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VARIATIONAL STABILITY FOR GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS

$TEFAN SCHWABIK, Praha
(Received May 17, 1983)

INTRODUCTION

In this paper we study the generalized differential equation

) & DR, 1)

dt
for which the identically zero function is a solution. For ¢ > 0 write B, = {x € R";
|x| < ¢} where | | stands for some norm in the space R".

Let two functions be given: a function h : [0 +00) = R, nondecreasmg and con-
tinuous from the left on [0, +0), and a function @ : [0, +0) — R, continuous,
increasing and such that w(0) = 0; these functions are fixed for the rest of the
paper. The following assumptions are imposed on the right hand side F of the gen-
eralized differential equation (1) throughout the paper: N

2 thereis ¢ > 0 suchthat F:B, x [0, + ) — R";
(3) o |F(x, 12) = F(x, t,)| < [h(t2) = h(t)|
forevery xeB,, t;,1,€[0, +0);
(4) IF(xz, t;) — F(xz; ) — F(xn ‘z) + F(xp tl)l =<
< co(lx2 — x,l). lh(tz) - h(t,)l forevery x;,x,€B., 1,1, € (o, +ob) s
(%) F(0,1;) — F(0,t,) = 0 forevery t;,1,€[0, +00).

Generalized differential equations of the form (1) were introduced and extcnswely
studied in detail by J. Kurzweil [2], [3]. The assumptions (2), (3) and (4) are given in
[3] and the set of all functions F satisfying the assumptions (3) and (4) on G = B, x
x [0, + ) is denoted by #F = F(G, h, »). Generalized differential equations of
the form (1) with F € #(G, h, ») represent a sufficiently wide class of equations,
which includes e.g. the class of ordinary differential equations with right hand s1des
satisfying the known Carathéodory conditions. o '
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Let us mention that a functionx : [a, b] - R" is a solution of (1) if

a) (x(1), t)e B, x [0, + ) forevery te[a,b]
and
b) x(sz2) = x(s) = szF(x(r), t) forevery s;,s;€ [a, b] .

The integral used here is the generalized Perron integral introduced by Kurzweil
in [2]. More details on this integral can be found in [4].

The fundamental local existence result for solutions of (1) is given in [3]: If
Fe #(G,h,w)and X e B, t,€[0, + ) where X' + =X + F(%, t,+) — F(X, to) € B,
then there exists & > O such that there is a solution x :[t,,to + 6] - R" of (1)
with x(t,) = X.

Proposition 1. Assume that s, s, € [0, +©), s; < s,. If y : 54, 52] = B, is such
52 :
a function that the integralJ. DF(y(), t) exists then

(©)

For the proof see [3].
" By this: proposition we can conclude that every solution x :[a, b] —» R" of the
€quation (1) is of bounded variation on [a, b], xeBV[a b]. In fact, if s, <'s,,
51,5, € [a b] then ‘

) x(ss) — x(s1)| =

S

[ DrOE, o] = 1o - 6.

< h(s,) — h(sy)

j :DF(x(t), 0

and consequently, also var} x < h(b) — h(a). The continuity from the left of the
function h together with (7) yields that every solution of the equation (1) is continuous
from the left.

If s;,5,€[0, +), s; <5, and x, y : sy, s,] = B, are such functions that the

S2 52
integralsj fDF(x(r), ) andj‘ DF(y(7), 1) exist then

s

St

@ ] j DLF(x2). ) = F(0) 1| 5 [ Dlai(x() 59 H01 =

j of[x(z) — (5)) dh(e)

. This statement follows from the assumption (4) and from Lemma 3.1 in [3] (cf.
also [4]). The integral on the right hand side is the Perron-Stieltjes integral. Finally,
let us mention that if x : [s,,s,] > B, 0 <'s; <5, < +0 is a regulated function
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(having onesided limits at each point s € [s,, s,]) then the integral f DF(x(z), t)

St

52
exists. In our case it is important that the integralJ. DF(x(t), t) exists whenever
St

x € BV[s,, 5,] is a function with values in B.. By the assumptions (5) we have
J. D[F(0, 1)] = F(s,) — F(s;) = 0 for every s,,s;€[0, +0).

Hence the function x = 0 is a solution of the equation (1) on [0, o).

The concept of the generalized differential equation with a right hand side satisfying
conditions (3) and (4) includes the Carathéodory theory of ordinary differential
equations as well as the concept of the measure differential equation (see e.g. [5])
and the theory of systems with impulses which has been developed mtenswely by
A. M. Samoilenko and others (see e.g. [6]).

In the present paper we give some results concerning the concept of stability of
a sqlutlon of the generalized differential equation. They generalize the results known
for the Carathéodory concept of differential equation and they also cover the
interesting case of systems with impulses. The starting point of our approach is the
stimulative paper of I. Vrko¢ [8] on integral stability and the improvements of his
results given by S.-N. Chow and J. A. Yorke in [1]. Since the solutions of the equation
(1) are functions of bounded variation it seems to be very reasonable to use the con-
cept of variational stability which was mentioned by I. Vrko¢ in [8] and which
belongs to H. Okamura. The concept of variational stability in the case of Carathéo-
dory equations is equivalent to the integral stability introduced by I. Vrko¢, see [8]
In the case of classical differential equations the concept of variational sta'B'ility has
some features of artificiality; in this case the solutions of the differential equations are
absolutely continuous functions and the power of the concept of the variation of
a function is not fully exploited. In the case of generalized differential equations we
have to distinquish also the discontinuities of functions and this can be done in
a satisfactory way in terms of the total variation of a function.

Let us introduce the basic definitions of stability and asymptotic stability used
throughout the paper.

DEFINITIONS AND PRELIMINARY RESULTS

Definition 1. The solution x = 0 of the equation (1) is called variationally stable
if for every &€ > O there exists 6 = 8(¢) > 0 such that if y:[ty,t,] > B, 0 =<
Sty <ty < 400, is a function of bounded variation, continuous from the left
with

o <6 i () - [ orecs) <5
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then

()| < e for te[t,1,].

Definition 2. The solution x = 0 of the equation (1) is called variationally at-
tracting if there exists 6o > 0 and for every ¢ > O there exists T = T(g) > 0 and
y = y(€) > 0 such that if y:[to,t,] > B, 0 <ty <t; < +0, is a function of
bounded variation, continuous from the left and

Iy(to)l < do and var;! (y(s) _ [‘s DF(y(), t)> <7,

v to
then
|¥()| <& forall tefto, 1], t2to+ T(e), 1, 20.

Definition 3. The solution x = 0 of the equation (1) is called variational-asympto-
tically stable if it is variationally stable and variationally attracting.

The above concepts of variational stability and variational asymptotic stability
are closely connected with a certain kind of stability with respect to perturbations of
the generalized differential equation (1).

