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časopis pro pěstování matematiky, roČ. 110 (1985), Praha 

ASYMPTOTICAL PROPERTIES OF THE WRONSKI DETERMINANT 
OF A CERTAIN CLASS OF LINEAR DIFFERENTIAL EQUATIONS 

OF THE 2ND ORDER 

JAROSLAV HYLAN, 2ilina 
(Received May 25, 1982) 

1. INTRODUCTION 

In [ l ] asymptotical properties of the solution of the following linear differential 
equation of the 2nd order have been investigated: 

(1.1) y" + [l'-q(x,l)-]y = 0, 
rf 

where q(x, I) = £ av(
x) /v with real functions av(x) continuous on the interval 

v = 0 

[0, a], r is a natural number, r' g r an integer and / a complex variable. 
The functions cp(x, /) and \j/(x, /) which are the solution of equation (1, 1) satisfying 

the initial conditions 

(1.2) cp(0, /) = «! , <p'(0, I) = a2 , a2 + a2 > 0 

have been proved to be entire functions of the complex variable / for every x e [0, a]. 
By the substitution s = V12 = |/|r /2 eix, a e [0, nr), where / = |/| eip, fi e [0, 2TT], 

the differential equation (1,1) transforms into the differential equation 

(1.3) y" + [s2 - q(x, l)]y = 0. 

Denoting y = 2r'/r < 1, asymptotic estimates for the functions #(x, /) and \j/(x, I), 
their derivatives with respect to x and s and their integrals for |s| = Q -> +oo have 
been established. 

In this work, the methods of [ l ] are extended in order to obtain asymptotical 
properties of the Wronski determinant of the functions <p(x, 1) and ij/(x, I). 

In this part we quote briefly those results from [ l ] that will be needed in the sequel: 

(1.4) <p(x, /).= aj cos (sx) + a ^ " 1 sin (*sx) + [aj + a 2 o _ 1 ] g*"1 e^x) ct(x) , 

(1.5) ^ ? ' = — a tx sin (sx) + a 2 xs _ 1 cos (sx) — 
dx . • . 

- a2s"2 sin (sx) + [ax + a2O_1] ^ v _ 1 ex(x) c2(x) , 
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where et(x) = exp [xo [sin a|] and ct(x) (for i = 1, 2, ...) are functions of the 
variable x on the interval [0, a], with positive constants c{ independent of Q > 1, 
OLE( — n, n] and x e [0, a]. 

2. NOTATION AND PRELIMINARY INFORMATION 

The following definitions and notation are used: fc,(s) (/ = 1,2,...) denotes a func­
tion of the variables Q = |s| and a = arg s, i.e. a function of the complex variable s, 
such that 

\k,(s)\ < k( 

where kt is a positive constant independent of s. The numbering of these functions is 
independent in every section and the index i of the function kt(s) in a relation which 
is to be proved need not coincide with the index j of the function kj(s), which is used 
in the proof of this relation. 

3. Theorem. Let w(l) be the Wronski determinant of the functions cp(x, I) and 
\j/(x, I) which were defined above in Section 1. 

Then 

(3.1) w(l) = OLxpxs sin (as) + [ai/?2 — a2f#i] cos (as) + 

+ a2jff2s
_1 sin (as) + [-<*& + (P2ax - P^Q'1 + ocJ2Q~2] Qy ex(a) k{(s), 

where et(a) is defined in Section 2. 
Proof. Liouville's formula implies that the Wronski determinant w(l) is inde-

pedent of x (the coefficient at y in equation (1.1) is equal to zero). 
Further, an arbitrary number x can be substituted into the functions cp(x, I) and 

ijj(x, I) and their derivatives in the Wronski determinant w(/). 
Substituting x = a into w(l) we obtain by virtue of (1.2), (1.4) and (1.5) 

(3.2) 40 = <p(a, I) <p'(a, I) = I <p(a, I) (p'(a, I) 

ik(a, I) r(a, 0 Pi Pi 

= p2 cp(a, 1) — /?i (p'(a, I) = p2{ott cos (as) + a 2 s _ 1 sin (as) + 

+ [ax + OL2Q~1] Q7"1 et(a) k2(s)} - ^{-oc^ sin (as) + 

+ a2 cos (as) + [ax + a 2 £ - 1 ] Qy et(a) fc3(s) . 

Formula (3,1) follows by easy calculation. 

4. Theorem. Let u(s) = w(l), where s is defined in Section 1. Then 

a) a ^ ! * 0 => 

(4.1) u(s) = aij?is sin (as) [1 + Q
y~l kx(s)] = ex(a) fc2(s); 

b) ax = J?x = 0, a2j?2 # 0 => 
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(4.2) u(s) = a ^ s " 1 sin (as) [1 + o r _ 1 k3(s)] = O"1 ex(a) k4(s); 

c) ax = 0, ft + 0 => 

(4.3) u(s) = - a 2 f t cos (as) [1 + O/"1 k5(s)] = e,(a) k6(s); 

d) a, + 0, ft = 0 => 

(4.4) u(s) = a lf82 cos (as) [ l + O7"1 k7(s)] = ^ (a ) k8(s). 

Proof results from (3,1) by using the notation introduced in Section 2. 

