ y(L; x0, y0) e N*(L,.Vo)}); obvious­
ly we have m((SL)Xo - S°L>Xo) = 0. 

By the definition of SLxo, for every sufficiently small K > 0 we can choose a subset 
A = [o = to < fj < ... < tm = L) c [0, L] such that K\2 < \ti+1 - tt\ < K, for 
i = 0,..., m — I and such that y^e"1) $ N^^-^; let us denote x ^ e - 1 ) = x ; 

and y^e-1) = y{. 
First, we estimate 

(3.4) ;ľ(x(т;x(т),ў(т))-X0(x(т)))di 
Jo 

for t e [0, Le * ] . For the sake of simplicity we denote 

<p(t, x(t), y(t)) = X(t, x(t), y(t)) - X0(x(t)). 

We may write 

i! et 

cp(T, X(T), y(T)) 6T 

m - l /• t i+i f i " 1 

5 Z [ < K T > * ( T ) > y(T)) - <KT> **> y.)]d 

m — 1 /•ti + i £ ~ 1 

+ £ Z <KT> **> y<) dT = 
* = 0 J f , e - -

n - 1 / • t i + i e - 1 

Z [<KT> *(T)> y(T)) - <KT> *.> y 0 1 d T 

^ o j ^ " -

< + 

+ *z <p(т, x ř , jli) d т 

To estimate the first term, we suppose X, Y are bounded by Cx, CY respectively. 

Then 

m— 1 ft{+ i £ " -

z £ [*(*, x(T), y(x)) - X0(X(T)) - X(T, xh y,) + X0(*<)] dT 
i = 0 J ( i C - ' 
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m— 1 /»(j+ i £ - -

= * I [M(«x(r) - ".J + 1?(T) - -,1) + N]|x(r) - x,||] dt = 
i = 0 J i i £ - ' 

m — 1 ft i + i E ~ J 

= c J [(M + N) ]]X(T) - x,|| + M|| "(T) - y,]]] dT = 

^ O j f i E " 1 

m - i / • r i + i £ " 1 r f T - i /*T | | - i 

£ e £ (M + N) X0(*(s)) ds + M 8 Y(s, x(s), y(s) âs\\ dt g 
/ = 0 J r i £ - 1 L I J t i E - 1 J I JtiE-^ | |J 

m - 1 / • t i + i £ - 1 

= e Z [(M + N) eC^T ~ M"1] + MeCy|T - ^e _ 1 | ] dT = 
i = 0Jtie-i 

m~1 (t e - i _ / p - i y 
= £

2[(M + N) Cx + MCy] X ^ - ^ X^—L = 
i = o 2 

= £
2[(M + N) C* + MCy] e-2(2LK~l) (K2 . 2"1) = 

= [(M + N) Cx + MCy] L/c . 

To estimate the second term we write 
I I » » - 1 /•l'i + i Ê - 1 M 

8 X <KT> * » yddr = 
ll^oJt.E"1 II 

|

| / • ïoE" 1 m - 1 r r t k + i e " 1 p tkf i " 1 

Ç>(T, *o, yo) d ? + Z <KT> *fc> yfc) dT - <KT> **> yfc) d î 

I Jo * = 1 Uo Jo 
II p ř i ß " 1 | | то-1 Лtk + i e " 1 

= є ę(т9 x 0, ӯ0) dт + є X <p(т, xfc, ӯk) dт 
II J o II *=i Jo 

+ 

+ *z 
fc = l 

/•tkfi"1 

<K T> ^ > yfc) dт 

Let us denote 

<P(t9 x, y) = 

By the assumption ii) we have 

- Г [*(>, x, y) - X0(xУ] dтl 
t Jo II 

lim <P(te \ x, y) = 0 
E-+0 + 

or t9 x, and y fixed. Thus we obtain the following estimates: 

i d T 
II Г l Є _ 1 

є ф, Зč0, ÿ0) 
II Jo 

Í
ř k + i f i " 1 

<KT> * Ь yk) d т 

o 

h^e \ x0, y0) = L<P(ř!£ \ x0, y0), 

= řk+i*(řk+ie"\ *fc> yk) = L4>(ř k + 18"\ x k, ~ k ), 
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I / Ч k E " 1 

<p(t>Xk>Ӯk)dт = tk<P(tk£ \ xk, ýk) < L<P(tke
 l, xk, yk) . 

Hence we have 

m — 1 (*t І + i г " 

^OJtiЄ-* 

</>(?, x„ УІ) dт 
= L[Ф(ŕ 1 є-Sxû ,ӯ 0 ) + 

m— 1 m— 1 

+ £ *('* +1*" \ **> Л) + Z Ф(tt£" \ **, Һï\ = H(e, к) • 
* = 1 k = l 

Thus we have obtained the estimate 

>.ï'x(т,x(т),ӯ(т))-X0(x(т))dт < 

= [(M + JV) Cx + M Cy] LK + H(e, ic) = fl(c, K) . 