Together with the equation (1) we consider the perturbed equation
©) & DIF(x, 1) + (1],

dt
where P : [0, + ) — R"is a function of locally bounded variation P € BV, [0, + bo)
(i.e. for every [a, b] = [0, + o) we have var) P < o) which is continuous from the
left at each point belonging to [0, + c0). It can be easily verified that if the function F
satisfies (3) and (4) then the function F(x,t) + P(f) = G(x, t) satisfies similar as-
sumptions, i.e.

|G(x, t;) — G(x, t,)| = |F(x, t;) + P(t;) — F(x, t;) — P(t,)| <

< |h(ty) + varg P — h(t,) — vary P|
and
|G(x2, 12) — G(x3, t;) — G(xy, 1) + G(xy, 11)| £

é m(lxz - xll) |h(t2) - h(tl)l .
Hence the right hand side of the generalized differential equation (9) belongs to the
set #(G, h, w) where h(t) = h(t) + var’ P, te [0, + o), and all the fundamental
results are valid for the equation (9) as well; this concerns especially the local existence
of solutions. :

Proposition 2. The solution x = 0 of the equation (1) is variationally stable if
and only if for every € > 0 there exists 6 = 6(g) > O such that if |y0| < and
P e BV[t,, t,], continuous from the left and with var. P < &, then
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Iy(t, to, yo)l <e¢ forevery te[t, 1],
where y(t, to, Yo) is a solution of the equation
dx

©) & — DlF(x 1) + (1)

with y(to, o> Yo) = Vo

Proof. 1) Assume that x = 0 is variationally stable, i.e. for ¢ > 0 there exists
& > 0 according to Definition 1. Assume that |y,| < &, var, P <  and that y(t) =
= )(1, to, yo) is a solution of the equation (9) on [, t,]; then evidently | y(10)|=
= |po| < & and for sy, 5, € [to, ;] we have

¥s3) = ¥(s) = j "DF(y(x), 1) + P(s3) — P(sy),

S1

»s2) j " DF((e), 1) = ¥(s) - j "DF(y(). 1) = P(s2) - P(sy)

t
and this yields
var;! (y(s) - J. DF(y(7), t)) =var)] P < 4.
to

Hence by-the variational stability we have
()] = [¥(t, 10, yo)| <&

for t € [y, 1,] and the condition given in the proposition is satisfied.

2) Let us assume that the condition given in our statement is satisfied. Let y :
: [0, t;] = R" be of bounded variation, continuous from the left, and such that

|¥(to)| < & and
var': (y(s) - f DF((x), t)) <s,
to
where 6 > 0 corresponds to the given ¢ > 0 by the assumed condition. For all
S1» 52 € [0, 1,] we have

¥52) - ¥(sy) = j " DF((3), 1) + ¥(52) = ¥(s1) — j "DF(y(x) 1) =

to

- f “DF((x), 1) + ¥(s5) — f "DF((), 1) — y(s1) + J "DF((x), 1) =

S1

= J.SZDF(y(t), 1) + P(s;) — P(sy),

S1
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where P(s) = y(s) —j DF(y(t), 1), s €[to, t,]. Hence clearly, Pe BV[t,, t,], P is
to . .

continuous from the left and the function y : [#o, t;] = R" is a solution of the equa-
tion (9), where

|¥(to)] < 6 and varji P = var}, < y(s) — 'f DF(y(r), t)) <$.
to

Hence by the condition given in the statement we have

y(@)] = |3t to, ¥(to))] <&

for every t € [to, t,], i.e. the solution x = 0 of the equation (1) is variationally stable.

Proposition 3. The solution x = 0 of the equation (1) is variationally attracting
if and only if there exists 6, > 0 and for any ¢ > O there exist T= 0 and y > 0
such that if

|y0| <0y and var! P <y
with P € BV[t,, t,] continuous from the left, then
]y(t, to, J’o)l <é¢ forall t=2ty+ T, te[tet;] and t, 20,
where y(t, to, yo) is a solution of the equation (9) with y(t,, to, o) = o.

Proof. 1) Assume that x = 0 is variationally attracting, i.e. that there exists 5, > 0
and for ¢ > 0 also T > 0 and y > 0 by Definition 2. Assume further that |-y°| < 0,
P e BV[t,,t;] continuous from the left such that var,, P <y, and that y(t) =
= ¥(t, to, yo) is a solution of the equation (9) on [t,, t,]. Then |y(to)| = |yo| <8
and

varl (y(s) - J " DF(y(v), t)) —vari P <y

to

(cf. the proof of Proposition 2). Hence by Definition
|¥(t, to, yo)| = |¥()| <& forall t21t, + T and 1, 20.

~ 2) If the condition given in Proposition 3 is satisfied then assume that y : [t,, t,] —
— R" is of bounded variation, continuous from the left, such that | y(to)‘ < 6 and

varl (y(s) -[ “DFO) 9)<v.

Then it can be easily shown in the same way as in the proof of Proposition 2 that y
is a solution of the equation (9) with

(to)| < 30 and P(s) = y(s) JSDF(y(t), 0, seltots].

to
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Pe BV[to, ] is continuous from the left, var P < y. Hence
[¥(1)] <& forall t=t + T and 2 20.

Remark. Let us mention that the perturbation P in the equation (9) can be
replaced by a more general perturbation H(x, t) which satisfies

|H(x, 1,) — H(x, 1,)| < mm—mm

for all x in a neighbourhood of 0 and

|H(x,, t2) = H(x2, 1,) — H(xy, 1) + H(x,, 1)) < 0|, = x,|) [P(t2) = P(1,)] -

These more general perturbations lead to results of the same kind and provide no
new ideas for the object of the study; for this reason we consider the simpler case of
perturbations independent of x. -

The conditions given in Propositions 2 and 3 are equivalent to the notion of
variational stability and variational attractivity. We use these conditions because
they are more convenient in many: situations.

Brdposition 4. Assume that —o0 <a <b < +o and that f,g:[a,b] >R
are two functions continuous from the left in (a, b), f, g € BV[a, b]. If for any
t€ [a, b) there exists (1) > 0 such that for every h € (0, 5(t)) the inequality

f(@+ h) = f(t) < g(t + h) — g(2)
f(s) - f(ia) < g(s) — 9(a)

holds, then

for every se[a, b].

Proof. Let us denote M = {s€ [a, b]; f(6) — f(a) < g(c) — g(a) for o € [a, s]}
and set S = sup M. Since f(a + n) — f(a) < g(a + ) — g(a) for n€(0, §(a)),
we evidently have S > a and f(s) — f(a) < g(s) — g(a) for every s < S. Since
the functions f, g are continuous from the left we also have

f(s) = f(a) = g(s) — 9(a)-
If S < b were valid then by the assumption,
S(S + 1) = 1(5) = 9(5 + n) = 4(5)
for every n € (0 (S)) and consequently also
IS +n) = f(a) = /(S + n) = /(5) + /(S) — f(a) = 9(S5 + n) — g(a),
i.e. for n€(0,(S)) we should have S + ne M. This contradiction yields S = b
and M = [a, b].

Lemma 1. Let V: [0, + ) x R — R be such that for every x € R" the function
V(+, x) is continuous from the left, V(-, x) € BV,,[0, + ) and
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(10 V69 - V)| sKx-y| for xyeR, tefo +m),

where K > 0.
Assume that for every solution x : (x, B) — R" of the equation (1) we have

(11) fim sup Y1 X+ 1) = V(5X(0) gy

n—=0+ n

where & : R" - R is a real function, t € (a, ).

If y:[te, ] » R"0 £ 1y < t; < +00 is a function continuous from the left on
[to, t,], ¥ € BV[to, 1,], then the inequality

(12) V(85 5(0) S Vit () + K vars (5(9) = j s

to

DF(y(x). t))+ Mt — 1)

holds with M = sup &(y(t)).
telto, 1]

Proof. Assume that y : [t,, ;] — R" is given as in the statement.

Let o € [to, t;] be arbitrary and let x be a solution of the equation (1) dx/dt =
= DF(x, t) such that x(¢) = y(o). By virtue of the local existence theorem for equa-
tions of the form (1) (see e.g. [3]) there exists #;(¢) > 0 such that a solution x
exists on [a, ¢ + 1,(¢)]. For n € [0, n,(s)] we have by (10)

V(e + n, (e + n)) — V(e + n, x(c + 1)) £ K|y(a + 1) — x(o + n)| =

o+

—K|yo + 1) - ¥(o) - J "DF(x(z), 1)|.

o

Further,
V(e + n, (o + n)) — V(o, ¥(0)) = V(¢ + n, (¢ + 1)) — V(e + n, x(c + n)) +
+ V(o + n, x(c + 1)) — V(0. x(0)).

