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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

AN EXISTENCE THEOREM FOR SEMILINEAR FUNCTIONAL 
PARABOLIC EQUATIONS 

JAROSLAV MILOTA, HANA PETZELTOVA, Praha 

(Received December 12, 1983) 

1. INTRODUCTION 

The semilinear evolution problem 

(E) u(t) + A u(t) = f(t, u) , u(0) = u0 , 

has a rather long history. It is well known that if —A generates a C0-semigroup 
(e~At) and a function f is C1 then (E) possesses a strong solution, i.e. a continuous 
solution on some interval [0, T) and continuously differentiable on (0, T). If more 
is supposed about an operator A, namely that A is a sectorial operator, then there 
exists a strong solution to (E) under weaker assumptions onf. Moreover, f can also 
depend on the gradient of u with respect to the space variables. Sufficient ccn-
ditions on f can be expressed in terms of fractional powers of A. For example, the 
following theorem is proved in [11], p. 54. 

Theorem. Let A be a sectorial operator in a Banach space X, 0 ^ a < 1, and let f 
map an open subset G of R+ x S)(Aa) into X and be locally Holder continuous 
in t and locally Lipschitzian in x. Then for any [0, u 0 ] e G there exists a unique 
strong solution to (E) on some interval (0, T). 

If we are not interested in the uniqueness of a solution we can prove the existence 
of a so called mild solution supposing the compactness of e~A\ t > 0, and only the 
continuity of f: G -» K. Iff is locally Holder continuous then the regularity of the 
mild solution follows. See e.g. [18] for a = 0 and [19] for more general cases. 
Similar theorems were proved also for semilinear functional evolution equations, 
see e.g. [21], [24]. Such equations frequently occur in various biological applications. 

A very simple example of f(u) = 2Au shows that it is not sufficient to suppose 
a = 1 in the above theorem. Nonetheless, nonlinearities depending on Au are very 
important e.g. for equations describing materials with memories (see Section 4 and 
references given there). Because of memories these equations become functional and 
existence and uniqueness theorems have recently been proved in this case also for 
a = 1. See [9], [10], [22], [23]. 
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In the present paper the existence theorem for the initial problem to the equation 

ii(f) + A u(t) = f(t, ut) + J g(t, s, u(s)) ds + h(t) 
• tQ 

is proved. Here ut denotes the shift of a function u, i.e. ut(s) = u(t + 5). The 
existence of a mild solution is proved with help of the fixed point theorem for a sum 
of compact and contractive operators, and then the regularity result is derived. This 
approach requires weaker conditions on smoothness of the right hand side, but does 
not guarantee uniqueness of the solution. 

As an application, the nonlinear equation for the heat conduction in materials 
with memory is treated. 

2. PRELIMINARIES 

Throughout this paper we assume 

(H 1) A is a sectorial operator in a Banach space X, i.e. A is a closed densely 
defined operator such that for some 3 in the interval (0, njl), a real a and some 
M ^ 1 the estimate of the resolvent operator 

ii('-^ni= M 
A - a\ 

holds for any A in the sector {A; $ g arg (A — a) ^ n}. If A is sectorial then —A 
generates an analytic C0-semigroup which will be denoted by e~At, t ^ 0. We shall 
frequently use further basic facts about sectorial operators (for more details see e.g. 
[7], [11]), which are collected in the following two lemmas. First note that there is 
always a real number b such that the spectrum of At == A + bl satisfies the condition 

(2,1) inf{ReA, A e o ^ ) } > 0 . 

For such sectorial operators all real powers A\ are defined and Xa will stand for 
their domains. Spaces X* are Banach spaces if they are endowed with the norms 
||x||a = | |^ix | | .v Note that the spaces X* do not depend on the particular choice of 
the shift b. The first lemma is an easy modification of Theorem 1.4.3 in [11]. 

