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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

AMALGAMATIONS OF HOMOGENEOUS RIEMANNIAN SPACES 

JOZEF TVAROZEK, Bratislava 

(Received January 28, 1983) 

0. INTRODUCTION 

Amalgamation is a generalized product operation first introduced by O. Kowalski 
for s-manifoldsin [5]. In this paper the operation of amalgamation is extended to 
affine reductive spaces and to homogeneous Riemannian spaces. Amalgamation-
enables us, under some assumptions, from two homogeneous Riemannian spaces 
(Ml9 aj, (M 2 , g2) to construct a new homogeneous Riemannian space (M, g) such-
that for every i e {1, 2} 

1) dimMf < dimM < dim Mx + dim M 2 , 

2) there is a.totally geodesic foliation $F( on (M, g) such that every its leaf Lt is 
a homogeneous Riemannian space locally isometric to (Mi9 gt). 

. The main result of this paper is the following 

Main Theorem. Let (Ml9g1), (M2,g2) be connected and simply connected ir­
reducible homogeneous Riemannian spaces. Then any amalgamation (M?#) of 
(Mi, gt)(if it exists) is an irreducible Riemannian space. .. 

Further, we show that any two Lie groups G, H of dimensions greater than 1 
which do not coincide with their commutator groups can always be amalgamated 
(together with any invariant Riemannian metrics on them). And finally, we give 
some examples of amalgamations of the generalized symmetric Riemannian spaces 
from the classification list of [4]. 

L AFFINE REDUCTIVE SPACES 

We shall make use of the terminology of the book [5]. All differentiate manifolds, 
mappings, tensor fields are of the class C0 0, if not otherwise stated. 

Let (M, V) be a manifold with an affine connection, let u0 e L(M) be a fixed frame 
at a point o e M. Denote by P(u0) the holonomy bundle through u09 i.e., the set of 
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all u e L(M) which can be joined to u0 by a piece-wise differentiable horizontal curve. 
The group of all affine transformations of M preserving each holonomy bundle 
P(u), u e M, is called the group of transvections of (M, V) and will be denoted by 
Tr(M, V) or shortly Tr(M). It is not difficult to show that for any affine trans­
formation f: M - > M w e have:fe Tr(M) if and only if for every xeM there is a piece-
wise differentiable curve c joining x tof(x) such that tangent map f*x : Mx -+ Mf(x) 

coincides with the parallel transport along c. 
A connected manifold with an affine connection (M, ^ ) , such that the transvection 

group Tr(M) acts transitively on each holonomy bundle P(u) a L(M), is called 
an affine reductive space. Following [5], Theorem 1.25, each affine reductive space 
(M, ^) can be represented as a reductive homogeneous space KjH with respect to 
the decomposition I = m 4- 1), where the action of K on KjH is effective and V is 
the canonical connection of the reductive homogeneous space KjH (one such repre­
sentation is K = Tr(M), H = K0, o e M is a fixed point). Conversely, each reductive 
homogeneous space K\H with the canonical connection V determines an affine 
reductive space (M = KjH, V). 

Let (M, ^) be an affine reductive space. According to [5], Corollary 1.12, the 
connection V is complete and ¥R = VT = 0. 

2. AMALGAMATIONS OF AFFINE REDUCTIVE SPACES 

2.1. Affine reductive spaces and infinitesimal ar-manifolds 

Let (M, ^) be an affine reductive space. Choose a point oeM and denote V = M0. 
Since VR = ^ T = 0, we get according to [5], Proposition 1.16: 

Proposition 2.1. Let X,Y,Ze V. Then the following holds: 

a) The endomorphism R0(X, Y) acting as a derivation on the tensor algebra ST{V) 
satisfies 

Ro(X,Y)(Ro) = Ro(X,Y)(To) = 0; 

b) R0(X, Y) = -R0(Y, X), f0(X, Y) = - T0(Y, X); 

c) <r[R,(X, Y)Z- f0(f0(X, 7),Z)] = 0 (the first Bianchi identity); 

d) a[R0(To(X, Y), Z] = 0, (the second Bianchi identity); 

<r denotes the cyclic sum with respect to X, Y, Z. 
The conditions a) — d) from Proposition 2.1 completely characterize the local struc­

ture of the space (M, V), as we shall see later. Therefore we introduce the following 
1 

Definition 2.2. An infinitesimal affine reductive manifold (shortly infinitesima 
ar-manifold) is a collection TT = (V, R, T), where V is a real vector spaze and R, T 
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are tensors of the types (1, 3), (1,2) on V such that the conditions a ) - d ) from 
Proposition 2.1 are satisfied (without the index o). 