By the assumption (11) for every & > 0 there exists 'lz(o) > 0 such that n,(¢) < n,(0)
and the following inequality holds for # € [0, 7,(o)]:

V(e + n, ¥(o + n)) — V(o, ¥(0)) <

SK|yo + r]) - ¥(o) — fﬂ+"DF(x(f), 1)

+ n®(y(0)) <

=K + M + ne.

Wo + n) — y(o) — Jw”DF(x(r), )

Hence for 7 € [0, n,(s)] we also have

V(e + n, (6 + 1)) — V(e, ¥(0)) £ K

Wo + 1) = o) — j " DEO), ] +
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+K

J”"D[F(y(r), 1) — F(x(z), t)]y +nM + ne.
Let us set

P) = (9~ | PFOE). 9
to
for s € [to, t,]. Evidently P : [t,, t,] - R" is continuous from the left, P € BV[t,, t,]
and

(13) V(e + n, y(o + n)) — V(o, y(s)) < K[var,*" P-var}, P] +

| ""DIRG(), 1) ~ Fx(). 4]

(4

+ Mn+en+ K

Using (4) and Lemma 3,1 from [3] for estimating the last term on the right hand side -

of this inequality we obtain
4
o

(14) } f ""DLFO(), 1) - Fx(), t)]l < j "Dla((e) - x(2)) h()] =

= [ - s e = tim ([ + | )w(lykr) — @ dh) =

= im | " wl(e) - *(@)) dh(e) <
< _sup af|y(0) = x(e)]) lim (h(o + 1) ~ h(o + o)) =
= sup_ofly(e) - x(@)) (ho + 1) = h(z +))

because

tim [ al(ye) = X)) o) = (o) — (o)) im (e + ) = W) -

= o(0) lim (h(c + o) — h(c)) = 0
a—0+ . E
by Theorex¥1 1.3.5 from [2].

For ¢ €(0, 0 + n,(0)) we have x(e) = y(o) + J‘GDF (x(x), 1) (x is a solution of (1)

with x(¢) = y(0)) and
0) = x(0) = %0) = 3e) = [ D). ).
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Hence

im (40 ~ x(0) = Jim (40) = ) ~ [ PR3, ) =

e—ao+

= lim [%(e) = ¥(¢) = [(F(x(). &) = F(x(0). 2))] =
= ¥(0+) = (o) = F()(0), 0+) + F(y(0), 0) =

= ¥(o+) — ¥(o) -oljfl JTDF(Y(T)’ t) =

o= y(o+) - ¥(o) —,Eﬂ (ﬂ DF(y(z), t) — J. ': DF(y(), t))) =

= lim P(o) ~ P(0) = P(c+) — P(o)

e—a

and
(15) lim |y(¢) — x(¢)| = |P(s+) = P(9)]-
e—a
Let ¢ > 0 be arbitrary and let us set
(16) o= s >0.
K[h(t,) = h(to) + 1]
Assume that g(«) > 0 is such that for g € (0, §(x)] we have w(g) < « and let us set
7 € (0, &(a)/2). By (15) there exists 75(¢) > 0, n3(0) < #,(c), such that for g€ (o, 0 +
+ n3(c)] we have
(17) |¥(e) — x(e)| < |[P(e+) = P(o)| + 7.

Denote

N(®) = {o'e [to, t:]; |P(c+) — P(o)| 2 ?_gi)} ;

since P € BV[t,, t,], the set N(«) is finite; let [(«) be the number of elements of the
set N(«). For o € [to, ;]\ N(a) and ¢ € (0, 0 + n3(c)] we have

of|y(e) = x(@))) = &(|P(e+) = P(o)| + 7) < @ (&(x)/2 + &()/2) = (@(x)) < «

and by (14) also
(18) DL, ~ Fxo), 1] 5 et + 1) = o)

for n € (0, n5(0)).

Assume now that o € [to, t;] N N(«). Since the limit
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lim h(e + ) = h(c+) .

-0+
exists, there exists 7,(c) > 0, n4(0) < n3(c) such that for 0 < n < n4(o) we have
o . )
(@) + 1). o(|P(c+) — P(o)| + 7)
and (o, ¢ + 14(6)] » N(a) = 0. By (14) and (17) we then have for 5 € (0, o + 7.(0)]

09 |]7Preoe, 0 - R ] 5 0 oflle) - @)

g

h(oc + 1) — h(o +) <

IIA ..

(@) + 1) (w(IP(0+) = P(o)| +7)

< of|P(o+) = P(6)| +1)- = :

(e ) +1 w(lP(o‘+) P +y) Ko)+1

Let us set

h(f)=—— ¥ H(t), te[tot,],

I(oc) + 1 a;eN(a)

where H,(t) = 0 for t < ¢ and H,(f) = 1 for t > ¢. The function h, : [to, ;] = R
is evidently nondecreasing and continuous from the left, var;! h,=h (t,) — hty) =
= I(«) . a/(I(2) + 1) < «, the points of discontinuity of h are only the points
belonging to N(a) and for every teN(a) we have h,(t+) — h,(t) = o/(i(x) + 1).
Define further
h(t) = ah(t) + h(t). te[to 1],

where h_ is the continuous part of the function h. The function £, is nondecreasing
and continuous from the left on [#,, t;] and

ho(ty) = hy(to) = a[h(t;) = h(to)] + ho(ty) — hu(to) S a(h(t)) — h(to) + 1).

If we set n(6) = n5(0) for o € [t,, t;] \ N(«) and 5(s) = n4(0) for o € [t,, t;] N N(),
then by (18), (19) and by the construction of A, : [t,, t,] = R we have

[ RO 9 - R, 0] 5 e + ) - k)
for every 7 € [0, n(s)] and by (13) also .

V(e + n, y(6 + 1)) — V(o, y(0)) < K[var}" P — varj, P] + Mn + en +
+ K(h(o + n) — h(0)) = g(c + n) — g(o) -

forevery o€ [0, t,) andne [0, n(c)] where n(s) > Oand g(t) = K var} P + Mt + ¢t +
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+ K hy(t) for te[ty, t,] is a function continuous from the left on [to, t,], g €
€ BV[1,, t1].
Using Proposition 4 we immediately conclude from this inequality that

(20) V(ty, (1)) = V(to, ¥(t)) < g(ts) — 9(to) =
= K var}) P + M(t; — to) + K(hy(t)) — h(to)) + &(t; — to) <

< K vari! y(s) — J.s DF(y(z), t) + M(t; — to) + & + &(t, - to)

to

because by (16) we have

Since & > 0 was given arbitrarily, the inequality (12) follows directly from (20).

LJAPUNOV THEOREMS ON STABILITY

Now we give sufficient conditions for variational stability and asymptotic varia-
tional stability of the solution x = 0 of the generalized differential equation (1).
These sufficient conditions are formulated in terms of a certain kind of Ljapunov
functions, which are suitable for the case of generalized differential equations.

1. Theorem Assume that V : [0, 00) x B, » R,0 < a < ¢, is such that for every
xeB,, V(+,x)eBV[0, + ), V(-, x) is continuous from the left. Moreover, let
V(t, x) be positive definite, i.e. there exists a continuous increasing real function
b :[0, + o) — R such that b(¢) = 0 if and only if ¢ = 0 *) and

(21) v(t, x) 2 b(lxl) for all (1, x)e [0, +®) x B,,
(22 Lo =0

a_nd

@) V6, - Vo) 5 Kl — ],

K > 0 being a constant.
If the function V(t, x(1)) is nonincreasing along every solution x(t) of the equation

(1) then the solution x = 0 of the equation (1) is variationally stable.

