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ON POINTS OF QUALITATIVE SEMICONTINUITY

TomAsz NATKANIEC, Bydgoszcz
(Received October 5, 1983)

Let # be the g-ideal of sets of the first category on the real linc. For a real function
J: R = R let us define the qualitative upper limit at the point x

q-ltim supf(f) = inf{y e R: {te R:f(1) < y} is residual at x} .
Similarly let us define the qualitative lower limit of f at x
q-lim inf f(r) = sup {y € R: {t e R: f(f) > y} is residual at x} .
We use the notation introduced in [1]:
Qf) = {reR:g-limsup f(§) = f(r) = ¢-lim inf (1)},
Slf) ={reRr: q-l!im sup f(1) < f(r)},

T,f) = {reR: g-limsup f(1) < f(r)},
t—=r
Si(f) = {reR: qliminff(r) 2 f(r)},
t=r
T,(f) = {reR: g-liminf (1) > f(r)} .
tor
The following facts are proved in [1].
Fact 0. There exist sets B and C such that B is a Gy set, Ce % and Q(f) = B — C.
Fact 1. The sets T,(f) and T)(f) are of the first category.
Fact 2. The sets S,(f) — Q(f) and S)(f) — Q(f) do not contain sets of the second

category having the Baire property.
Z. Grande in [1] showed Theorem 3 and stated the following Problem 1.
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Theorem 3. Let A, B, C < R satisfy

(i) Ce s, B= A, C = A — B and the set A — B do not contain sets of second
category having the Baire property
and

(i) B = D — C, where D is a Gy set. Then there exists a function g: R - R such
that Q(g) = B, S(9) = A and T,(g9) = C.

Problem 1. Accepting the assumption (i) of Theorem 3 let us suppose furthermore
that B = D — D,, where D is a G4 set and D, € £.

Is there a function g: R — R such that Q(g) = B, S,(9) = 4 and T,(f) = C?

The answer to this question is negative. It follows from the following fact.

Fact 3. Let D,(f) = {reR: g-liminf f(r) = g-lim sup f(f)}. Then D (f) is a G,

t=r be

set for every function f: R — R.

Proof. Itis easy to show that for everyae Rthesets A = {x € R: g-lim inf /(1) < a}
t—=x

and B = {x € R: g-lim sup f(f) = a} are closed. Indeed, if g-liminff(1) > a then

t—x t—=x

there exist: ¢ > 0 and a neighbourhood U of x such thatU n {y e R: f(y) < a + ¢} €
e #. So for every y e U we we have g-lim inf f(f) = a + & and x ¢ Cl4. Then for

tox

all rational numbers p, q € Q thesets A(f, p,q) = {x e R:q -- liminff(f) S p < ¢ <
t—=x
< g-limsup f(1)} are closed. Since R — D,(f) = U{A(f, p, 9): p, g€ Q}, Df) is

t-x
a G set.

It is clear that Q(f) € D,(f) and D(f) — Q(f) = T(f) v Ti(f), hence Q(f) =
= D(f) - [T) © TX(N]

Assume that A = R, C = 0, R — Be 4 and B is not a G; set. Suppose that there
exists a function f:R — R such that ‘Q(f) = B, S,(f) = R and T,(f) = C. Then
T,(f) =0.If Dis a G, set and B < D then D — B is non empty and D — B &
& T,(f) v T}(f). This is impossible since the Fact 3 holds.

In the next part we assume that every set A = R of cardinality less than continuum
is of the first category. Notice that if CH (Continuum Hypothesis) or MA (Martin’s
Axiom) are assumed then this condition holds. [3]

The following theorem is generalization of Theorem 3 [1].

Theorem. (MA) For every sets A, Ay, B, C, Cy = R the following conditions are
equivalent:
() An 4, = B,
CucC,ed,
CcA—B,C, <A, —B,
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the sets A — B and A; — B do not contain sets of the second category having
the Baire property,
there exists a G, set D such that B = D — (C n C)),

(ii) there exists a function f: R — R such that A = S,(f), 4, = S}(f), B = Q(f),
C =T[(f) and C, = T,(f).

