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AN EXISTENCE THEOREM FOR SEMILINEAR FUNCTIONAL
PARABOLIC EQUATIONS

JAROSLAV MiILoTA, HANA PETZELTOVA, Praha
(Received December 12, 1983)

1. INTRODUCTION

The semilinear evolution problem

(E) u(t) + Au(t) = f(t,u), uw0) =u,,

has a rather long history. It is well known that if —A generates a Cy-semigroup
(e™4*) and a function f is C* then (E) possesses a strong solution, i.e. a continuous
solution on some interval [0, T) and continuously differentiable on (0, T). If more
is supposed about an operator A, namely that A4 is a sectorial operator, then there
exists a strong solution to (E) under weaker assumptions on f. Moreover, f can also
depend on the gradient of u with respect to the space variables. Sufficient ccn-
ditions on f can be expressed in terms of fractional powers of 4. For example, the
following theorem is proved in [11], p. 54.

Theorem. Let A be a sectorial operator in a Banach space X,0 < a < 1, and let f
map an open subset G of R* x 9(A") into X and be locally Hélder continuous
in t and locally Lipschitzian in x. Then for any [0, uo] € G there exists a unique
strong solution to (E) on some interval (0, T).

If we are not interested in the uniqueness of a solution we can prove the existence
of a so called mild solution supposing the compactness of e~ 4!, t > 0, and only the
continuity of f: G — X. If f is locally Hoélder continuous then the regularity of the
mild solution follows. See e.g. [18] for a = 0 and [19] for more general cases.
Similar theorems were proved also for semilinear functional evolution equations,
see e.g. [21], [24]. Such equations frequently occur in various biological applications.

A very simple example of f(u) = 24u shows that it is not sufficient to suppose
o = 1 in the above theorem. Nonetheless, nonlinearities depending on Au are very
important e.g. for equations describing materials with memories (see Section 4 and
references given there). Because of memories these equations become functional and

existence and uniqueness theorems have recently been proved in this case also for
a = 1. See [9], [10], [22], [23].
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In the present paper the existence theorem for the initial problem to the equation

() + Au(t) = £t ) + [ gt s, u(s)) ds + h(r)

el
is proved. Here u, denotes the shift of a function u, ie. u(s) = u(t + s). The
existence of a mild solution is proved with help of the fixed point theorem for a sum
of compact and contractive operators, and then the regularity result is derived. This
approach requires weaker conditions on smoothness of the right hand side, but does
not guarantee uniqueness of the solution.

As an application, the nonlinear equation for the heat conduction in materials
with memory is treated.

2. PRELIMINARIES

Throughout this paper we assume

(H 1) A is a sectorial operator in a Banach space X, i.e. A is a closed densely
defined operator such that for some 3 in the interval (0, n/2), a real a and some
M = 1 the estimate of the resolvent operator

0= s o0—

M
p—d

holds for any Z in the sector {4; 9 < arg (4 — a) < n}. If 4 is sectorial then —A
generates an analytic C,-semigroup which will be denoted by e™4, t = 0. We shall
frequently use further basic facts about sectorial operators (for more details see e.g.
[7], [11]), which are collected in the following two lemmas. First note that there is
always a real number b such that the spectrum of A; = A + bl satisfies the condition

(2,1) inf {Re 4, Aeo(4,)} > 0.

For such sectorial operators all real powers A] are defined and X* will stand for

their domains. Spaces X* are Banach spaces if they are endowed with the norms

[ %]« = [|41x|x. Note that the spaces X* do not depend on the particular choice of

the shift b. The first lemma is an easy modification of Theorem 1.4.3 in [11].
Lemma 1. Let A be a sectorial operator. Then for any positive T we have

(i) (Vae[0, ) 3K (o) VxeX V1) 0 <t £ T= |le™*'x|, < Ky(a) t7%|x];
(i) (Vee(0,1] 3K () VXxeX*Vl) 0 <t < T=|(e™* —1) x| £ Ky(o) x| ..
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In order to establish solvability of semilinear equations we shall need the following
assumption which is often satisfied in practice.