Proof. Since for a solution x : [a, b] — R" of (1) the function V(t, x(t)) is non-
increasing, we have '

*) Let us note that if b*: [0, 4 00) — R is continuous nondecreasing and such that b*(g) = 0

iff @ = 0 then there exists b: [0, 4 0)— R, b(e) < b*(e), ¢ = 0 with the properties given in
Theorem 1, i.e. b is increasing.
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(24) fim sup V(t + n, x(t + n)) — V(. x(1) <o0.
-0+ n
Let ¢ > 0 and let y : [#o, t;] = R" be such that y e BV[1,, t,], ¥ continuous from

the left on [1o, ;]
By (12), from Lemma 1 and by (22), (23) we have (@ = 0 in our case)

(25) V(r, ¥(r)) £ V(to, ¥(to)) + K vary, (y(s) - J‘S DF(y(7), t)) <

to

< K|y(to)| + K vari, (y(S) - Jn;DF(y(f), t)) for refto, t,].

Let us set ofe) = inf b(r) then hm a(s) = 0 and «(¢) > O for ¢ > 0. Further, choose

DF(y(x), r))

5(s) > 0such that 2K 5(¢) < ofe). If |¥(to)| < 6(e) and var;} (y(s) - J.

to
< &(¢) then by (25) we have
(26) V(r, y(r)) < 2K 0(¢) < af¢) forany re [0, t,] -
If there existed t* € [0, #;] such that | y(t*)l > ¢, then
a(e) = inf b(r) < b)) = V(e*, (r*)

would also hold and this contradicts (26). Hence |y(f)| < & for all te [to, t,] and
x = 0 is a variationally stable solution of (1) by Definition 1.

Remark. In the proof of Theorem 1 we use Lemma 1. In Lemma 1 the function V'
is given for (1, x) € [0, +00) x R". It is evident that it is possible to extend the
function V: [0, + ) x B, — R given in the assumptions of the theorem to the whole
halfspace [0, +0) x R” such that all requirements of Lemma 1 hold. The same
is true also for the following theorem.

Theorem 2. Assume that a function V: [0, +©) x B, = R, 0 < a < ¢ with the
properties stated in Theorem 1 is given.
If for every solution x : [t,, t,] = B, of the equation (1) the inequality

@) Gimsup LEFRE ) = VEXO) g o< i <,

n+H0+ n

holds where ® :R" — R is continuous, #(0) = 0, &(x) > 0 for x + 0, then the
solution x = 0 of the equation (1) is variational-asymptotically stable.

Proof. Since the function V satisfies all the assumptions given in Theorem 1 the
solution x = 0 of the equation (1) is variationally stable. It remains to show that this
solution is also variationally attracting.
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Let , be given such that 0 < 6, < a and if y € BV[to, 11], 0 S 1, < t; < + o0,

y continuous from the left, |y(t,)| < o and var;; (¥(s) _f DF(y(7), 1)) < &

t
then |y(1)| < a, te[ty, 1,].
Further, let ¢ > 0 be arbitrary. Since x = 0 is variationally stable there exists
y*(¢) > O such that for every y : [t,, ;] = R", y € BV[t2, t3], continuous from the
left and such that

()] < ()

and

(28) | vary ( ¥(s) — j ) DF(y(), t)) < e,
the inequality ;

(29) )] <e

holds for t € [1,, t5].
Let us set y(g) = min (J, y*(¢)) > 0 and
T(e) = —K(6o + y(e))/M >0,
where M = sup (—®&(x))= —inf &(x) <O, and assume that we are given

y(e) S [x[<e y(e) S |x|<e

y : [tos t,] = R", y € BV[to, 1,], y continuous from the left on [fo, t;] and such
that |y(to)| < &, and

var® (y(s) _ f " DF(y(0), :)) <(s).

Assume that |y(f)| 2 y(e) for every ¢ € [to, t, € T(¢)]. Using Lemma 1 We obtain
V(t, (1) = V(to, ¥(t0)) = V(1. (1)) = V(to + T(e), y(to + T() +
+ V(to + T(2), y(to + T(e)) — V(to, ¥(to)) =

s Kvarg* ™ (39 - [ DrO6) )+ .76 +

to

+ K var}  r¢ (y(s) - f ) DF(y(t), t)) + sup [-o(x())] =

to te[to+ T(e),t]

< K var}, < ¥(s) — J‘ ) DF(y(r), t)) + M. T(e) <
<K.y(s)+M.:I—<&A}+—@= ~Kdo .
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Hence
V(t, 1(1)) < V(to, ¥(to)) — Kdo < K|y(to)| — Ko < K&o — Kby = 0

and this contradicts the fact that Vis assumed positive definite. Hence there necessarily
exists t* € [to, to + T(¢)] such that |y(t*)| < y(e) < y*(¢) and at the same time also

varyi (y(s) - J DF(y(x), t)) < (&) £ v*(e) -
Fad

Hence by (29) we have |y(f)| < ¢ for t € [t*, t,]. This in particular yields |y(t)| < &

for te [ty + T(e), t;]. ‘ '

SOME REMARRS ON LINEAR SYSTEMS

Let us make some remarks on the concept of variational stability for equations
with a special linear form of the function F(x, t). We use the notation L(R") for the
linear space of n x n — matrices (linear operators on R") endowed with the operator
norm corresponding to the norm given on R". Assume that 4 : [0, +oo) - L(R")
is continuous from the left, i.e. A(t—) = A(t) for every t € (0, + o), and locally of
bounded variation, i.e. var, A < oo for every compact interval [a, b] < [0, + o).

For (x,t)e R* x [0, + o0) define F(x, t) = A(f) x. It can be easily checked that
the function F(x, 1) satisfies the assumptions (3), (4) and (5) with h(f) = varg 4,
te[0, +o0)and w(r) = r for r 2 0.

The generalized differential equation corresponding to this linear function F(x, f)
was studied in [7]. It is clear that a function x : [a,b] - R" is a solution of the
equation

(30) % — D[A() x]
if for every s,, s, € [a, b] the equality
x(52) — x(s3) = '[”D[A(z) x(9)]

holds or (since the integral on the right hand side of this relation is the Perron-
Stieltjes integral)

x(s2) — x(s1) = j d[A)] x(z).
For the initial value problem
3_" = D[A() x], x(to) = xo € R"
T

the solution satisfies the Stieltjes integral equation
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x(1) = xo + J's d[A(7)] x(z) .

In some situations there exists a uniquely determined matrix X(¢): [0, + o) — L(R")
such that

X() =1 + f "A[AM] X(r) for 120

(1 is the n x n identity matrix) and the solution of the initial value problem can be
written in the form

x(1) = U(1, t5) xo
where U(t, t,) = X(1) X " (t,), 0 Sty S t < +00.
It is known (see [7]) that the matrix X : [0, + o0) — L(R") exists and is regular

for every t 2 0 only if and if the matrix I + A*A(t) =1 + A(t+) — A(t) is re-
gular for every te [0, + ).

