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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

NOTE ON QUASI HAMILTONIAN SEMIGROUPS 

BEDŘICH PONDĚLÍČEK, Praha 

(Received February 15, 1984) 

Following A. Cherubini and A. Varisco [1] a semigroup is said to be quasi hamil-
tonian if all its subsemigroups are permutable. In this note we shall show that every 
variety of quasi hamiltonian semigroups is commutative. 

Let a be an element of a semigroup S. By \a\ we denote the subsemigroup of 5 
generated by a. It is easy to show (see Lemma 3 of [2]) that a semigroup S is quasi 
hamiltonian if and only if we have 

(1) abe[b][a] for every a,beS. 

A semigroup S is called quasicommutative [3] if we have 

(2) abe\b\a for every a,beS. 

A semigroup 5 is o-reflexive if for every a, be S and every subsemigroup H of S, 
bae H implies ab e H. It is easy to prove that a semigroup S is a-reflexive if and only 
if we have 

(3) abe\ba\ for every a,beS. 

In [4] it has been shown that the class of all quasicommutative semigroups coincides 
with the class of all cr-reflexive semigroups. This together with (2) and (3) implies that 
a semigroup S is quasicommutative if and only if we have 

(4) ab e b\a\ for every a, b e S . 

Theorem 1. Let S be a noncommutative semigroup such that S x S is a quasi 
hamiltonian semigroup. Then S is a periodic semigroup. 

Proof. Let S x S be a quasi hamiltonian semigroup. Suppose that ab 4= ba 
for some a,b eS. By way of contradiction, assume that there exists a non periodic 
element c of S. According to (1), we have (a, c) (b, c) = (b, c)m (a, c)n for some posi­
tive integers m, n. Then we obtain m =- 1 = n. This implies that ab = ba, which is 
a contradiction. Hence S is a periodic semigroup. 

Lemma. Let S be a quasi hamiltonian semigroup, a, b, e e S and ak = e = e2 

for a positive integer k. If in S x S we have (a, a) (b, e) = (b, e)m (a, af for some 
positive integers m, n, then (a, a) (b, e) = (b, e)m (a, a). 
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Proof. Suppose that (a, a) (b, e) = (b, e)m (a, a)n. We have 

(5) ab = bman and ae = ean. 

We can suppose that n > 1. Since S is quasi hamiltonian, by (1) we have ba = albJ 

for some positive integers i,j and so ba e S1abS1, where S1 denotes the semigroup S 
with an identity adjoined. According to (1), we obtain 

(6) ba e S^b . 

By induction we shall prove the following proposition: 

(7) ab e S1ba(an~1)r for all positive integers r . 

Evidently (7) is true for r = 1 by (5). Suppose that (7) is true for some r. Then 
by (6) we have ab e S1ab(an~1)r and so by (5) we obtain ab e S1bman(an~1)r g 
g S1ba(an~1)r+1. 

It is clear that r(n — 1) > k for a positive integer r. Then, by (7), we have ab e Se 
and so, by (6), we have ba e Sxab g Se. Therefore ba = bae and using (5) we get 
ab = abe = bmane = bmean = bmae = bma. Hence we have (a, a) (b, e) = 
= (b, ef (a, a). 

Theorem 2. Let S be a semigroup such that S x S is a quasi hamiltonian semi­
group. Then S is a quasicommutative semigroup. 

Proof. Suppose that S x S is a quasi hamiltonian semigroup. It is easy to show 
that S is a quasi hamiltonian semigroup. We can assume that S is non commutative. 
It follows from Theorem 1 that S is periodic. Let a, b e S. Then there exists a positive 
integer k such that ak = e = e2. According to (1), we have (a, a) (b, e) -- (b, e)m . 
. (a, a)n for some positive integers m, n. Using Lemma we get (a, a) (b, e) = 
= (b, e)m (a, a) and so ab = bma. Then, by (2), S is quasicommutative. 

Theorem 3. Let S be a semigroup such that S x S is a quasicommutative semi­
group. Then S is a commutative semigroup. 

Proof. Suppose that S x S is a quasicommutative semigroup. Evidently, S is 
quasicommutative. By way of contradiction, assume that S is not commutative. 
Then there exist elements a, b of S such that ab 4= ba. Theorem 1 implies that S 
is periodic Thus we have ak = e = e2 for a positive integer k It follows from (4) 
that (a, a) (b, e) = (b, e) (a, e)n for a positive integer n. Using Lemma we get (a, a) . 
. (b, e) = (b, e) (a, a) and so ab = ba, which is a contradiction. Hence S is com­
mutative. 

Corollary 1. Let S be a semigroup such that SxSxSxSisa quas hamiltonian 
semigroup. Then S is a commutative semigroup. 

Corollary 2. The variety of all commutative semigroups is the largest variety 
of quasi hamiltonian semigroups. 
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Corollary 3. Let m, n be positive integers. Then every semigroup satisfying the 

identity xy = ynxm is commutative. 
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