The term a = a(e, K) converges to zero for e -> 0+ and K -> 0+. 
We set 

x(r) = *(f) + a ti(f) , 

^ ( r ) = j ( t ) + av(t) 

and obtain the following equations for u(t) and v(t): 

u(f) = -\ [*('> * + aw, y + av) - X(l, 3c, J!) + X(t, x, y) - X0vx)] d* 
a j o 

v(r) = - [Y(r, 3c + AM, y + av) - Y(f, 3c, y)~] dt . 
a j o 

\\U(t)\\ = 1 ff Af<||u(T)|| + | | t;(T) | |)dT+ 1, 
aJo 

||v(0||=^[V.(||u(T)|| + ||v(T)||)dT 
a j o 

This yields 

and thus 

\Ш\\ + Ш\\<2sM^u(т)\\ + \\v(т)\\)dт + 1. 

Applying the Gronwall lemma we obtain 

\\u(t)\\ + \\v(t)\\ < e 2 E M ' < e 2 M L 

and this implies 

(3.5) \x(t) - x(t)\ <. ae2ML 
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\y(t)-y(t)\_\ae™>-. 

Now let us choose y0 e S__,^0
 a n c * s u P P o s e ^ r s t that the solution x(t) = x(t; x0, y0), 

y(t) ~ y(t; x0, y0) of the equation (3.2) satisfies (x(t), y(t)) e U for te[0, L e " 1 ] . 
Choosing e and K SO that a _g Sc~2ML we obtain by (3.5) the required inequalities 

wo - m < * 
IIXO - m\ < * • 

To complete the proof we have to show that (x(t), y(t)) e U for te[0, Le" 1 ] 
provided (x(t), j(t)) is a solution of (3.2J. Let us suppose this is not the case and denote 

/ = sup {t > 0 | (X(T), y(x)) G U for T e [0, f]] . 

We can choose a(e, K) SO that by (3.5) 

\\x(t) - x(t)l < Ql2 

\\y(t) - y(t)\\ < (?/2 

for f e [ 0 , f]; we recall that the solution (x(t), y(t)) lies in U together with its Q-
neighborhood. Supposing i < L e - 1 and using the continuity of the solution of the 
differential equation we find Y\ > 0 such that for t e [?, t + //] 

e/2<K0-*(0ll<e. 
ej2 < \\y(t) - y(t)\\ < e . 

Hence the solution (x(t), y(t)) belongs to U for t e [0, t + //] and consequently 
t = Le" 1 . B 

IV. PROOF OF THE MAIN THEOREM 

Now we are ready to prove Main Theorem. Let L > 0, 5 > 0 and x0 e n_(BL) be 
given. The transformation t = er of the time scale changes the system (1.1) into 

(4.1) dx 
ď T " 

= є Дx, J>) 

dy_ 

dт ~ 
= ф, У) 

and the system (2.1) into 

(4,) i . --ej(x) 

Џ = g(X,y) + sЏ(J(x)-f(x,y)). 
dr oл: 
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Defining the diffeomorphism F: R x U -> R x U by F(T, x, z) = (T, x, #(T, x, z)), 
we transform the system (4A) into 

dx 
(4.3) — = ef(x9 <2>(T, x, z)) = e X(T9 x, z) 

dT 

^=-(f)"(f)/(«.*(^.-))=-%».-) 
and the system (4.2) into 

(4.4) ^ = ef(x), 

— = - 8 Y(T, x, z) . 
dT 

Let us restrict our attention to the behavior of the systems (4.3) and (4.4) on the 
set { T G / ^ I T = 0} x B. Using the Bowen-Ruelle theorem and its Corollary we 
observe that for each x e n^B) the limit 

1 Çт 

X(x, z) = lim - X(т, x, z) dт 
T-c* Т J 0 

exists for almost all z e Bx and, moreover, that X(x, z) = f(x). 
At this moment, we use the Theorem from the preceding section for approximating 

solutions of the system (4.3) restricted to {T e R | T > 0} x B by solutions of the 
system (4.4). In other words, for L > 0, § > 0 and x0 e n^B^ we can find a set 
B°L,Xo <= (BL)X0

 s u c h that m((BL)X0 - B°LtXo) = 0 and such that for each z 0 e B°LtXo 

there exists e0 > 0 such that for e e (0, e0) and T e [0, Le"1] the inequalities 

||x(T) -,x(T)|| < S, 

||Z(T) - Z(T)|| < S 

hold; (x(T), Z(T)) = (x(T; x0, z 0), Z(T; x0, z0), and (3C(T), Z(T)) = (3C(T; x0, z 0), 

Z(T; x0, z0)), are the solution of (4.3), and of (4.4), respectively. 
Let us suppose that <P is Lipschitz in x and y with a constant M and define BLxo = 

_ r 
- 1 
Thus provided y0 e B£>;co, 

||x(T) - x(T)|| < O\ 

\W) ~ yWII = |*fo *W> *(*)) - * f r *(*)> *to)|| ^ 

= M(|jx(T) - X(T)|| + ||Z(T) - Z(T)|| = 2M5 

for T G [ 0 , Le-1]. 
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iyo e (BL)X01 y0 = <2>(0, x0z0), z0 e B£Xo}; we immediately see that B°LXQ = B£>JCo. 



Choose S < S/2M and set BLxo = BLXQ. Then we can for each y0 e BL Xo find c0 

such that for e e (0, e0) and t e [0, L], 

||x,(.) - x(.)|| < 5 , 

WO - y(t)|| <s. m 

Acknowledgement. We thank S. Schwabik for careful reading of the manuscript 

and for his valuable comments on this matter. 
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