- 'We restrict ourselves to this case and consider the initial value problem for the
nonhomogeneous equation

I 3: D[A() x + P(1)], X(to) = X,

where P : [0, ©0) — R is a function of locally bounded variation which is continuous
from the left; then the solution to this problem satisfies the integral equation

t
X(1) = %o + f d[AY] x(r) + P(t) = P(ts) -
to
Using the variation of constants formula (see e.g. Proposition I11.2.15 in [7]) we

can write the explicit form of the solution y(t, to, y,) of the initial value problem for
the nonhomogeneous equation:

¥(t, 10, o) = X(1) X7 (to) yo + P(t) — P(to) — X(1) j d[X ™} ()] (P(s) = P(t0)) =

= X(1) [X~(t0) o + X~ (1) (P(t) — P(to)) - j A ] (PE) - Plto))] -

Using the integration be parts formyla for the Perron-Stieltjes integral (see [7],
Theorem 1.4.33) we obtain

X1(1) (P(1) - Plto)) — j "4 X1 ($)] (P(s) — (o) =
=[x @ - rl + 58X 08" o)
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since it can be shown (see Theorem II1.2.10 in [7]) that the function X~'(1):
: [0, +o0) —» L(R") is locally of bounded variation. Hence we have the. followmg
expression for the solution of the initial value problem (31): '

) ot = XO LX)+ [ X6 PO -~ P +

to [ N

+ Y AKX (o)At p(a)} > 1.
toSao<t
This formula for the solution of (31) leads to the following result.

If A:[0, +00)—> L(R") is an.n x n — matrix valued function which is con-
tinuous from the left on (0, + ), locally of bounded variation and such that the
matrix I + A*A(t) = 1 + A(t+) — A(Y) is regular for every t Z O then the zero
solution of the generalized linear differential equation (30) is variationally stable
if .and only if the fundamental matrix U(t, t) = X(t)X"(to) is bounded for
0<t,<t

In fact, if [U(t to)| = lX(t)X 1(to)| =M for 0t st then by (32) we easxly
obtain the estimate
(33 |(t, to, yo)l s Mlyol +

AR ¥ S

J ' U(t 5 d[P(s) o) | +

+ | > [U(t o*) - U(t a)] A*P(a)|

to<o<t
< Mlyo] + M. vari P + 2M .var, P =
= M|yo|.+ 3M. var,oP,_ t=ty.

Hence if for &Very & > 0 we take § = &/(4M + 1)'> 0 and if |yo| < 3, varll P <3
then y(t, 1o, yo) < 4M . § < & and the zero solution of (30) is evidently vamatlonally
stable by Proposition 2.

If, conversely, the zero solution of the equatlon (30) is varlatlonally stable then by
Definition 1 there exists & > 0 such that if x : [to, + oo) - R" is a solution of (30) ie

var') (x(s) - f toD[A(t) x(r)]) =0 forevery ;2 fo

and |x(to)| < J then Ix(t)l <1 for every t = t,. Let us set W) = X(1) X~ l(t,,) z,
t > t, and define x(t) = (5/2) y(f), t = t,. It is assumed that z € R" is arbitrary and
such that Izl < 1. Then |x(t0)| = (8/2). ly(to)l =(9/2) Izl <92 <d.and x(t) is
a solution of (30). Hence |x(t)| < 1, i.e. (5/2) | y(t)] < 1 and consequently

1%(0) X71(0) 2| = |y(0)] < 2f5.

Hence also |X(t)X™'(to)| = sup IX(I)X 1(to) z| £2/6 =M for t21t, and the

TR
\

fundamental matrix U(t, t,) is bounded
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The subsequent parts of the paper are devoted to the conversion of the Ljapunov
type stability Theorems 1 and 2. We will show that the variational stability and the
asymptotic variational stability imply the existence of Ljapunov functions of the type
given in Theorems 1 and 2.

The methods used here for generalized differential equations are strongly influenced
by those of Chow and Yorke from [1]. The character of the generalized differential
equations and their solutions, which are in general functions of locally bounded
variation, forces us to use different devices for obtaining the corresponding results.

FURTHER AUXILIARY STATEMENTS
" Let us introduce a slightly modified notion of the variation of a function.

Definition 4. Assume that —o0 < a < b < +o0 and let G : [a, b] - R" is given.
For a given decomposition

D:a=ao<a1<-..<&k=b

of the interval [a, b] and for every A = 0 define

k .
j;le"l(bfau—x)l(‘;(a]) — G(aj_l)|‘= UA(G, D)

and set
e, var, G = sup v,(G, D),
D

where the supremum is taken over all finite decompositions D of the interval [a, b]-
The number e, var, G will be called the e;-variation of the function G over the
interval [a, b].

Lemma 2. If —0 <a <b § +00 and G : [a, b] —» R" then for every A gQwe

have _

(34) A e - var’ G L e, var’ G S var’ G .
If a £ ¢ £ b then for A = O the identity

35 e, vart G = e = 9¢, vart G + ¢, vart G

holds. | |

Proof. For every 4 = 0 and every decomposition D :a = ap < oy < ... < @ =
= b we have '

e MmN g 7MY g0 =1, j=1,2,..,k.
Hence

e-'z(b—a)vo((;, D) < v,(G, D) < v,(G, D) ?jz::JG(aJ') - G(a"'l)l
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and passing to the supremum over all finite decompositions D of the interval [a, b]
we obtain (34).

For second statement it is easy to see that we can restrict ourselves to decomposi-
tions D which contain the point ¢ as a node, i.e.

Dia=oy<a;<..<oq 1 <gy=c<t; <..<oqg==>b.

Then we have

k
(36) v4(G, D) = le_l(b—”")lG(“j) = G(a;-y)| =

Jj=

] k
=.Zle—l(b—z/—x)|G(“j) - G(aj—l)I +' %le—).(b—-aj—x)lG(aj) _ G(aj—l)l =
i= Jj=

1 k
= e M=y g7 M uIIG(w)) — Gay-y)| + Y e FOTV|G(ay) — G(ay-y)| =
j=1 j=l+1

= e"*"%,(G, D,) + v,(G, D,),
where

Dita=ay<a; <..<aq=c and
Dy:c=a; <y <...<oa=0b
are decompositions of [a, c] and [c, b], respectively. On the other hand, any two
such decompositions D, and D, form a decomposition D of the interval [a, b].
The equality (35) now easily follows from (36) when we pass to the corresponding
suprema.
Corollary 1.If a < ¢ < band 2 Z O then
(37) e,varr G < e, var, G.
Fora > 0,t > 0, x € B, let us denote
Aft,x) = {¢ : [0, + ) > R"; ¢ € BV, [0, +0), ¢(0) =0,

¢(t) = x, ¢ is continuous from the left and sup l(p(s)l <a}.
se[0,t]

Moreover, for 4 = 0, s = 0 and x € B, define

inf {e; var} ((p(a) - f "DF(¢(c), t))} for s> 0

(38) V;.(S, X) 4 _weA.,(s.x) o
N

=|x for s=0.

Let us mention that this definition makes sense because for ¢ € A,(s, x) the in-

tegralj DF(¢(t), t) is of bounded variation as a function of the variable ¢ and
o
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consequently, the function ¢(o) — J DF(¢(z), t) is of bounded variation on [0, s]
as well and the e;-variation of this function is bounded.

It is evident that the function ¢ = 0 belongs to 4,(s, 0) and consequently we have
(39) V;.(S, 0) =0

for every s = 0 and 1 2 0, because ¢(o) — j DF(¢(t), t) = 0 for every ¢ 2 0.
0

Since e; vary(¢(o) ——J DF(¢(t),t)) 2 0 for every ¢ € A/s, x) we have by the
V]
definition (38) also
(40) Vi(s,x) 20 forevery s>0 and xeR".

Lemma 3. For x,yeB, = {xeR"; |x| < a}, se[0, '+oo) and . =z 0 the ine-

quality

(41) IVA(s, x) = Vy(s, y)l < |x — y|
holds. . ‘

Proof. Assume that s > 0 and 0 < 5 < s. Let ¢ € A,(s, x) be arbitrary. Define
(p,,(a) ‘¢(o) for oe[0,s—n],

o) = ols =) + 1 I ICEERE) for 75 = n.s1.

