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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON A POWER OF CYCLICALLY ORDERED SETS 

VMZSLAV NOVAK, MTROSLAV NOVOTNY, Brno 

(Received February 13, 1984) 

The aim of this paper is to give a definition of an operation on the class of cyclically 
ordered sets — the so called power — which has a certain property analogous to that 
of the power of ordered sets. First, we explain the basic notions. 

A ternary relation C on a set G is called a cyclic order ([2]) iff it is 

asymmetric, i.e. (x, y, z) e C => (z, y, x) e C , 

cyclic, i.e. (x, y, z) e C => (y, z, x) e C , 

transitive, i.e. (x, y, z)e C , (x, z,u)e C => (x, y,u)e C . 

A cyclically ordered set is a pair G = (G, C) where G is a set and C is a cyclic 
order on G. Note that if G = (G, C) is a cyclically ordered set and x, y, ze G, 
(x, y, z) e C, then x 4= y 4= z #= x. 

A cyclically ordered set G = (G, C) is discrete iff C = 0; otherwise it is non-
discrete. A cyclically ordered set G = (G, C) is a cycle, iff card G ^ 3 and the rela­
tion C is linear, i.e. x, y, zeG, x4=^4=z=t=x=> either (x, y, z) e C or (z, y, x) e C. 
If G = (G, C) is a cylically ordered set and H c G is such a subset that the induced 
cyclic order C n H3 is linear on H, then H = (if, C n if3) is called a cycle in G. 

If G = (G, C) is a cyclically ordered set and x 6 G, then the element x is called isolated 
iff there exist no y, z e G such that (x, y, z) e C; otherwise it is nonisolated. Especially, 
if G is discrete, then each element of G is isolated. 

Let G = (G, C), H = (H, D) be cyclically ordered sets. A mapping f: G -> H is 
called a homomorphism of G into // iff it has the property 

x,y,zeG, (x,y,z)eC^ (f(x), f(y), f(z)) e D . 

We denote by Horn (G, H) the set of all homomorphisms of G into H. 
Let G = (G, C), // = (H, D) be cyclically ordered sets. Put 

GH = (Horn (H, G), T) 

where T is a ternary relation on the set Horn {H, G) defined by 

(f,g,h)eT iff (f(x),g(x), h(x))eC for all xeH. 
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1. Lemma. Let G, H be cyclicalïy ordered set. Then Gн is a cyclically ordered 
set. 

Pгoo f is trivial. One can directly show that the relation Гon Hom (Я, G) is asym-
metric, cyclic and transitive. 

The cyclically ordered set Gн can be called a cardinal power of cyclically oгdered 
sets G, H. 

Let us denote by 3 a 3-element cycle, i.e. 3 = ({0,1, 2}, {(0,1, 2), (1, 2, 0), (2, 0, 1)}). 
One can expect — as an analogy to a cardinal power of ordered sets — that any 
cyclically ordered set can be isomorphically embedded into a cardinal power with 
base 3. But this is not true: 

2. Example. Let G be a cyclically ordered set. Then the cardinal power 3G 

contains no 4-element cycle. 

Proof. Assume f, g,h,kє Hom (G, 3), (f, g, h) є T, (f, h, k) є T. Let x є G be 
any element. If f(x) = 0, then (f,g,h)єT implies g(x) = 1, h(x) = 2 and then 
(f(x), h(x), k(x)) = (0, 2, k(x)) is not an element of the relation of 3. Analogously 
we obtain a contradiction iff(x) = 1 and iff(x) = 2. 

Thus, if G is a cyclically ordered set that contains a 4-element cycle, then G can be 
embedded into no cardinal power with base 3. We propose another operation of 
a power of cyclically ordered sets which removes this defect. 

In the sequel we assume that G = (G, C) is a cyclically ordered set which is non-
discrete and Я = (H, D) is a cyclically ordered set without isolated elements. Let 
<ř(Я) be the set of all cycles in Я. Put 

P(G, H) = ( U Hom (X, G), R) 
Xє®(H) 

where (f, g,h)є R iff domf = dom g = dom h and (f(x), g(x), h(x)) є C for any 
x є d o m f 

3. Lemma. P(G, H) is a cyclically ordered set. 

Pгoof iseasy. 
Choose an element æєG which is nonisolated and denote for any xєH 

U(x) = {fє U Hom (X, G); x є domf and f(x) = o>} . 
Xє(£(tf) 

4. Lemma. If x, y є H, x ф y, then U(x) n U(y) = 0. 

Proof. Assume that there exists an fє U(x) n U(y). If domf = X, then X = 
= (X, D n X3) is a cycle in Я and x,yєX; simultaneously f(x) = co = f(y). 
Ғind an element z є X such that either (x,y,z)єD or (z, y, x) є D. Then either 

(f(*)>fШ(z))єc o r (fШШ(*))єC and this is impossible, for f(x) = 
= f(ÿ) = o>. 
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Define on the set {U(x); xeH) a ternary relation S by (U(x), U(y), U(z))eS 
iff there exist / e U(x), g e U(y), h e U(z) with (f, g, h)eR. 