(H 2) There is A such that (Al — A)’1 is a compact operator on X.

The second lemma can be found in [11], pp. 27, 29.

Lemma 2. Let A be a sectorial operator and let b be such that (2,1) holds. Then
the following statements are equivalent.

(i) A satisfies (H 2).
(ii) e™** is a compact operator on X for any t > 0.
(iii) A} is a compact operator on X for any o < 0.
(iv) For any 0 £ B < « the natural embedding X* — X* is compact.
Now we start to study some special integral operators. The following two lemmas
can also be viewed as sufficient conditions for solvability of the linear equation

(2.2) X4+ Ax=f.

It is well known that the mere continuity into X of a map f: [t,, T] » X is not
sufficient for the existence of a solution of (2,2).

Lemma 3. Let (H 1) be satisfied and let f be a continuous map of [t,, T) into X*
for some B > 0. Then a function F given by

t
23) F(i) = J' eI f(5)ds, teto T),
to
has the following properties:
(i) F is a continuous map of [to, T) into X*.
(ii) For any te(ty, T) the strong derivative (in the norm of X) F(t) exists and
E(f) + AF(t) = f(2).

Proof. (i) Because of commutativity of both a closed operator and an integral
(see e.g. [6], Th. 3.6.20), it is sufficient to prove the integrability of the function
s — |4,e74¢79 f(s)|| on [to, £]. Denote sup {|f(s)[s s € [to, ]} by M(t). Using
Lemma 1, we get

t t
,[ | 41e74¢2 f(s)] ds =j le=4¢=94% f(s)]1-p ds =
to to

= B7K,(1 = B) M(1) (t — to)".
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Moreover, for t, < t, <t, =T, < T,

51
IF(e2) = F(e)lls éj I(e™4== — 1) A~ Pem 4941 f(s)] ds +
to

12
+ J €™ 4248 £(5)] -y ds <
1

< 2K5(B[2) (t; — 1,)P2 K (1 — B2) M(T,) B~1(t; — to)* +
+ BTIK, (1 — BYyM(Ty) (t, — 1,)%,
which completes the proof of (i).
(ii) Fix a t e (to, T). For 6 > 0 we have

F(t + (5; F(t) f (e—Aa _ —A(r—s)f(s) ds +
—AJ -1
+ a-lj s p(s)ds = ==Ly +

+om J M emaars=oL () = 7(0] ds +

t
t+o
+ 5“1J (e74U*=9 — D f(r)ds + f(¢) -
t
By the first part of this lemma. F(f) e X' = 2(A) and therefore

— IF(:) = —AF{).

The X-norm of the first integral on the right hand side of the above equality can be
made arbitrarily small by the continuity of the function f at the point ¢, and by the
boundedness of a C,-semigroup. Also the X-norm of the second integral tends to
zero as [[(e™* — I) f(1)| tends to zero for 6 — 0, (in virtue of the property of
a Cy-semigroup). So we have proved that F (1) exists and F,(t) + 4 F(t) = f(¢).
This right derivative F, is continuous on (o, T) as AF and f are continubus (the
embedding X? — X is continuous whenever f > 0). The continuity of F and its right
derivative implies the existence of F at any point of the interval (¢, T) (see e.g. [12],
IX. 1.7).

We shall also need a result similar to Lemma 3 for Hélder continuous functions.
The following statement is basically Lemma 3.2.1 in [11].

Lemma 4. Let (H 1) be satisfied and let f be a locally Holder continuous function

277



of [to, T) into X. Let F be a function given by (2,3). Then the statements (i), (ii) of
Lemma 3 are valid for F and, moreover,

AF() = J'Ae'“"”[f () = f(] ds + [ — ™" f(1)

Sor all te[t,, T).

3. EXISTENCE THEOREM

In this section we shall prove an existence theorem for the equation
. t
(3,1) a(t) + Auli) = f(t, ) + '[ o(t, s, u(s)) ds + h(t)
to

with an initial condition
(3,2) Uy =9.