Proof. The implication (ii) = (i) follows from the facts 0 — 3.
(i) = (ii). Let E = C1B. Since E — D < E — B, we have E — De 4. Notice
that E— Disa F, set and E — D = |J F,, where F, are closed, nowhere dense and

neN
F,nF;=0fori+j[4]

Let (a,),.y be a sequence of positive real numbers such that Yoa, =1
neN

For every n € N we define the function h,: R - {—a,, a,),

a, sin—l— for x¢F,,
h(x) = dist (x, F,)

0 for xekF,.

For ne N the function h, is continuous on the set R — F, and for x e F,,
g-lim sup h,(t) = a, = h,(x) 2 —a, = g-lim inf 1,(7).

t—ox t—x

In the first step we define a function h: R — R such that Q(h) = S;(h) = S (h) =
)-

=R—(E—-D)=R—-UF, and T(h)= T,(h)=0. Let h{x) =) h,(x). This
neN neN
function satisfies the above conditions.
Indeed:
a) Assume that x ¢ {J F,. Since h is a sum of a uniformly convergent series, h is
neN

continuous at the point x.
b) If x € F, then

g-limsup h{t) = a, + Y a,,sin

t—x m¥n dlbt (X, Fm) -
1
= h{x) + a, > hix) > h(x) — a, = —a, + ¥ a,sin ————— = g-lim inf h{t) .
( ) ' ) ( ) m;n dist (x, Fm) 1 t-x \‘)

Hence x ¢ S,(h) U S,(h).
Assume that E = R. Then the following function f: R — R satisfies the conditions
of the theorem

2 for xeC,
-2 for xeC,,
g-limsup h{t) for xeAd — C,
f =] Tl kY

g-liminf h{t) for xed, — Cy,

t—x

h(x) elsewhere .
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Since {x € R: f(x) % h(x)} € #, so for every x € R, g-lim sup f(t) = g-lim sup h(r)
t—x

1= x

and g-lim inf f(f) = g-liminf h(f). Hence B < Q(f), C < T,(f) and C, < T}(f).

t—=x t—=x

If xe A— (BuUC) then xe E — D. Hence f(x) = g-lim sup h{t) =

t—=x

= g-lim sup f(¢) > g-liminf h(f) = g-liminff(r) and 4 — (Bu C) = S,(f) —

1—=x t—=x t—x

- [Q(f) v T(f)]. Similarly, 4, — (Bu C,) = Si(f) — [@(f) v T;(f)] and R —
— (AU 4;) € R = [S,(f) v S}(f)]. Consequently, Q(f) = B, S,(f) = 4, S)(f) =
= Ay, T(f) = C and T,(f) = C,.

Now assume that R — E + 0. We prove the following lemma.

Lemma. If A is an open, non empty subset of R and B = A then there exists
a partition (K,,),,eN of A such that sets K, are of the second category at every point
x €A and if B is of the second category at x then K,n B (n = 1,2,...)isof the
second category at x.

Proof of lemma. The construction of the sets K,, is very similar to the construction
of Bernstein’s set [2].
Let:

(r¢) be an enumeration of the set 4,
(I,)nen be a countable basis of 4,
(H,,), <2, be an enumeration of the family of the residual and G, subsets of I,,

H - {H,,,,, if H,,nBes,
n,n .
H,,nB if H,,nB¢JS,
(He)s< 20, be an enumeration of the family {H, ,:neN, n < 2°°}.
Since MA holds, so for every ¢ the cardinality of H, is continuum. We shall construct
inductively a sequence (x,,) of the type 2°° x w:
Xy0 = min {rg: ree Hy — {x,,: 7 < n}},
3
Xpo =min{rgreeH, — {x,,:(y <n v (y =n&k <n)}}.
13

Let us define sets K, as follows:

{xgn:n <2} for n>0,
" )14 -UK, for n=0,

m>0

K

It is easy to show that sets K, (n = 1,2, ...) are of the second category at every
point x € A. Suppose that the set B is of the second category at x and there exists
a number n € N such that K, n B is of the first category at x. Then there exist I,
and H, ,such that H, , € A — K, n B. This is impossible since the set H, , n BN K,
is non empty.
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In this step we shall construct a function g: R — R such that Q(g9) = B, T,(g) = C
Ti(g) = C1, S(9) = Bu C and S}(g) = C; U B. Let (b,),ey be an enumeration of
the set of all rational numbers from the interval (-1, 1).