The function ¢, coincides with the function ¢ on [0,s — n] and is linear with
¢,(s) = y on [s — n,s]. By the definition we clearly have @, € AJs,y) and using
(35) from Lemma 2 we get v

Vils,y) = & Varﬁ'(@p’ﬂ(a) - J :D-F(rpﬂ(z), t)) =
= ¢™#e; vary " («p(o) - J: D,F(¢(£), t)) + e, varl_, (@(a) - KDF(%@), ,)) <
DF(¢,(7), t))

0

< ¢~ e, var}” ( o(0) - j DF(o(x), t)) + var_, @, + var "(f

< e e, vars" ((p(a) J DF(o(z), t)) ly = ols = ) * 1) = Hs = m).

Since for every n > 0 we have

e~ e, vary ™" ((p(a) ~ J “DF(q»(r),‘t)) = e, var} <(p(0') - j :DF(w(f),:t)) -

0o
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—evarl_, (<p(a) - j "DF(p(x), r)) < ¢, var; («p<a) - j "DF(o(2) r)) ,

0 0

we obtain for every n > 0 the inequality
Vi(s, y) < e, varg ((p(o') - J DF(¢(7), t)) + |y — (s — n)| + h(s) — h(s — n).
0

Since ¢ and h are assumed to be continuous from the left: lim o(t) = o(s) = x,

and the last inequality holds for every n > 0 we can pass to the limit n = 0+ in
order to obtain the inequality

Vis.9) 5 esvars (o(0) = [ DF(@(9, 9) + | = ]
0
which holds for every ¢ € A,(s, x). Taking the infimum for all ¢ € A (s, x) on the
right hand side of this inequality we get the inequality
(42) Vi(s, y) < Vi(s, x) + |y - x| )
Since all is symmetric in x and y we similarly obtain the inequality
Vi(s, x) < Vis, y) + ly — x|

and this together with (42) yields the inequalty (41) for s > 0.
If s = 0, then we have by definition

V0, 5) = V0. %) = [y = x| | = |y = |-

Hence the statement of Lemma 3 is proved.

Corollary 2. Since V,(s, 0) = 0 for every s = 0, we have by (39) and (41)
(43) ' | 0 < Vs, x) < |x].

Lemma 4. For ye B,, s, r € [0, + o) and A = O the inequality
(44) [Vi(r, y) = Vils, y)l (1 —-eMrsha 4+ |h(r) - h(s)|
holds. ‘ '

Proof. Suppose that 0 < s < r and let ¢ € A,(r, y) be given. Then by Lemma 2
we have 4

(45) e, var (¢(a) - ﬂDF(q,(T), t)) _ e 9%, var} ((p(a) - L DF(o(x), t)) +
- (?(a) - J 0 DF(¢(x), t)) >
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2

2 e Y (s, o(s)) + e var] (‘P(") - J DF(¢(c), ¢

N—"

> ¢mH0-9 [V,l(s, o(s)) + varp — var, J’ DF(o(x), t)] >

2 e XTIVi(s, 0(s)) + |y — @(s)| = (h(r) — h(s)] 2

2 e TI[Vy(s, y) = (h(r) — h(s))] -
By (41) from Lemma 3, we have

Vi(s, 9(s)) + |y — o(s)| = Vils, ).
Hence passing to the infimum over ¢ € 4,(r, ) on the left hand side of (45) we obtain
(49) Vi 3) 2 V(s 5) - (1) - W) 2

2 e Iy (s, y) — (h(r) — h(s)).

Now let g € A,,(s, y) be arbitrary; define
o*(0) = ’ (p(a') for o€[0,s],
for oels,r].

Evidently ¢*(s) = ¢(s) = y, o* € Aa(", y) and by (35), (34)

Vi) & euvars () = [ DFe(), 1) =
— ¢ 4D, varh (rp(a) - I:Dp(q;(f), t)) + ey var! ((,,*(,,) _ j :D Flo*(2), ,)) .

< ¢4V, var ( o(c) - I DF((x), t)) + var, o* + var! < J' :DF(tp*(r), z)) <
< e M=%, var; ((p(o‘) - J“

o

DF(o(x), t)) + B(r) — h(s).

Taking the infimum over all ¢ € A%(s, y) on the right hand side of this inequality
we obtain ‘
Vi(r, y) £ €279V (s, y) + h(r) = h(s) .
Togethér with (46) we have
|Vi(r, y) = €72 79V(s, y)| < h(r) — h(s).
Hence by (43) we get the inequality

Vi 3) = Vi(s, )| £ Vil 3) = €2, )] + [1 = e~2)

Vl(ss .V)| é
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S k() = h(s) + (1 — e 2 9) || < h(r) — h(s) + (1 — ™A q

because | yl < a, i.e. we have obtained (44).
Assume that s = 0 and r > 0. Then by (43) and from the definition (38),

47) Vi(r, ¥) = Vi(s, ¥) = Vi(r, y) = Vi(0,y) = Vi(r,y) = |y| £ 0.
Let us derive an estimate from below. Assume that ¢ € A,(r, y). We have

ey varg ((p(a) - I o DF(o(x), t)) > ¢, var) (o) — ¢, var} f "DF(e(x), )2

.’2; e~ varg (p — varp J‘GDF((p(r), 1) 2 e *|o(r) — @(0)] — (h(r) — H(0)) =

0
= ™| — ((r) — H(0))
by (34), Lemma 2 and Proposition 1. Passmg again to the infimum for ¢ € 4,(r, y)
on the left hand side of this inequality we get \

Vilr, ¥) 2 e ¥y| = (h(r) - h(0))
and

Vi(r, y) = V30, ) - Viry) = I 2 (€ = Dy - (h6) - h(O)) =
= (1= e ) |y| = (4(r) - 1(0)).
Together with (47) we obtalp
1V,0,3) = V0, 9] £(1 = ) a + () = hO),

i.e. the inequality (44) holds in this case, too. The remaining case s = r = 0 is evident.
Finally, let us mention that the case r < s can be dealt with in the same way because
the situation is symmetric in s and r. '

By Lemmas 3 and 4 we immediately conclude that the following holds.

Corollary 3. For x,yeB, = {xeR"; ]x] < a}, r,se[O +oo) and 4 20 the
inequality

(48) lVl(s, x) — Vy(r, y)l < |x - yl +(1—e Mg + |h(r) - h(s)‘

holds.

Let us now discuss the behaviour of the function V(t, x) along the solutions of
the generalized differential equation

dx
— = DF(x, t
de )

We still assume that the function F(x, t) satisfies the usual assumptions (2, 3),
(4) and (5). The following statement is important for the forthcoming considerations.
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Lemma 5. If y : [s, s + n(s)] = R" is a solution of the generalized differential
equation (1), s 2 0, n(s) > 0, then for every i 2 0 the inequality

(49) lim sup J208 £ Y0 + 1) = V(s ¥0)) 5 w(s))
n—-0+ n

holds.

Proof. Let se [0, + ) and x € R" be given. Let us choose a > 0such that a >
> |x| + h(s + 1) —'h(s). Assume that @ € A,(s, x) is given and let Y be a solution of
the equation (1) with y(s) = x defined for g€ [s,s + n(s)]; 0 < n(s) < 1. The
existence of such a solution y is guaranteed by the local existence theorem for the
equation-(1), see e.g. Theorem 2,1 in [3]. For 0 < n < n(s) define

¢,(0) = #(c) for oe[0,s],

¢,(0) = ¥(0) for cels,s+n]; ) .
because we have ¢(s) = Y(s) = x = y,(s). Evidently ¢, e A(s +n, Y(s -,4},))
because /(o) is continuous from the left and by the definition of a solution we have

lv(o)| =

x4+ ‘f " D), z)l < x|+ (o) ~ h() <

S x|+ h(s + 1) — h(s) < a
for 6€[s,s + n] and

Vils + n,§(s + n)) < e; varg" (%(a) - JWDF(%(r), t)> = |

0

T (v0= “DF(%p(r),i)) + evar” (v - [ DF(o(o. =

] (V] .