Here u, denotes the shift of a function u, i.e. u,(s) = u(t + s) for s € (— o0, 0].
Our proof will consist of two steps. First, we prove the existence of a so called mild
solution to (3,1), (3,2), i.e. a solution of the integral equation

(3.3) u(t) = &A= (0) + J' "em A9 () ds +

to
t t s
' j e A5, ) ds + j et j 9(5, 9, u(0)) do ds
to to to

with the initial condition (3,2). Secondly, we shall prove the regularity of the mild
solution.

For the existence of a mild solution it is sufficient to find an appropriate space and
conditions on f, g, A under which the map given by the right hand side in (3,3) has
a fixed point. Let & € [0, 1], > 0. Note that the most interesting case is a = 1.
We denote by Y*(T) the Banach space of all bounded uniformly continuous- maps
of the interval (— oo, T] into the space X* endowed with the norm S

lollyecry = sup [Jo(t)]ls -
te(—o0,T]

The following assumptidns will be introduced in the sequel.

(H 3) There exists an open subset U, of [t,, +00) x Y*(0) such thatf is a con-
tinuous map of U, into X°.

(H 4) There exists an open subset U, of {[t,s] € [ty, +0)* s < 1} x X* such
that
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(a) g is a continuous map of U, into X.

(b) g is locally Hilder continuous in the first variable and locally Lipschitzian
in the third variable on U,, i.e. for any [to, So, Xo| € U, there are a neighborhood V
of this point and positive numbers C, y such that the inequality

(3.4) la(ts, s, x1) — g(t2, s, x2)|| < C[Itl - tzl" + %y = x2].]
holds for all [t;,s,x;]€e VAU, i=1,2.

(H5) [to, 9] €U, and [t,, ty, 9(0)] € U,.

(H 6) There exists © > t, such that h maps [t,, ) continuously into X and is
locally Hélder continuous on [t,, 1). :

Denote
o(t — 1) for t = tg,
Y(t) = '
() \\e-A(t—to) (0 ! —A(t-3) py .
0(0) + | e (s)ds for t>t,;
to
/ 0 for t=t,,
D,(u): t > <

e~ 4079 f(s, u,)ds for t> t,;

J to

0 for této,

¢2(u): t_’ < rt )
e—Alt=s) [J g(s, o, u(o')) da‘] ds for t>1t,,

Jit to

D(u) = &,(u) + O,(u) + V.

By continuity, one can find r > 0, T > t, such that ¥ € YXT) and ®,(u) ¢ exist
and belong to X for i = 1,2, te(— oo, T] and u € Z(r), where

Z(r) = {ue Y(T), u,, = ¢ and [u(t) — @(0)||. < r for te(to, T]}.
Lemma 5. Assume (H 1) — (H 3), (H 5). Then ®, is a compact continuous map
of Z(r) into YX(T) for all sufficiently small positive r and T near to t,,.

Proof. As [t,, ¢] €U, and f satisfies (H 3), there exists a neighborhood ¥,
of [to, @] in U, on which f is bounded. Put M, = sup | f(s, x)|; and choose r > 0,
Vi

T > t4 such that [s,u,] € V; for to < s < T, u € Z(r). For these r, T we will prove
the statement.

(i) {®,(v); we Z(r)} forms an equicontinuous family in Y*(T).
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We always can choose 6 > 0 such that c = a — f + 6 < 1. By Lemma 1, the
following estimates hold for any t, < t, <t, < T:

"‘pl(“‘) t, — @y (u) 1, =

51
< f |42 P[em A=t — [] e A9 48 £(s, u,)| ds +

t
+ J AP A 4 (s, u)| ds <
t

S K,(0)(t; — )’ Ky(c) My(1 — o)1 (t; — to)' K (x — B).
(= + BT M (L, — 1) TP < const. (1, — 1)’

(ii) For any te(—oo, T] the set {®,(u)t; ue Z(r)} is relatively compact in X*,
This is obvious for ¢t < t,, and if ¢t > ¢, then it follows from the boundedness of this
set in X**¢ by the assumption (H 2).