Let (K,),y be a partition of R — E such that for every xe R — E the sets K,
(n=1,2, ) are of the second category at x and if the set R — (4 U A,) is of the
second category at x then K, — (4 L A,) is of the second category at x.

The function g is defined as follows:

2 for xeC,

-2 for xeCy,
g(x)={ h(x) for xeE—-(CuC(,),
dist (x, E)
1 + dist (x, E)
a) It is clear that C < T,(g) and C, = T,(9).
b) If x e E — B then g(x) = h(x) and g | R — (C u C,) is continuous at x. Since
Cu C, e J, g is qualitive continuous at x.
¢) If xe(E — D) —(CuCy) then g(x) = h(x), g-liminf g(f) = g-lim inf h(r)
t—x t—x
and g-lim sup h(f) = g-lim sup g(r). Since x e R — (S,(h) u S,'(h)),xe R - (S,(g9) v

t—=x t—=x

v 8,(9))-
In the next step we define a function f: R — R such that Q(f) = B, S,(f) = 4,
Si(f) = A, T{f) = Cand T,(f) = C,. Let us define the function f as follows:
g-limsup g{t) for xeAd —(Bu (),

t—=x

f(x) =4¢liminfg(r) for xed, —(Bu (),
t—ox

h(x) + .b, for xeK,—(CuCy).

g.x) elsewhere .
a) If xeC then f(x)= g(x)> q-li,szuP g(t) = q—litnjxsupf(t) and xe€ 7,()‘)

Similarly, C, = T,(f).
b) Notice that for x e R — E we have

. . dist (x, E)
-lim sup ¢g(t) = g-limsup A(t) + ———71 =
1 t-x P g( ) 1 tox P ( ) 1 + diSt (x, E)
— h{x) + dist (x, E)
’ 1 + dist (x, E)
and
o . dist (x, E)
-lim inf g(¢) = g-lim inf h(t) — —— 27 =
1 tox g() 1 t-x ( ) 1 -+ dist (x, E)
dist (x, E)

= h(x) —

1 + dist(x, E)
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Since for x € E the set

{teR: (1) = h()| < _Mi)_}

1 + dist (t, E)

is residual at the point x, we have g-lim sup f(t) = g-lim sup h(f) and g-lim inf /(1) =
tox t—=x tox
= g-liminf h(r). Hence C(f)n[E — (Cu Cy)] = B, S,(f)n[E — (Cu Cy)] =
=X
=A—Cand Sf)n[E - (CuC)] =4, - C,
¢) Assume that xe R — (Eu C U C,). The following cases may occur: The set
R — (AU A,) is of the second category at x. Then for every ne N the set K, -

— (A U A,) is of the second category at x,

) ’ ) dist (x, E) .
-lim su t) = hix) + ————2""7  and g¢-liminf f(t) = h(x) —
g-lim sup f(1) = h(x) T+ disi (o, E) g-lim inf /(1) = h(x)
dist (x, E)

1 + dist(x, E) '

There exists a neighbourhood U = R — E of x such that U — (4 u A,) e #. Since
the sets A — B and A; — B do not contain sets of the second category having the
Baire property, hence the sets A — B and 4, — B are of the second category at x.
Then

dist (x, E)

. . dist (t, E) >
-lim sup f(t) = lim ( A(f) + —————"—) = h(x) + —————"—
g-lim sup £(1) (() EEsee

t—x tox 1 + dist (t, E)
and

o dist (x, E)
-lim inf f(t) = h(x) = ——— .
aimint () = ) = e (v B)

Thus, if xe 4 — C then x € S,(f) — [Q(f) U T(f)], if xe A; — C, thenx € S, f) —

— [Q(f) v Ti(f)] and if x ¢ A U A4, then x ¢ S(f) U Si(f).

Therefore f satisfies the condition (ii).
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