Lemma 1. Let Abe a sectorial operator. Then for any positive Twe have 

(i) (Vae[0, 00) BK^a) Vx eX Vt) 0 < t = T=> | |e"^x| |a =" Kt(a) r a | | x | | ; 

(ii) (Va e (0,1] 3K2(a) Vx eX* Vt) 0 < t = T=> ||(e"^r - / ) x|| = K2(a) fa||x||.. 
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In order to establish solvability of semilinear equations we shall need the following 
assumption which is often satisfied in practice. 

(H 2) There is X such that (XI — A)'1 is a compact operator on X. 

The second lemma can be found in [11], pp. 27, 29. 

Lemma 2. Let A be a sectorial operator and let b be such that (2,1) holds. Then 
the following statements are equivalent. 

(i) A satisfies (H 2). 

(ii) e~At is a compact operator on X for any t > 0. 

(iii) A\ is a compact operator on X for any a < 0. 

(iv) For any 0 ̂  /? < a the natural embedding X* -> Xp is compact. 

Now we start to study some special integral operators. The following two lemmas 
can also be viewed as sufficient conditions for solvability of the linear equation 

(2.2) x + Ax=f. 

It is well known that the mere continuity into X of a map / : [f0, T] -> X is not 
sufficient for the existence of a solution of (2,2). 

Lemma 3. Let (H 1) be satisfied and let f be a continuous map of [t0, T) into Xp 

for some j3 > 0. Then a function F given by 

(2.3) F(t) = P e-^'->/(S) ds , t e [t0, T), 
J to 

has the following properties: 

(i) F is a continuous map of [t0, T) into X1. 

(ii) For any te(t0, T) the strong derivative (in the norm of X) F(t) exists and 
F(t) + AF(t)=f(t). 

Proof, (i) Because of commutativity of both a closed operator and an integral 
(see e.g. [6], Th. 3,6.20), it is sufficient to prove the integrability of the function 
s-> l l -V-^ ' - 'VC*)! on [t0,t]. Denote sup {||/(s)||,f s e [ f 0 , f ]} by M(t). Using 
Lemma 1, we get 

I" Ke--»->/(«)| ds = P \t-*>-«A'tf(s)l-, ds = 
J to J *0 

= r1K1(i-p)M(t)(t-t0y. 



Moreover, for t0 __ tx < t2 __ Tx < T, 

\F(t_) - F(..)||. _ ["||(e-<'-"> - l)A\->c-A<*-»A{f(s)l ds + 
J to 

+ JV""1",)4A-)|i-,d-_ 

_ 2K_ip\2)(t_ - ufK^l - pftMpJfi-^ - t0y
2 + 

+ r1Ki(i-p)M(T1)(t2-t1y, 

which completes the proof of (i). 

(ii) Fix a te (t0, T). For 5 > 0 we have 

_ _ ± _ ) __) = 5~l ['(e-At - I)e-A^'-S)f(s)ds + 
5 ho 

f.f + 3 - / U ; 

+ a-i e-^ '+ a- sV(s)ds = tF(t) + 

+ S-1 ri
e-

A«+>-°lf(s)-f(t)]ds + 

+s-* r\--A<,+'-»-i)f(t)ds+f(t). 
By the first part of this lemma. F(t) e l 1 = Q)(A) and therefore 

e~Ad - 1 
lim —F(t)= -AF(t). 

<5->0 + 0 

The K-norm of the first integral on the right hand side of the above equality can be 
made arbitrarily small by the continuity of the function / at the point t, and by the 
boundedness of a C0-semigroup. Also the X-norm of the second integral tends to 
zero as ||(e~^<5 — I)/(f)|| tends to zero for S -> 0+ (in virtue of the property of 
a C0-semigroup). So we have proved that F+(t) exists and F+(t) + AF(t) = f(t). 
This right derivative F+ is continuous on (t0, T) as AF and / are continu6us (the 
embedding Xfi -> X is continuous whenever j8 > 0). The continuity of F and its right 
derivative implies the existence of F at any point of the interval (t0, T) (see e.g. [12], 
IX. 1.7). 