Using a generalization of the classical Arzela-Ascoli theorem for vector functions
(see e.g. [13], Ch. 7) we conclude that @, is a compact map. The continuity of &,
follows directly by the Lebesgue dominated convergence theorem.

By the assumption (H 5) and (H 4), there is a neighborhood V, of the point
[t0, to, (0)] in U, such that g is bounded on V, (H 4a) and g satisfies (3,4) on V,
(H4b). Put M, = sup lg(z, s, x)| and G(z, u) = [} g(t, s, u(s))ds. We choose

r>0,T>t,so small that [1,s, u(s)] € V, for all t€[t,, T], s€[to, t], ueZ(r).
Thus for any ¢, < t, < t, < Tand u,, u, € Z(r) we have

(35 [6(ty us) = Gt u,)| < f 1“g(’v s, wy(s)) = g(t2, 5, uo(s))] ds +

¥ J‘H“g(’z’ s, u(s))] ds = C(T = 1) (t, — 1,)" +

+ C(T — t,) H“1 - uz“w + My(t, — t;) <
S Cy(ty — 1) + C(T = to) |lug — 13 ye -

This estimate and Lemma 4 imply that ®,(u)e Y'(T) for all u € Z(r) supposing r
and T are small enough.

Lemma 6. Suppose (H 1), (H 2), (H4) and (H5). Then there exist r > 0, T > t,
such that the operator ®,: Z(r) — Y*(T) is the sum of a compact continuous operator
and a contractive one.

Proof. It is sufficient to prove this assertion for A®,: Z(r) - C([t,, T}, X) =Y.
By Lemma 4, we can write

A®y(u)t = H,(u)t + Hy(u)t,
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where

Hy(u) 1t = J "Aem A I[G(s, u) — G(t, w)] s, te[to T],

to

and
Hy(u)t = [I = e ") G(t,u), te[to, T].
As the inequality
[Hao() = Hy()|y =2 sup e ™| C(T ~ 1) Ju — v
te[0,T—10])

Y*

holds for all u, v € Z(r), the map H, is a contraction for T sufficiently close to t,.

We now prove that H, is a compact continuous operator from Z(r) into Y. To this
end we use the Arzela-Ascoli theorem as in Lemma 5.

(i) B = {H,(u)t; ue Z(r)} is a relatively compact set for any fixed te [t,, T].
For t = t, the statement is obvious. Let therefore t > t,. For sufficiently large
natural n denote by B{™ the set of all elements

t—1/n
[ Ae‘A(r—-s—(Z")")[G(s, u) - G(t, u)] ds

« to

where u goes through Z(r), and by By the set of

j' Ae=A4=[G(s, u) — G(t, u)] ds

t—1/n

for the same values of u. As B < e™#"™'(B{") + B}, we prove the compactness
of B by showing that B{" is a bounded set for any n (e~*?” ™" is a compact map
by (H 2)) and

(3,6) lim u(B{") = 0

n—w

for the Kuratowski measure of noncompactness u (see e.g. [14], [17]). Lemma 1
and the estimate (3,5) immediately imply the boundedness of B{” and the existence
of a positive number K such that

t
f Ae™4¢I[G(s, u) — G(t,u)] ds|| < 57
t—1/n n

holds. Therefore diam (BY”) < (2K[n?) and (3,6) is true.