Definition 2.3. a) Let ir
1 = (Vl5 Rl9 fx)9 TT2 = (V2, R2, f2) be infinitesimal ar-

manifolds. An isomorphism f: Vl -> V2 of the vector spaces is called an isomorphism 
of the manifolds ir

1 and i^2 if 

(i) m) = R2, f(n) = n. 
b) An infinitesimal ar-manifold (V, R, f) is called the direct sum of infinitesimal ar-
manifolds (Vu Ru f), (V2, R2, f2) if 

i) V = Vl + V2 (direct sum), 

ii) for every X, Y, Z e V we have 

(2) R(X, Y)Z = Rl(n1X, n1Y)n1Z + R2(n2X, n2 Y) n2Z , 

f(X, Y) = r.(WlJr, ntY) + f2(7r2X, jr2Y) . 

c) An infinitesimal ar-manifold (V', R', f') is called an infinitesimal ar-submanij"old 
of(V,R,f)if 

i) V' is a subspace of the vector space V, 

(3) ii) i ? | V = £ ' , ? | V' = T. 

Let (M, V) be an affire reductive space. Since the space (M, ^J) is homogeneous, 
the infinitesimal ar-iranifolds (Mp,Rp, Tp), (Mq,Rq, fq) are isomorphic for anyp, qeM 

Definition 2.4. The iscrrorphism class (Mp, Rp,fp), peM, of infinitesimal ar-
manifolds is called the infinitesimal model of the affine reductive space (M, ^ ) . 

Let (M1,V1), (M2, V2) be affine reductive spaces. Theorem 7.4 in [2], Vol. I, 
implies that the spaces (M1? ^ x ) , (M2, ^ 2 ) are locally isomorphic if and only if they 
have the same infinitesimal model. 

The following proposition ([5], Theorem 1.17) gives us a correspondence between 
the affine reductive spaces and the infinitesimal ar-manifolds. 

Proposition 2.5. Let TT = (V, R, f) be an infinitesimal ar-manifold. Then there 
is a unique (up to an isomorphism) simply connected affine reductive space (M, V) 
with the infinitesimal model Y. 

2.2. Submanifolds and foliations on affine reductive spaces 

The results of this part will be used to characterize some special types of sub-
manifolds of amalgamated spaces. For this reason we shall limit ourselves only to 
simply connected spaces. 
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Let (M, ^) be a simply connected affine reductive space and N c M its con­
nected submanifold. 

Definition 2.6. The submanifold N is said to be weakly invariant if for eachfe 
e Tr(M) we have:f(IV) n N * 0 =>f(N) = N. 

Let N be a weakJy invariant submanifold of the affine reductive space (M, V). 
Since N is autoparallel, N is in a natural way an affine reductive space (N, ¥N), 
where ? * = ? | N . 

The notion of the weakly invariant submanifold can be transferred to the class 
of infinitesimal ar-manifolds in the following way. 

Definition 2.7. Let 'V = (V, R, f) be an infinitesimal ar-manifold and let iV = 
= (W, R, T) be its submanifold. The manifold iV is said to be weakly invariant 
if R(X, Y)Ze Wfor every X, Ye V and Z e W. 

Proposition 2.8. Let(N, VN) be a weakly invariant submanifold of an affine reduc­
tive space (M, ¥). Denote by"V = (V, R, f), iV = (W, R, f) the infinitesimal models 
of the spaces (M, ¥), (N, ¥N). Then iV is a weakly invariant submanifold of °V. 