We shall also need a result similar to Lemma 3 for Holder continuous functions. 
The following statement is basically Lemma 3.2.1 in [11]. 

Lemma 4. Let (H l) be satisfied and letf be a locally Holder continuous function 
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of [r0, T) into X. Let F be a function given by (2,3). Then the statements (i), (ii) of 
Lemma 3 are valid for F and, moreover, 

A F(t) = [' Ac-A«->\f(s) - f(t)] ds + [/ - e-*'"»>] /(f) 
J t0 

for all te[t0,T). 

3. EXISTENCE THEOREM 

In this section we shall prove an existence theorem for the equation 

(3.1) u(t) + A u(t) = f(t, ut) + g(t, s, u(s)) ds + h(t) 
J t0 

with an initial condition 

(3.2) utQ = cp. 

Here ut denotes the shift of a function u, i.e. ut(s) = u(t + s) for s e (— oo, 0]. 
Our proof will consist of two steps. First, we prove the existence of a so called mild 

solution to (3,1), (3,2), i.e. a solution of the integral equation 

(3.3) u(t) = e - A ( ' - ' 0 ) <p(0) + Pe-A<'-8> h(s) ds + 
J to 

+ f e-A«-*>f(s, us) ds + f ' e - ^ ' - s ) fg(s , a, u(a)) do- ds 
J t0 J t0 J t0 

with the initial condition (3,2). Secondly, we shall prove the regularity of the mild 
solution. 

For the existence of a mild solution it is sufficient to find an appropriate space and 
conditions onf, g, A under which the map given by the right hand side in (3,3) has 
a fixed point. Let a e [0, 1], ft > 0. Note that the most interesting case is a == 1. 
We denote by Ya(T) the Banach space of all bounded uniformly continuous maps 
of the interval (— oo, 7 ] into the space X* endowed with the norm 

Nli-cn = SUP KOL-
fe(-co,T] 

The following assumptions will be introduced in the sequel. 

(H 3) There exists an open subset Ut of \t0, +oo) x Ya(0) such that f is a con­
tinuous map of Ux into Xp. 

(H 4) There exists an open subset U2 of {[r, 5] e [f0, +00)2; s ^ t} x X* such 
that 
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(a) g is a continuous map of U2 into X. 

(b) g is locally Holder continuous in the first variable and locally Lipschitzian 
in the third variable on U2, i.e. for any [t0, s0, x0] e U2 there are a neighborhood V 
of this point and positive numbers C, y such that the inequality 

(3,4) ||0(*lf s, xx) - g(t2, s, x2)\\ = C[\t, - f2|* + | x 1 - x2|| J 

holds for all [th s, x(] e Vn U2, / = 1, 2. 

(H 5) [t0, cp] e U1 and [t0, t0, <p(0)] e U2. 

(H 6) There exists x > t0 such that h maps [t0, T) continuously into X and is 
locally Holder continuous on [t0, T). 

Denote 

/ cp(t - t0) for t = t0 , 
¥(t) = ' 

\ e-
A('-f0> cp(0) + r e - ^ r - s ) h(s) ds for t > t0 ; 

Jfo 

,0 for t = t0 , 

* i ( " ) : ' - > < rt 
\ Q-A(t-s)f(s ^ ^ f o f t > t o . 

J to 

, 0 for r ̂  i"o » 
<*> 2 (u) :* - / , r 

\ e - ^ ' - ' M a(s,<7,u(<r))d<T]dsfor t > t0, 
J t0 L J to 

<P(u) = *i(u) + <*>2(u) + !F. 

By continuity, one can find r > 0, T > t0 such that !P e Ya(T) and ^(w) f exist 
and belong to X for i = 1, 2, f e (— oo, T] and u e Z(r), where 

Z(r) = {u e Y«(T), uto = <p and ||a(f) - ?(0)||. = r for f E (r0> T]} . 