(ii) H,(Z(r))is an equicontinuous subset of Y. Forany t, < t; < t, £ T,ue Z(r),
we can write

H(w) b — Hy(u)t, = j ? Ae™A=I[G(s, 1) — G(ty, )] ds +

t
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3}
+ I Ae™#27 — 1) e~ A G(s, u) — G(t, )] ds +

1o

t

+ f A 4[G(1,, u) — Glty, )] ds

to

and therefore we obtain
|H(w) 1, = Hi(u) ;]| < v7" K (1) Cot, = 1) +
+ 2[y Ky(5/2) Ky (1 + 9[2) Cy(t, — ;)" +
+ K, (1) Cy(ty — t,)" log L=l < const. (t, — 1,)"%.
L=t

It remains to prove the continuity of H,. Suppose u, — u in Y*(T) and choose some
6 > O such that t; <ty + 6 < T. Then

IH y(un) = Hy(w)]y =

t
= max{ sup '[ Ae™*CI[G(s, u,) — G(t, u,) + G(t, u) — G(s,u)]ds| ,
te[to,to+4] to
-5
sup J Ae™ACI[G(s, u,) — G(s, u) + G(t, u) — G(t, u,)]ds +
telto+3,71(| ) o

+ J' Ae~4C=9[G(s, u,) — G(t, u,) + G(t, u) = G(s, u)] ds

s

S 2K,(1) max{ sup  y'Cy(t — to)", sup [C(T — to) ||ty — u
]

te[to,to+9] te[to+4,T

Yo

logt;(sto + y“Clé"]} .

It is now clear that H,(u,) - H,(u) in Y.

From the definitions of ¥, ¢, and &, one can easily see that r > 0, T > t, may
be chosen so that ®(Z(r)) < Z(r) if the assumption (H 6) is satisfied. By Lemma 5
and 6, the operator @ is the sum of a compact continuous and a contractive operator
and therefore it is a k-set contraction (see e.g. [5], [17]) for k < 1. Using the Darbo
modification of the Schauder Theorem ([5], [17]) we conclude that ¢ has a fixed
point in Z(r), i.e. there exists a solution of (3,3) which is an element of Y*(T).

Now we are coming to the second step of the proof, namely the proof of the
regularity of this solution. By the construction, this solution u belongs to Z(r) which
implies \

(i) s = f(s, u,) is a continuous map of the interval [¢,, T] into X*,
and

(ii) s — h(s) + G(s, u) is a Holder continuous map of the interval [t,, T] into X.
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This means that Lemma 3 can be applied to the first map (only here it is substantial
B > 0, i.e. the existence of a mild solution has been proved under a weaker assump-
tion « — B < 1) and Lemma 4 to the second map. This concludes the proof of the
following existence theorem.

Theorem 1. Let (H 1)—(H 6) be satisfied. Then there exist T > t, and a function
u e Y¥(T) such that

(i) for any te (ty, T) the strong derivative 1(t) (in the space X) exists,
(ii) u satisfies (3,1) at all points of the interval (t,, T),
(iii) u satisfies the initial condition (3,2).

Remark 1. Let u e Y*(t,) be a solution of (3,1), (3,2) on an interval [t,, t,) with
h = 0 and let [t,,u, ] €Uy, [t;, 15, u(t;)] € U,. As the set {[t,, s, u(s)]; s € [to, t,]}
is a compact subset of U,, the function

W) = '[ “o(t, 5, u(s)) ds

is defined on some interval [¢,, 7) and is Holder continuous on it — the last statement
follows from (3,4). The existence theorem yields a solution v € Y*(t,) of the equation

t
o(t) + A v(t) = /{1, 0) + J o(t, 5, o(s)) s + h(2),
ty
with the initial condition
vl

l=un.

Putting w(t) = u(t), t e (— o0, t,], w(t) = o(t), t € (t,, t,), it can be checked that this
function w belongs to the space Y*(t,) and solves the integral equation (3,3). By the
regularity argument, it is a solution of the original equation (i.e. with h = 0) (3,1)
with the initial condition (3,2). Therefore the Zorn maximality lemma yields a maxi-
mal, i.e. noncontinuable, solution of (3,1), (3,2). The forthcoming paper will be
devoted to the interesting questions of continuous dependence of maximal solutions

on (p,f’ g‘

Remark 2. The property (3,5) has played the crucial role in proving Theorem 1.
Itis an open question whether G can be replaced by a more general function G, which
is Holder continuous in the first variable and satisfies the Lipschitz condition in the
second with a sufficiently small constant.