- [oru.0) -

0 0

: ey var(ofe) = | D)) + vt (= + | ‘kaw(f>, ) = |

= 7, var ((p(a) - J' "DF(o(x), ,)>- o

0

Taking the infimum for all ¢ € A,(s, x) on the right hand side of this inequality we
obtain
Vi(s + n, (s + n)) £ e *Vy(s, x) = eV (s, Y(s)) .

This inequality yields
Vi(si+ m,9(s + ) = Vils, ¥(s)) < (e = 1) Vi(s, ¥ (s)) -
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and also

Vils + mp(s + m) = Vilsiw(s) (e = Lo
n T
for every 0 < n < #(s).

Since lim (e™*" — 1)/n = — A we immediately obtain the inequality (49).
n-0

CONVERSE LJAPUNOV THEOREMS

Now we are in position when we can formulate and prove converse theorems to
Theorems 1 and 2. The first of them concerns the case of variational stability.

Theorem 3. If the solution x = 0 of the generalized differential equation (1) is
variationally stable then for every 0 < a < c there exists a function V : [0, + o) x
x B, = R satisfying the following conditions:

1) for every x € B, the function V(+, x) is continuous from the left and V(-, x) e
€ BV, [0, + ).

2) ¥(1,0) = 0 and |V(t, x) — V(t, y)l < |x - yl for x,y€B,, te[0, +wx),
3) the functionV is nonincreasing along the solutions of the equation (1),

4) the function V(t,x) is positive definite, i.e., there exists a continuous non-
decreasing real-valued function b : [0, + ) — R such that b(g) = 0 if and only if
0 =0 and

b(|x|) < V(1,x)
for every t€ [0, + ), x € B,.

Proof. A candidate for the function V is the function V(s, x) defined by (38) for
A =0, ie., we take V(s, x) = Vs, x). The properties stated in 1) are easy con-
sequences of Corollary 3. 2) follows from (39) and from Lemma 3. By Lemma 5,
for every solution ¥ : s, s + 6] - R" of (1) we have

lim sup V(s + n, Y(s + n)) — V(s, ¥(s)) <o.

=0+ n

Hence 3) is also satisfied. It remains to prove that the function V(t, x) is positive
definite; this is the only point where the variational stability of the solution x = 0
of the equation (1) is used. Assume that there is an ¢, 0 < & < a, and a sequence
(tex), k=1,2,..., e £ |xk| < a, t; > oo for k - oo such that ¥(t, x;) = O for
k — 0.
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Let d(¢) > 0 (cf. Proposition 2) be such that for every t, = 0, P € BV, [0, + )
continuous from the left we have Iy(t, to, yo)| < ¢ for t 2 t,, where y(1, 1o, yo) is
a solution of

% =D[F(y,t) + P(t)], ¥(to, to, o) = Yo

with | y0| < §(g), varg P < &(e).
Assume that ko, € N is such that for k > k, we have V(t, x,) < d(¢). Then there
exists ¢, € A,(t,, x;) such that

vart ((,,k(a) - “' "DF(@y(s), t)) < _a(s).

0
Let us set

P(0) = ¢)(0) — -rDF((pk(‘r), t) for ce[0,4],

0

P(o) = x, — j “DF(oy(x), ) for aeft, +).

0

We evidently have

var? P = varls ((pk(a) - j "DF(a4(x), t)) < 5(¢)

0

and P is continuous from the left. For o € [0, t] we have

le) = [ R0, + 040) = [ DF0. ) - |

- J :DF((p,‘(t), ) + P(o) — P(0) = (0) + f :D[F(%(z), ) + P(1)]

since ¢,(0) = 0. Hence ¢, is a solution of the equation dy/dt = D[F(y, t) + P(f)]
and consequently, by the variational stability we have |gok(s)| < efor every s € [0, t;].
Hence we also have |¢y(1,)| = |xi < & but this contradicts our assumption. In this
way we obtain that the function V(t, x) is positive definite and 4) is also satisfied.

The following result is a converse theorem for the case of asymptotic variational
stability.

Theorem 4. If the solution x = 0 of the generalized differential equation (1) is
variational — asymptotically stablethen for every a > 0, a < c there exists a function
U : [0, + ) x B, — R satisfying the following conditions:

1) For every x € B, the function U(*, x) is continuous from the left and U(-, x) €
€ BV;,(0, + ).

414




2) U(t,0) = 0 and
|U(t, x) — U(t,y)| £ |x = y| for x,yeB,, te[0, +).

3) For every solution y(c) of the equation (1) defined for ¢ Z t and satisfying
Y(t) = x € B, the relation

lim sup Ut + n, y(t + n)) = U1, x) < -U(t,x)

n—0+ 11

holds.
4) The function U(t, x) is positive definite.

Proof. For xe B,, s = 0 let us set
U(s, x) = Vi(s, x)

where V is given by (38) for A = 1. In the same way as in the proof of Theorem 3 we
can easily see that the function U satisfies 1), 2) and 3). (Let us mention that 3) is
exactly the fact stated in Lemma 5.) Hence it remains to show that 4) is also satisfied
for our choice of the function U.

Since the solution x = 0 of the equation (1) is variationally attracting (see Proposi-
tion 3) there exists , > 0 and for any ¢ > 0 there exist T(¢) > 0 and y(¢) > 0 such
that if l)’ol < &0 and varj! P < y(¢), Pe BV[t,,t,], P continuous from the left,
then

Iy(t’ th yO)l <e
for all t€[to, 1], t 2 t, + T(e) and t, = 0. The function y(t, to, y,) is a solution

of dx/dr = D[F(x, t) + P(t)] with y(to, to, Yo) = Yo

Assume that U is not positive definite. Then there exists ¢, 0 < ¢ < a = §,, and
sequences , X, k = 1,2, ... such that ¢ < |x,| < afor k =1,2,... and t, > + o,
U(ti, ;) = 0 for k — o0.

Let us choose k, € N such that for ke N, k > k, wo have t, > T(¢) + 1 and

U(ti, %) < y(e) e”T@+D

According to the definition of U let us choose ¢ € A,(f, x;) such that
ev v (o(0) = [ DF(0(9, 9) < o)™ 7.
]

Let us set t, = t, — (T(¢) + 1); we have t, > 0 because #, > T(¢) + 1 and also
te = to + T(e) + 1 > to + T(e). Further, evidently

e, vary ((p(a) - J‘ DF(¢(7), t)) < ye) e TO*D
V]
and by (34) from Lemma 2 also
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e~ T+ yarts ((p(a) - f "DF(p(x), t)) -

0

= e~ (7" yari <(p(0) - J’ DF(¢(t), t)) < ye)e” T D

0

and consequently

(50) varl (w(a) - j "DF(o(), r)) <10).

0

For ¢ € [to, t;] define
P(o) = o(o) - J' DF(¢(c), 1).
0
P : [to, t,] = R" is continuous from the left and by (50),
varjs P < y(¢) .
Moreover, for ¢ € [1,, t,] we have

o(0) = j "DF(6(2), 1) + 0(0) - j "DF(o(z), 1

0 0
and also

o(s) = o(to) = f "DF(o(2). 1) + P(s) = Plto) = J D), ) + PO,

to

i.e. the function ¢ : [t,, #,] = R" is a solution of the equation dx/dr = D[F(x, 1) +
+ P(1)] with ‘(p(to)| < a = J, because ¢ € A1, x,). By the definition of variational
attractivity the inequality |(p(t)l < ¢ holds for every t > t, + T(¢). This is valid also
for the value t = 1, > t, + T(¢), i.c. |<p(tk)| = |xk| < ¢, which contradicts our as-

sumption lxkl = &. This yields the positive definiteness of U.