Lemma 5. Assume (H 1) — (H 3), (H 5). Then 4>j is a compact continuous map 
of Z(r) into Y*(T)for all sufficiently small positive r and Tnear to t0. 

Proof. As [t0,cp]eUl a n d / satisfies (H 3), there exists a neighborhood Vt 

of [t0, cp] in Ut on which/ is bounded. Put Mt = sup | |/(s, x)\\p and choose r > 0, 
Vi 

T> t0 such that [s, us] e Vi for 10 ̂  s _̂  T, w E Z(r). Foi these r, T we will prove 
the statement. 

(i) {<Pi(u)\ ueZ(r)} forms an equicontinuous family in Y"(T). 
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We always can choose S > 0 such that c = <x — f} + S< 1. By Lemma 1, the 
following estimates hold for any t0 <̂  tt S t2 ^ T: 

^ f"ИГ'D 
J fo 

<pt(u)t2 - ^ ( t t ) * . ! , ^ 

e Ait2-U) _ Q e-A(Us)APj^ M j) | | d s + 

+ n\Ar'*-Ait*-*A'j(s, us)\\ ds = 

£ K2((5)(f2 - ^ K ^ M ^ l - c)"1 (^ - f o ) 1 " 0 ^ ! ^ - P). 

. (1 - a + jS)"1 M2(*2 - tty-ia-fi) £ const. (t2 - t,)3 . 

(ii) For any te(— oo, T] the set (#i(*f) t; ueZ(r)} is relatively compact in Xa. 
This is obvious for t ^ f0, and if t > t0 then it follows from the boundedness of this 
set in X*+s by the assumption (H 2). 

Using a generalization of the classical Arzela- Ascoli theorem for vector functions 
(see e.g. [13], Ch. 7) we conclude that <P1 is a compact map. The continuity of $l 

follows directly by the Lebesgue dominated convergence theorem. 
By the assumption (H 5) and (H 4), there is a neighborhood V2 of the point 

[*o> *o> <p(0)] m ^2 s u c h t r jat 9 *s bounded on V2 (H 4a) and g satisfies (3,4) on V2 

(H 4b). Put M2 = sup \\g(t, s, x)|| and G(f, u) = J/0 g(t, s, u(s)) ds. We choose 
v2 

r > 0, T > t0 so small that [r, s, u(s)] e V2 for all t e [t0, T], s e [l0, t], u e Z(r). 
Thus for any t0 ^ tt ^ t2 S Tand w1? u2 e Z(r) we have 

(3.5) HG^ , ux) - G(t2, tt2)|| ^ J l\\g(tl9 s, ux(s)) - g(t29 s, u2(s))|| ds + 
J to 

|o(t2, s, M2(S))|| ds g C (T - <•„)(.•-. - ttf + f 
+ C ( T - t0) ||ux - tt2||y« + M2(t2 - tj = 

2= C,(t2 - ^ ) y + C ( T ~ r0) ||Wl ~ u2||Y« . 

This estimate and Lemma 4 imply that <P2(u) e Y*(T) for all u e Z(r) supposing r 
and T are small enough. 

Lemma 6. Suppose (H 1), (H 2), (H 4) and (H 5). Then there exist r > 0, T > t0 

such that the operator <&2: Z(r) —> Ya(T) is the sum of a compact continuous operator 
and a contractive one. 
Proof. It is sufficient to prove this assertion for A$2: Z(r) -> C([t09 T],K) = Y 
By Lemma 4, we can write 

A <P2(u) t = Hx(u) t + H2(u) t, 
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where 

//,(«.) t = P Ae-A«-s)[G(s, u) - G(t, u)] ds , f e [f0, T] , 
J t0 

and 

H2(u) l = [/ - e ^ ( ' - ' 0 ) ] G(f, u) , t e [/0, T] . 