4. APPLICATION

Coleman, Gurtin [3] and Gurtin, Pipkin [8] proposed a theory of heat conduction
based on thermodynamics for materials with memories. Now we briefly describe
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the basic features of this approach (for more details see e.g. [ 16]). Let g denote the
heat flux and e the internal energy and suppose that these quantities depend on a ther-
mal history of a material which is given by an ordered pair [u,, g,], where g is the
gradient of a temperature function u and the index ¢ denotes the shift of u as above.
If we restrict our consideration to thermal histories which are close to an equilibrium
and assume the material to be isotropic, we can linearize the constitutive equations
q = q(u,, 9.); e = e(u,, g,). In such a way we obtain the equations

+ o0

a() = —KO) o) = [ K)ol = )05

0

+ o0

(t) = eo + o(0) u(t) + 'f «(s)ult — 5)ds.
0
where k(s) is called the heat conduction relaxation function and ofs) is called the
energy temperature relaxation function. The quantities q and e obey the energy
balance equation

é = —divg + r,

where r denotes the heat supply by the surroundings. The heat capacity «(0) must
be positive and if we suppose that the instantaneous conductivity k(0) is also positive
we arrive at the linearized heat equation of parabolic type

4,1) oc(O)%tf(x, 1) — k(0) du(x, 1) = r(x, 1) —

t

t
— J‘ o(t — s)a—u(x, s)ds + J k'(t — s) du(x, s) ds.
o ot -®
This equation has been studied by several authors (see e.g. [15] and the references
given there). The stability was also examined by Seifert [20] and the continuous
dependence by Chen, Grimmer [1], [2].

A nonlinear version of (4,1) is more complicated. As far as the authors know the
first result were obtained via methods of monotone operators by Crandall, Londen,
Nohel [4] and by Webb [23] who used an approach similar to ours. As he used the
contraction fixed point theorem, his assumptions are more restrictive and his equa-
tion is less general then the one given below.

As an example we shall treat the problem

(4,2) aa':( x) — a—(t x) = F, (u(t x), (t x)) .

. J ky(s) F,(u(s 026, x)> ds +

- o0
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+ J.tkz(t, s) G(% (s, X)> ds + h(1) (x),

t>0, xe[0,n],
4,3) u(t,x) = o(t)(x) for t<0, xe[0,n],

(4,4) %(t,o) ='a—u(t,n)=0 for t>0.
0x 0x

We require a > 0 and impose the following conditions on the functions entering
the equation: There is a positive T such that

(i) ky e L'(— 0, T),

(ii) k, is continuous on the interval [0, T) x [0, T) and is locally Hélder con-
tinuous in the first variable on this interval,

(iii) Fo, F, € C'(R?),

(iv) G islocally Lipschitz continuous on R and there are constants k;, k, such that
|G(&)| < ki|¢| + k; for all real &,

(v) i maps the interval [0, T) into I*(0, ) and is locally Hélder continuous on
[0, T),

(vi) @ maps the interval (— oo, 0] into X', where X' = {ve I*(0, n); v and v’
are absolutely continuous on [0, 7], v'(0) = v'(n) = 0, and v” € I*(0, )}. Moreover,
¢ is bounded and uniformly continuous on the interval (— oo, 0].

Theorem 2. Let the assumptions (i)—(vi) be satisfied. Then there are t, > 0 and
a function u on the interval (— o, ty) x [0, ] such that

(1) the map t - u(t, +) is continuous from [0, t,) into X*;

(2) for each te (0, t,) the strong derivative (d/dt) u(t, *) exists and the equation
(4,2) is satisfied in the sense of the space L*(0, ).

(3) u satisfies the initial condition (4,3).