5. Lemma. If (U(x), U(y), U(z)) e S, then x * y 4= z # x. 

Proof. Let (U(x), U(y), U(z)) e S. Then there exist fe U(x), g e U(y), h e U(z) 
with (f, g, h) e R. Thus domf = dom g = dom h = X, where X = (X,Dn X3) e d(H), 
x,y,zeX and (f(t), g(t), h(t))e C for any t eX. Assume x = y; then f(x) = co = 
= d(y) = #(*) so that (f(x), g(x), h(x)) e C cannot hold, which is a contradiction. 
Similarly, neither x = z nor y = z is possible. 

6. Lemma. If x,y,ze H, (x, y, z) e D, then (U(z), U(y), U(x)) e S. 

Proof. Denote X = {x, y, z], X = (X, D n X3); then Xe £(H). Further, choose 
two elements a, be G such that (co, a,b)e C and define mappingsf, g, h: X -> G by 

/ (x) = a , /(>>) = b, f(z) = co, 

g(x) = b , g(y) = co , g(z) = a , 

h(x) — co , h(y) = a , h(z) = b . 

We see easily that / , g, h e Horn (X, G), / e U(z), g e U(>>), h e U(x) and (/(.), g(t), 
h(t)) e C for any t e X. Thus (f, g,h)eR and (U(z), U(y), U(x)) e S. 

7. Lemma. / / x, y, z e H, (U(x), U(>>), U(z)) e S, f/ien (z, >>, x) e D. 

Proof. Let (U(x),U(y),U(z))e S, i.e. there ex i s t / eU (x ) , g e U(y), heU(z) 
with (/, g, h) e R. Thus d o m / = dom g = dom h = X, where -Y = (X, D n X3) e 
e <£(//), x, >, z e X and (/(t), g((), h(t)) e C for any ( e X. Further/(x) = co = g(>>) = 
= h(z). By Lemma 5, we have x # >> # z + x. As X is a cycle in # , we have either 
(x, y,z)eD or (z, >>, x) e D. Assume (x, >>, z) e Z). As f,g,he Horn (X, G), we have 
( / W , / W > / ( z ) ) e c , i.e. (co,f(y),f(z))eC, and (g(x), g(>), g(z)) e C, i.e. (a>, g(z), 
g(x)) e C, and (h(x), h(>>), h(z)) e C, i.e. (co, h(x), h(y)) e C. Besides, we have (f(x), 
g(x), h(x)) e C, i.e. (co, g(x), h(x)) e C, and (/(>>), g(y), h(y)) e C, i.e. (co, h(y),f(y)) e 
e C, and (f(z), g(z), h(z)) e C, i.e. (co,f(z), g(z)) e C. Then, by a successive applica­
tion of the transitivity of the relation C, we obtain 

(to,f(y),f(z)) e C f , * , « 

(^ . / (y) , ff(z)) * C / , v , « 

( » , « ( . - ) ) j ( x ) ) 6 C = > W W ^ 6 ( " 

(«B,/(.V), *(*)) 6 C , , , ()) 

(co, g(x), h(x)) e C ^'J W ' " W j 6 ° ' 
(o>,/(>), h(x)) e C , . , f « 
(co, h(x), h(y)) e C ^ ' I W ' " ^ ! j e C ' 
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and this contradicts (oo, h(y),f(y)) є C. Thus, (z, y, x) e D. , 

Now, let us put 

P tó(G,Я) = ( {U (x) ;xєЯ},S) . 

8. Theorem. Pm(G, H) is a cyclically ordered set. 

Proof. Assume that there exist elements x, y,zeH such that (U(x), U(y), U(Z)) є 

є S, (U(z), U(y), U(x)) e S. Then by Lemma 5, we have x ф y ф z Ф x and Lemma 

7 implies (z, y, x) e D, (x, y, z) e D. This contradicts the asymmetry of D and hence S 

is asymmetric. The cyclicity of the relation S follows directly from its definition. 

We prove that S is transitive. Let x, y,z,we H, (U(x), U(y), U(z)) є S, (U(x), 

U(z), U(w)) e S. Then by Lemma 7, (z, y, x) e D, (w, z, x) e D. Hence (x, w, z) є D, 

(x, z, y)e D and the transitivity of D yields (x, w, y) e D, thus also (w, y, x) є D. 

By Lemma 6 we have (U(x), U(y), U(w)) e S and S is transitive. 

9. Theoгem. PЫ(G, H) is antiisomorphic with H. 

Proof. The mapping U: x -* U(x) is clearly a surjective mapping of Я onto 

{U(x); x є Я}; by Lemma 4, it is a bijection. Then Lemmas 6 and 7 imply that U is 

an antiisomorphism of Я onto PЫ(G, Я) . 

10. Сorollaгy. Let G = (G, C) be a cyclically ordered set without isolated 

elements. Then the cyclically ordered set P0(3, G) is antiisomorphic with G. 
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