As the inequality 

\\H2(u)-H2(v)\\Y<2 sup | | e - ' 4 ' | | C ( T - . v 0 f l « . - i ; l r . 
re [0 ,T- t 0 ] 

holds for all u, v e Z(r), the map H2 is a contraction for Fsufficiently close to t0. 
We now prove that Hl is a compact continuous operator from Z(r) into Y. To this 

end we use the Arzela-Ascoli theorem as in Lemma 5. 

(i) B = {Ht(u) t; ueZ(r)} is a relatively compact set for any fixed te [f0, F]. 
For t = t0 the statement is obvious. Let therefore t > t0. For sufficiently large 
natural n denote by B(

L
n) the set of all elements 

P lnAe-A(t-'-(2n)-l)[G(s, u) - G(t, u)] ds 
J fo 

where u goes through Z(r), and by B2
n) the set of 

Ae-^('-s)[G(s, u) - G(r, u)] ds Í U-\ln 

for the same values of u. As B c e-y4(2")"1(B(,n)) + -B2
n), we prove the compactness 

of B by showing that B*/0 is a bounded set for any n ( e -^ 2 " )" 1 j s a compact map 
by (H 2)) and 

(3,6) lim ix(B2
n)) = 0 

n-* oo 

for the Kuratowski measure of noncompactness \x (see e.g. [14], [17]). Lemma 1 
and the estimate (3,5) immediately imply the boundedness of B[n) and the existence 
of a positive number K such that 

Í Ae-A«-s)[G(s, u) - G(t, и)] d s | ^ — 
i - i / . nУ 

holds. Therefore diam (B2

n)) g (2K//iy) and (3,6) is true, 

(ii) H^Z^isanequicontinuoussubsetof Y. For any t0 ^ t1 < t2 ^ T,ueZ(r)y 

we can wnte 

Ht(u) t2 - H^u) Í! = í Ae-A(,2-s)[G(s, u) - G(t2, tt)] ds + 
J í i 
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+ r"A(e-""2-"» - l)e-A("-s)[G(s,u) - G(/„ w)] ds + 
J r0 

+ rA^A^~s)[G(tl9 u) - G(t2, tt)] ds 
J to 

and therefore we obtain 

||II,(")t2 - IIi(")ti| ^ y- lK,(l)Cx(/2 - t,)1 + 

+ 2/yK2(y/2)K.(l + y/2) Ct(t2 - tj'1 + 

+ X.(l) C.(f2 - /1)y log ------- < const. (Z2 - <.)"2 . 
h ~ ti 

It remains to prove the continuity of H.. Suppose u„ -» w in Y*(T) and choose some 
S > 0 such that /„ < /0 + 5 < T Then 

Itf-O..) - H.(H)||r = 

= max j sup I f AQ-A«-S)[G(S, un) - G(t, un) + G(/, tt) - G(s, tt)] ds 
(/e[fWo + a]|| J , 0 

ii rr_^ 
sup AQ~A(t~s)[G(s, tt„) - G(s, tt) + G(t, M) - G(r, tt..)] ds + 

Vo+a.n 1J ro 

+ P Ae-^(r-s)[G(s, tt,,) - G(t, un) + G(t, tt) - G(s, i*)] ds 1 = 

2 ^ ( 1 ) rnaxl sup y " 1 ^ - f0)
v, sup [C(T- f0) ||tt„ - M||y. 

(^e[tWo + <5] te[t0 + d,T] 
l o g í _ І o + ľ 

0 4} 
It is now clear that H^(un) —> Hx(u) in Y 

From the definitions of !P, (Pj and <£2
 o n e c a n easily see that r > 0, T > t0 may 

be chosen so that <P(Z(r)) := Z(r) if the assumption (H 6) is satisfied. By Lemma 5 
and 6, the operator <P is the sum of a compact continuous and a contractive operator 
and therefore it is a fc-set contraction (see e.g. [5], [17]) for k < 1. Using the Darbo 
modification of the Schauder Theorem ([5], [17]) we conclude that 0 has a fixed 
point in Z(r), i.e. there exists a solution of (3,3) which is an element of Ya(7). 