Proof. Put Au(x) = —a 0%u(x)[0x* with 2(4) = X*. This operator A4 is self-
adjoint in L*(0, 7) and its spectrum consists of {an’},_, ;,.... So 4 is sectorial and
for A; = A + I the condition (2,1) is satisfied. The A4,-graph norm | ||; on X" is

clearly equivalent to the norm of the Sobolev space H*(0, ). The operator A, has
the representation

Ay v(x) = Zo(an2 + 1) v, cos nx,

n=

where

vy = n“f v(x)dx, v, = 2n‘1I v(x) cos nxdx.
/]

0
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Hence
A2 v(x) = Y (an* + 1)"/* v, cos nx
n=0
with

@
XV = 9(A1) = fve X; ¥ (an® + 1)of = o] a < o} -
n=0

It follows that the set X*/? cocincides with the Sobolev space H!(0, 7) and the graph
norm | ||, is equivalent to the Sobolev norm. Therefore du/ox € X1/2 for ue X*
and |0u[ox|,,, < c|u|,. Here and in the sequel ¢ denotes any constant (which
can depend on z). Let us define

Jo(2) (x) = F0<z(0 ) 20, x))

£ 2) () = Fl(z(s, 0 Z6, x))

for ze Y'(0). By the above argument and the assumption (iii), fo is a continuous
map of Y*(0) into X"/2. If ze Y'(0) then [z, dz/dx] is bounded on the interval
(—o0,0] x [0, n]. Using the assumption (iii) we obtain the following estimates
for any s,, s, € (— o, 0]:

“fl(sp Z) - fx(sz’ Z)”l/z <c [Hfl(sn Z) - fl(sl, Z)Hx +

+ “ai (/51 2) = fi(sa 2

(]

s eleton = 2o e +

Fia (o0, 2 (sl,x)) Fis(x62 ), (sz,x))

2 1/2
dx:l +

' 2 52 6
F} l(z(sl, x), (sl, x)) a(sl, x) — a—i-(sz, x)

0z
5 (2, x)

re U zdx]m +
+ow S el + |22 Wz + 2020 Dl 251 *) = 2(s25 *)es +
+clz(sy, +) = 2(s2, *)ajz + €f|2(s1s *) = 2525 *)]s £ €]|2(s15 +) — E(s2 *

It follows that f maps Y*(0) into Y*/2(0). In a similar way we also prove

||f1(s’ zy) = fi(s, Zz')"l/z = 0"21 - Z2|| Y1(0) »
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wiich implies the continuity of f,. Further: the map s — k,(t + s) f(s, 2) :
:(—oc, 0] » X"/? is strongly measurable and

0
I Iko(t + 5) 11055 2)][ /2 ds = ¢|zllyroy [KillLi-w0,m)

for 1[0, T), ze Y'(0). Hence the operator

fi(t.2) = j kit + 9) 15 2) ds

-0

maps [0, T) x Y'(0) into X'/ and a simple argument yields that f, is also continu-
ous. Therefore the map f(1, z) = fo(z) + f2(t, z) satisfies (H 3) for § = 1/2. Let us
denote

g(t, s, v) (x) = ka(1, s) G(0%v[ox? (s, x)) .

The assumption (iv) guarantees that G(u) € X for u € X' and consequently, g(t, s, v) €
e X for any [t,s,v] € [0, T)* x X'. The verification of (H 4)—(H 6) is now an easy
calculation and Theorem 2 follows.

It is possible to replace the Neumann conditions (4,4) by the Dirichlet ones

(4,5) u(t, 0) - u(t,n) =0 for t>0.

In this case we put
*u . 1 1 : 2
Bu = —a P for ueP(B) = X' = Hy0, )~ H*0, ).
X

The operator B is sectorial and satisfies the condition (2,1). But X*/2 = H{(0, )
and thus instead of (iii) we need

(ilia) Fo, Fy € C'(R?) and Fo(0, &) = F,(0, &) = 0 for all real ¢.

Further, we suppose

(via) @ maps the interval (— o0, 0] into X* = Hg(0, ) n H?(0, ) and is bounded
and uniformly continuous on this interval.

The same argument as in the proof of Theorem 2 yields the following result:

Theorem 2a. Let the assumption (i), (i), (iiia), (iv), (v) and (via) be satisfied.
Then the conclusion of Theorem 2 holds.
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