INTERVAL BOUNDED PERTURBATIONS

In [1] Chow and Yorke proved that in the case of ordinary differential equations
the integral asymptotic stability of the solution x = 0 is maintained if the system is
perturbed by the larger class of interval bounded functions. This result can be trans-

fered to the case of generalized differential equations, too.

Definition 5. 4 function P :[0, 4+ o) — R" is said to be of interval bounded

variation if

supvar’*' P < 0.
t20
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The space of functions with interval bounded variation will be denoted by
IBV[0, o) = IBV. It is evident that every function P : [0, c0) - R" which is locally
of bounded variation is also of interval bounded variation, i.e. BV,,. < IBV.

We can use the general scheme for the definition of the concept of stability under
perturbations in the class of functions of interval bounded variation which are
continuous from the left. We say that x = 0 is stable under pertubations in the space
of functions of interval bounded variation if for every ¢ > 0 there exists 6(3) >0
such that if |yo| < & and P € IBV, P continuous from the left such that

supvar'™' P < §,
120

then
ly(t’ tO’ y0)| <e
for every t = t,, where y(t, to, yo) is a solution of the equation

©) 4 DlF(x, 1) + P(1)]
dr
with y(to, 19, ¥o) = Yo.

The solution x = 0 is said to be asymptotically stable under perturbations in the
space of functions with interval bounded variation if it is stable under perturbations
from this class and if it is also attracting under perturbations of this kind, i.e. if there
exists a §o > 0 and for each ¢ > 0 there exists T = T(e) = 0 and y = y(¢) > 0 such
that if |yo| < d¢ and

sup var;"' P < y(e), then |y(t, to, yo)| < &

t20
forall1 2 1, + T(e) and t, = 0 (here y(1, to, yo) is again a solution of the generalized
differential equation (9) which satisfies the initial condition y(to, to, ¥o) = ¥o)-

Since BV),. < IBV it can be easily shown that if x = 0 is asymptotically stable
under perturbations in the space of functions with interval bounded variation then
x = 0 is also variational-asymptotically stable. The equivalent form of variational
stability and variational attractivity stated in Propositions 1 and 2 hasto be used for
the proof of this fact.

Similarly as in [1] for the case of integral asymptotic stability, also in our case the
converse is true, i.e. the following theorem is valid.

Theorem 5. The solution x = 0 of the equation (1) is variational-asymptotically
stable if and only if x = 0 is asymptotically stable under perturbations in the space
of functions with interval bounded variation.

Proof. It remains to prove that if x = 0 is variational-asymptotically stable then
x = 0is also asymptotically stable under perturbations in the space IBV. By Theorem
4 there exists a Ljapunov function U : [0, + o) x B, = R such that for every x € B,
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the function U(+, x) is continuous from the left, U(-, x) € BV}, [0, + ), U(t,0) = 0,
120,
|U(t, x) — U(t,y)| < lx - y| for x,yeB,, te[0, +o).

U(t, x) is positive definite, i.e. there is b : [0, + ) - R, b continuous, increasing,
b(0) = 0, b(r) < r for r > 0 such that '

b([xl) < U(t,x) forall te[0, +o), xeB,

and for every solution (o) of the equation (1) defined for ¢ 2 ¢ satisfying Y(t) =
= x € B, the relation

lim sup Ut + n, ¥(t + m)) = U(t, ) < -U(t, x)
. n—-0+ 11
holds.

Assume first that x = 0 is not stable under perturbations in IBV. Then there is an
¢ > 0 such that for every 6 > O there exist P : [0, + c0) —» R" continuous from the
left with

supvarit' P < §,

120

Yo €R"; | yol < 9, ty, = 0, and a solution y(t) = y(t, to, yo) of the equation (9) 5Q_ch

that |y(t,)| 2 & for some t, > t,. y is a solution of the generalized differential equa-
tion (9), hence y is continuous from the left and of bounded variation on every
compact interval.

Assume now that 6 > 0 is so small that
o< b(b(e/2)) < b(s/2) < b(s) <ée
and
b(s/2) +0< b(e).

Using the continuity from the left of y we get the existence of t, € (to, t,) such that

|y(t)| > b(ef2)forte(t,, t,) and Iy(tl)’ < b(¢/2). (Let us remember that the function y

is of bounded variation and consequently it has possibly a discontinuity at ¢,.)
Using Lemma 1 for the function U and for y we obtain the inequality

to

Ults, 9(12)) = Ults, (1)) < var? (y(s) - J " DF((), t) F Mt - 1) =

= var2 P + M(t, — 1),
where M = sup (—b(|y(1)|) = — inf b(|y(1)|) £ —b(b(¢[2)) < —6 and evidently
te[ty,t2] te[ty,t2] Ty
var? P < (1, — t; + 1)supvar,*' P < (8, — t; + 1) 6.
120

Hence we get the inequalities
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b(e) < b(|)(t2)]) < U(ty, ¥(t2)) < U(ty, ¥(ty)) +
H (-t + )=t —ty) =
= U(ty, y(t1)) + 6 £ |y(t,)] + 6 < b(e[2) + 6 < b(e)

and this evidently leads to a contradiction. Hence the solution x = 0 is stable under
perturbations in IBV. "

Let us set 6, = 6(c) > 0 where d(c) corresponds to ¢ > 0 by the definition of the
variational stability of the solution x = 0; hence if |y,| < &, then |y(1)| < ¢ for all

t 2 to, where y(2) = y(t, to, ¥o) is a solution of (9) with y(to) = y(to, to, Yo) = Yo-
Let ¢ > 0 be given and let us set

. 8o + 3b(3(e))
y(e) = min (6(¢), 3b(5(e)) , T(e) = =— 7%
1b(5(e))
d(¢) > 0 corresponds to ¢ > 0 by the definition of the stability of x = 0. Assume
that for every 1, € [t,, 1o + T(¢)] we have

¢ > [)(t:)| 2 8(e).
Using again Lemma 1 we get the inequality
0 < b(8(e)) = U(ty, ¥(2)) < Ulty, ¥(to)) + vari? P +
+ sup (= (0] (t2 = to) < Ulto, 3(to)) + varls P — b(6(s) (12 — 10) -

te[to, 12

If we assume
sup var,"! P < y(e) < b(6(¢))/2

then var}? P < b(8(¢)) (t, — to + 1)/2 and
0 < U(te, (o)) + b(&(e)) (12 — to + 1)[2 — b(8(e)) (12 — to) £
< [¥(t0)] + BEE)2 — bEE) (2 — 102 <
< 8o + b(8(e))/2 — b(8(e)) (12 — 1o)[2 .
If now t, =t + T(e), ie. t, — tg = (8 + b(6(¢))[2)/(b(5(¢))/2), then we obtain

the contradictory inequality

0 < 8 + b(o(e))J2 — b(o(e)) St 2OEN2 _
2b(8(¢))/2

Hence for every solution y(t) of the equation (9) with y(t,) = y, | J’ol < §, there
exists a point t; = t, such that | y(t,)l < &(¢), and by the properties of d(¢) > O
given in the definition of the stability we obtain that I y(t)l < eforall t = t; and, in
particular, for t = t, + T(e). This together with the stability under perturbations
in IBV yields also the asymptotic stability under perturbations in IBV and our theorem
is proved.
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