Now we are coming to the second step of the proof, namely the proof of the 
regularity of this solution. By the construction, this solution u belongs to Z(r) which 
implies 

(i) s ->f(s, us) is a continuous map of the interval [t0, T] into Xp, 
and 

(ii) s -> h(s) + G(s, u) is a Holder continuous map of the interval [t0, T] into X. 
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This means that Lemma 3 can be applied to the first map (only here it is substantial 
(} > 0, i.e. the existence of a mild solution has been proved under a weaker assump­
tion a — p < 1) and Lemma 4 to the second map. This concludes the proof of the 
following existence theorem. 

Theorem 1. Let (H 1) — (H 6) be satisfied. Then there exist T > t0 and a function 
u e Y\T) such that 

(i) for any t e (t0, T) the strong derivative u(t) (in the space X) exists, 

(ii) u satisfies (3,1) at all points of the interval (t0, T), 

(iii) u satisfies the initial condition (3,2). 

Remark 1. Let u e Ya(fj) be a solution of (3,1), (3,2) on an interval [f0, tt) with 
h = 0 and let [tl9 u f l] e Ul9 [tl9 tl9 u(rx)] e U2. As the set {[tl9 s, w(s)]; s e [t09 f j} 
is a compact subset of U2, the function 

HO = I d(t, s, u(s)) ds 

is defined on some interval [tl9 T) and is Holder continuous on it — the last statement 
follows from (3,4). The existence theorem yields a solution v e Y*(t2) of the equation 

v(t) + A v(t) = f(t9 vt) + J g(t9 s, v(s)) ds + h(t) , 

with the initial condition 

Putting w(t) = u(t), t e ( — oo, f j , w(t) = v(t)9 t e (tl912), it can be checked that this 
function w belongs to the space Y*(t2) and solves the integral equation (3,3). By the 
regularity argument, it is a solution of the original equation (i.e. with h = 0) (3,1) 
with the initial condition (3,2). Therefore the Zorn maximality lemma yields a maxi­
mal, i.e. noncontinuable, solution of (3,1), (3,2). The forthcoming paper will be 
devoted to the interesting questions of continuous dependence of maximal solutions 
on cp9f9g. 

Remark 2. The property (3,5) has played the crucial role in proving Theorem 1. 
It is an open question whether G can be replaced by a more general function Gt which 
is Holder continuous in the first variable and satisfies the Lipschitz condition in the 
second with a sufficiently small constant. 

4. APPLICATION 

Coleman, Gurtin [3] and Gurtin, Pipkin [8] proposed a theory of heat conduction 
based on thermodynamics for materials with memories. Now we briefly describe 
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the basic features of this approach (for more details see e.g. [16]). Let q denote the 
heat flux and e the internal energy and suppose that these quantities depend on a ther-
mal history of a materiál which is given by an ordered pair [uř, # J , where g is the 
gradient of a temperature function u and the index t denotes the shift of u as above. 
If we restrict our consideration to thermal histories which are close to an equilibrium 
and assume the materiál to be isotropic, we can linearize the constitutive equations 
q = q(ut9 gt), e = e(ut, gt). In such a way we obtain the equations 

/•+0O 

q(t) = - fc(0) g(t) - k'(s) g(t - s)ds, 

Í
+00 

oc'(s) u(t - s) ás , 

where k(s) is called the heat conduction relaxation function and 00(5) is called the 
energy temperature relaxation function. The quantities q and e obey the energy 
balance equation 

é = —div q + r , 

where r denotes the heat supply by the surroundings. The heat capacity a(0) must 
be positive and if we suppose that the instantaneous conductivity /c(0) is also positive 
we arrive at the linearized heat equation of parabolic type 

(4.1) a(0) — (x, t) - fc(0) Au(x91) = r(x, t) -
dt 

— <x'(t — s) — (x, s) ds + k'{t — s) Au(x, s) ás . 
J-00 3t J . ^ 

This equation has been studied by several authors (see e.g. [15] and the references 
given there). The stability was also examined by Seifert [20] and the continuous 
dependence by Chen, Grimmer [ l ] , [2]. 