5. Theorem 

(5.1) — — = ajft[as cos (as) + sin (as)] + 
ds 

+ [a2^i ~ aiHV| a s m (as) "" a2j82s"1[s~1 sin (as) — a cos (asj\ + 

+ [a-ft + (a2ft + a,ft) o"1 + a2ftO"2] Oy *,(*) k^s) . 

Proof. We differentiate (3.2) with respect to s and make use of the expressions 
derived in [ l ] : 

(a) —L_L_z = — a ra sin (as) + a 2 as _ 1 cos (as) — 
ds 

— a2s"2 sin (as) + [OL1 + a 2 o _ 1 ] o/"1 ej(a) cx(a) ; 

(b) — | — ± ~ L J J = — a2a sin (as) — cxl sin (as) — 
Ids \ dx JJx=a 

— axas cos (as) + [cct + a 2 o _ 1 ] gy ei(a) c2(a) . 

6. Theorem 

a) cxj, + 0 => 

(6.1) - ^ 1 = a ^ ^ s cos (as) [ l + 0'"1 k,(s)] = o ex(a) k2(s); 
ds 

b) a, = ft = 0, a2ft + 0 => 

(6.2) M 5 ) - = a . f t a s" 1 cos (as) [ l + < T 1 k3(s)] = ^ (a ) k4(s); 
ds ,, 

c) a. = 0, y?j + 0 => 

(6.3) ^ ) = a ^ . a sin (as) [1 + <T» fc5(s)] = e . (a) /c6(s); 
ds 
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d) <*! * 0, )3. = 0 => 

(6.4) ^ ) = x^a sin (as) [1 + Q~~l fc7(s)] = et(a) ks(s). 
as 

Proof follows from the modified equation (5.1). 

7. Note. In what follows, n represents a natural number and c{ (i = 1, 2,. . .) are 
positive constants independent of n, Q > 1, r e [0, nr\. 

8. Theorem. Let {Q„} be an increasing sequence of real numbers such that 

(8A) limO,, = +oo 
n-* + oc 

and let there exist cx e (0, 1) independent of n and such that 

(8.2) |sin(aon)| > cx . 

Then for T e [0, nr] the inequality 

(8.3) ' \cosQc(aQne
iz)\ < c2el(—a) 

holds for almost all n. 
Similarly, 

(8.4) |cos (aQn)\ > c3 => |sec (aQne
iz)\ < c4 ex(-a) 

for almost all n and for c3 e (0, 1) independent of n; e^ — a) = exp [ — ao„|sin T|] . 

Proof. Let s = Qne
lz. Then an elementary calculation yields 

(8.5) |cosec (as)\ = |cosec (a0„eIT)| = 

= 2 et(-a) [(el(-a) - l)2 + 4 e\(-a) sin2 (a0„ cos T ) ] - 1 / 2 . 

(a) Let T G [0, n\aQn~\, where obviously 7r/aOn < n\2 for almost all n. 

It may be easily proved that 

(8.6) cos T > 1 for almost all n . 

Considering (8.2) and (8.6) we conclude 

(8.7) sin2 (aQn cos T) > sin2 aQn( 1 j = sin2 (aQn) 

L \ aoJ\ 
Since 

(8.8) eA-a)<e-n for T e | 0 , — | , 

L *ftj 
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(8.5) together with (8.7) and (8.8) yields 

|cosec(ao^e11)! < c2e1( — a). 

Thus the relationship (8.3) is proved for T e [0, njaQn~\. 
Further, let 

e» "[•Ml-
laQn 2J 

We apply the inequality 
(8.9) sinT > — for i e ( o , - J, 

obtaining 

(8A0) ei(~a) <e~2 <1. 

It can be seen that even in this case, (8.5) together with (8.2), (8.9) and (8.10) yields 

|cosec (aQne
ix)\ < c 3 e 1 ( - a ) . 

This proves the relation (8.3) for T e [n\aQn, 7t/2]. 
The equation (8.3) may be proved similarly. 
For the other values of T the proof is based on the fact that cosec (as) is an odd 

function assuming real values for s real, while sec (as) is an even function with real 
values for s real. 

9. Theorem. 

Let 

(9.1) s = Qne
ix, Te[0 ,7r r ] , 

where Qn satisfies conditions (8A) to (8.4). 
Then 

a) a-jBj * 0 = > 

(9.2) OJ-1(S) = ( a ^ s ) - 1 cosec (as) [1 + Ov"1 fe^s)] = Q~1 ex(-a) k2(s) ; 

b) a i = pt = 0, OL2P2 * 0 => 

(9.3) w " \ s ) = (ai2p2)-
1 s cosec (as) [1 + o v _ 1 fe3(s)] = Q e{(-a) fe4(s) ; 

c) ax = 0, pt # 0 => 

(9.4) co-1(s)= -(*2pxy
l sec (as) [1 +ov"1fe5(s)] = e , ( - a ) fe6(s) ; 

d) a i * 0, ^ = 0 => 

(9.5) co-^s) = ( a ^ ) " 1 sec (as) [1 + <T 4 fe7(s)] = ex(-a) fe8(s) . 
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Proof. For s from (9.1) it follows from (4A) and (8.2) that 

co(s) = o^iPiS sin (as) [1 + o v _ 1 ki(s)] , 

hence 

w_1(s) = ( a ^ j s ) " 1 cosec(as) [1 + Q7'1 k2(s)] = 0"1 e^—a) k3(s) , 

which proves (9.2). 

Relations (9.3), (9.4) and (9.5) are derived analogously. 
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