Let "V = (V, R, f) be an infinitesimal ar-manifold, (M, V) its geometric realization. 
Let us choose a point peM and identify "V with the infinitesimal ar-manifold of the 
affine reductive space (M, ^) at the point p. We shall show that every weakly in­
variant submanifold iV = (W,R,f) of the manifold 'V determines a foliation SF 
on (M, ^ ) , the leaves of which have the infinitesimal model iV. 

Let us define a distribution A on (M, V) via Aq = tc(W), where xc: V-+ Mq is the 
parallel transport along some piecewise differentiable curve c connecting the points p 
and q. Since the subspace W is R(V, V)-invariant, Aq is independent of the choice 
of c, i.e., the definition of A is correct. The distribution A is ^-parallel and involutive. 
Let <F be the foliation on (M, ^) consisting of all maximal integral manifolds of the 
distribution A. 

Proposition 2.9. Every leaf L of the foliation 3F is a weakly invariant auto­
parallel submanifold of the space (M, ¥). (L, ¥L) is an affine reductive space with 
the infinitesimal model iV. 

Proof of Proposition 2.9 is a modification of the proof of Theorem IV.5 in [5]. 

2.3. Amalgamations of infinitesimal ar-manifolds 

Amalgamation of two infinitesimal ar-manifolds is an operation which enables us, 
under some assumptions, from two infinitesimal ar-manifolds ir

l, *V2 to construct 
a new infinitesimal ar-manifold 1V such that 

(4) 1) dim Vt < dim V< dim Vt + dim V2, i = 1, 2, 
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(5) 2) the infinitesimal ar-manifold *V { can be embedded in a natural way into if9 

i = 1, 2. 

The infinitesimal ar-manifold "T is constructed by glueing together the vector 
spaces Vl9 V2 along suitable subspaces Ax c Vl9 A2 c V2, dim Ax = dim A2. 

Definition 2.10. Let if = (V, R, f) be an infinitesimal ar-manifold. The ve ctor 
space decomposition V= W + A is said to be amalgamating if the following con­
ditions are satisfied: 

a) The subspaces W and A determine non-trivial submanifolds HT and stf of the 
infinitesimal ar-manifold ir, 

b) J / is weakly invariant submanifold of ir
9 

c) the subspace PVis an ideal in V, i.e., T(X, Y)e W wheneverXe Wor Ye W, and 
J?(X, Y)ZeW whenever X e W or Ye W or Z e W. 

Let TT• = (Vi, £,, f,), i = 1, 2, be infinitesimal ar-manifolds and let Vt = Wx + Ai9 

i = 1,2, some amalgamating decompositions. Denote by s/1,s/2 the infinitesimal 
ar-submanifolds of ir

l9 i^2 corresponding to the subspaces Al9 A2. Let us suppose 
that there exists an isomorphism/: s/l -> si2. 

Definition 2.11. The infinitesimal ar-submanifold of the manifold ir
1 + ir

2, 
generated by the subspace V1 u fV2 = {wt + w2 + at + / (a i ) ; w1 e Wt, w2 e W2, 
ai e ^i}> is called the amalgamation of ir

l and ir
2 with respect to the m a p / and is 

denoted by ir
1 u /)T2. 

It is evident that the condition (4) is satisfied. Let us define linear maps 

(6) / i .K.-Piu , . / - , f1(x) = { x f° r X€Wl 

[x + 
(x i 

f2:V2-+VlvfV2, / . (*) = | . 

f(x) for xeAl9 

for xeW2 

(x) + x for xe A2 

The maps / 1 ? / 2 are injective morphisms of infinitesimal ar-manifolds and the con­
dition (5) is satisfied. The infinitesimal ar-manifold /i(^,-) will be denoted briefly 
by r h i = 1, 2. 

Let us remark that the amalgamation of two infinitesimal ar-manifolds ir
1, y2 

need not exist. The condition for its existence is the existence of suitable amalgamating 
decompositions on V± and V2. 