A nonlinear version of (4,1) is more complicated. As far as the authors know the 
first result were obtained via methods of monotone operators by Crandall, Londen, 
Nohel [4] and by Webb [23] who ušed an approach similar to ours. As he ušed the 
contraction fixed point theorem, his assumptions are more restrictive and his equa­
tion is less generál then the one given below. 

As an example we shall treat the problém 

(4.2) ^ (ř, x) - a ^ (r, x) = F0 (u(t, x), ^ (ř, x)\ + 

+ i k^s) FJU(S, X), y (5, x) j ds + 
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£ka(í.-)G(0 (-.*))<-»+ *(»)(*). 
t > 0 , X G [0, 7U] , 

(4.3) u(t, x) = cp(t) (x) for t = 0 , x e [0, TC] , 

(4.4) ^ ( r , 0 ) = - ( r , 7 r )=0 for r > 0 . 
dx dx 

We require a > 0 and impose the following conditions on the functions entering 
the equation: There is a positive Tsuch that 

(i) fc-. £ .£/(-oo, T), 

(ii) fc2 is continuous on the interval [0, T) x [0, T) and is locally Holder con­
tinuous in the first variable on this interval, 

(in) F^F^C^R2), 
(iv) G is locally Lipschitz continuous on R and there are constants ku fc2 such that 

|G({)| = kt\i\ + fc2 for all real c;, 

(v) h maps the interval [0, T) into L2(0,n) and is locally Holder continuous on 

[0, T), 
(vi) cp maps the interval (— oo, 0] into X1, where K1 = [v e L2(0, n); v and v' 

are absolutely continuous on [0,TC], v'(0) = v'(n) = 0, and v" e L2(0,7r)}. Moreover, 
cp is bounded and uniformly continuous on the interval (— oo, 0]. 

Theorem 2. Let the assumptions (i) — (vi) be satisfied. Then there are t0 > 0 and 
a function u on the interval (— oo, t0) x [0,7i] such thai* 

(1) the map t -> u(f, •) is continuous from [0, f0) info K1; 

(2) for each te (0, f0) the strong derivative (djdt) u(t, •) exists and the equation 
(4,2) is satisfied in the sense of the space L2(0, n). 

(3) u satisfies the initial condition (4,3). 

Proof. Put A u(x) = — a d2u(x)jdx2 with ^ ( A ) = K1. This operator A. is self-
adjoint in L2(0,7r) and its spectrum consists of {an2}n=0l >### . So A. is sectorial and 
for A! = A + I the condition (2,1) is satisfied. The A^graph norm || ||A on K1 is 
clearly equivalent to the norm of the Sobolev space H2(0, n). The operator Ax has 
the representation 

Ax v(x) = £ (an2 -f 1) vn cos nx , 
л = 0 

where 
Ля /»л 

t?0 = -т""1 I v(x) dx , i>„ = 27Ü_1 фc) cos nx dx. 
Jo Jo 
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Hence 

with 

A\!2 v(x) = £ (an2 + 1)1/2 v„ cos nx 
n = 0 

ЛГ1/2 = ^ (A î / 2 ) = {veX; ^(an2 + 1) v2
n = \\v\\{l2 < 00} . 

л = 0 

It follows that the set X1/2 cocincides with the Sobolev space H^O, n) and the graph 
norm || | | 1 / 2 is equivalent to the Sobolev norm. Therefore dujdxeX1/2 for ueX1 

and ||du/3x||1 / 2 _. c||-*||i^ Here and in the sequel c denotes any constant (which 
can depend on z). Let us define 

/ o W W = F o ^ ( 0 , x ) , ^ ( O f x ) V 

jiv5* z) (x) = FJZ(S, X), J- (S, X)\ 

for z e Yl(0). By the above argument and the assumption (iii), / 0 is a continuous 
map of Y^O) into X1/2. If z e 7^0) then [z, dzjdx~\ is bounded on the interval 
(—oo,0] x [0,7r]. Using the assumption (iii) we obtain the following estimates 
for any sl9 s2 e (— 00, 0] : 

||/l(5l,Z) -/l(s2,--)| |l/2 -_ C| I / ^ . Z ) - / ! ( 5 2 , Z ) | | X + 

I I -3 | | —I 

— [jl(Sl> Z ) - jl(S2, z ) ] = c\\z(Sl, ') - Z(S2, -)\\ci + 
\dx IIX J 

+ c ri,i(z(si,^), T 7 ( s i , ^ ) ) - r i , i ( z ( s 2 , x ) , T-(s*>xn 

dz, J 2 , f 
— (s2, x) dx + 
3x I J 

r r u (< \dz< A I 2 I 5 Z / x dzt \\2J T / 2 

+ c fi,i z(si>*)> — (si>*) hr(si>x) ~ T - ( S 2 ' X )
 d x + 

LJol \ °x J \ \°x ox I J 

+ ... < C (l + ||z(s2, . ) | 1 / 2 + |Z(S2, . ) ! , ) ! z ( s l , •) - z ( s 2 , 0 | c + 

+ c l l z ( s i> •) - z(s2> OII1/2 + c l l z( s i> •) - z(s2> O l i = c l l z ( s i> 0 - Ks2> O l i • 
It follows that j maps y'(0) into y 1 / 2(0). In a similar way we also prove 

| j l ( S > Z l ) ~ j l ( S , Z 2 ) | l / 2 = c | | Z l - Z 2 | y i ( 0 ) , 
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which implies the continuity of f , . Further: the map s -> kx(t + s)fl(s, z) : 
: (—oc, 0] -* X1'2 is strongly measurable and 

Г 
J — c 

| | M ' + S)fi(s,z)lll2ds ^ f | | z | | r . ( 0 | HfcillLU-oo.T) 

for / e [0, T), z G Y^O). Hence the operator 

/ . ( ' . -) /ci(/ + s)/i(s, z)ds 

maps [0, T) x Yl(0) into K1/2 and a simple argument yields thatf2 is also continu­
ous. Therefore the map f(t9 z) = f0(z) + f2(t, z) satisfies (H 3) for /? = 1/2. Let us 
denote 

g(t, s, v) (x) = k2(t, s) G(d2v\dx2 (s, x)). 

The assumption (iv) guarantees that G(u) e X for u e X1 and consequently, g(t, s, v) e 
eX for any [t, s, v\ e [0, T) 2 x X1. The verification of (H 4) — (H 6) is now an easy 
calculation and Theorem 2 follows. 

It is possible to replace the Neumann conditions (4,4) by the Dirichlet ones 

(4,5) u(t, 0) = u(t, n) = 0 for t > 0 . 

In this case we put 

Bu=-a— for u e 9(B) = X1 = Hl

0(0, n) n H2(0, n) . 
dx2 

The operator B is sectorial and satisfies the condition (2,1). But K1/2 ^ Ho(0, n) 
and thus instead of (iii) we need 

(iiia) F0, F! e C^K2) and Fo(0, {) = F^O, {) = 0 for all real f . 
Further, we suppose 
(via) cp maps the interval (— oo, 0] into X1 = Ho(0, n) n H2(0, n) and is bounded 

and uniformly continuous on this interval. 
The same argument as in the proof of Theorem 2 yields the following result: 

Theorem 2a. Let the assumption (i), (ii), (iiia), (iv), (v) and (via) be satisfied. 
Then the conclusion of Theorem 2 holds. 
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