Now the operation of amalgamation can be generalized for any finite number 
of infinitesimal ar-manifolds. Let ir

i = (Vh Rh ft) be an infinitesimal ar-manifold, 
y. = W\ + At an amalgamating decomposition, i = 1, 2, ..., n, and let & = 
= {/,-: stfx -> stfp j = 2 , . . . , rc} be a set of isomorphisms of infinitesimal ar-mani­
folds. The amalgamation V of the manifolds T^, y 2 , . . . , ifn with respect to the 
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system !F is defined as the infinitesimal ar-submanifold of © iT{ generated by the 

subspace {u^ + ... + wn + a1 + f2(ax) + ... + fn(ax)\ wt e Wh a1 e Ay. i = 
= 1, 2 , . . . , n). In the case when V1 = ir

2 = ... = rT„ = qi, U = W + A is an 
amalgamating decomposition and / 2 = ... = fn = id, we speak about a self amalga­
mation. The selfamalgamation of n copies of ^r is denoted shortly by ^ ( , l ) and is called 
the n-th amalgamation power of °U (with respect to the decomposition U — W + A). 

2.4. Amalgamations of affine reductive spaces 

Affine reductive spaces will be amalgamated through their infinitesimal models 
making use of Proposition 2.5. 

Let MY = (M1,¥1), Jt2 = (M2,V2) be affine reductive spaces and let ir
i = 

= (Vi, Rl9 Tx), ir
2 = (V2, R2, f2) be their infinitesimal models. Suppose that there 

are amalgamating decompositions Vx = Wx + Al9 V2 = W2 + A2 and an amalgama­
tion ir

1 u /V2 with respect to an isomorphism/: s#\ -> $42. 

Definition 2.12. The simply connected affine reductive space (M, V) with the in­
finitesimal model ir

l u fiT2 is called the amalgamation of the s p a c e s . ^ and Jt2 

with respect to the m a p / and is denoted by Jt1 u sJt2 = (M1 u 7M 2 , ^ ) . 
The infinitesimal ar-manifold TT£ (i = 1, 2) can be identified with the sub-

manifold irt of the manifold -f = ir
1v ^2 (the embeddings are given by (6)). 

Let o e M = Mx u 7M2 . Let us identify the tangent space M0 with Vx u fV2. Since 
the subspace V{ is £(V, V)-invariant, F£ determines the foliation J^- on M. Directly 
from Proposition 2.9 we get 

Proposition 2.13. Every leaf Lt of the foliation &t is a weakly invariant auto-
parallel submanifold of the space Jt\ u SM2 — (M, V). (Lh VLi) is an affine re­
ductive space with the infinitesimal model 'V\ and thus locally isomorphic to the 
space Jt{. 

Remark 2.14. One can define an amalgamation of more than two affine reductive 
spaces through the amalgamation of their infinitesimal models. 

2.5. Examples of amalgamations 

Denote by &~ the class of all simply connected Lie groups G which are not equal 
to their commutator groups, i.e., such that [g, g] §; g, where g denotes the Lie 
algebra of G. Let G e IT be a group of dimension at least 2 and ^ its canonical con­
nection (i.e. the Cartan (-)-connection). Then R = 0, f = - [ , ] . Let iT = (g, 0, f) 
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be the infinitesimal model of the group G. We show that there is at least one amal­
gamating decomposition of the vector space g. Since [g, g] g g, there is a vector 
a e g, a £ [g, g]. Then we can choose vectors wl5 w2 , . . . , wn_ x e g in such a way that 
the set {a, w l 9 . . . , w ^ i } is a vector basis in g and [g, g] c= <w1?..., wn^t}. The 
decomposition g = <w1?..., wn^t} -j- <a> is amalgamating. Since the decomposi­
tion of this type exists on each group Ge«f, every two groups G, H e 2T of dimen­
sion > 1 can be amalgamated and the result of this operation is a group from the 
class 2T again. A similar result is true for the class Sf of all solvable Lie groups. 

Example . Let us consider the Lie groups 

G = 
0 1 

1 1 5 Г 

; P, q є R >, н = « 0 1 ř 
0 0 1 

Г, 5, t є R G,HєS 

The Lie algebras g, 1) of the groups G, H can be represented in the following way: 

g = <w, a} , [w,a]=- w , 

I) = < W l , w2, b> , [w l 9 b] = w2 , [w1? w2] = [w2, b] = 0 . 

The decompositions g = <w> + <a>, 1) = <w l5 w2> 4- <b> are amalgamating. 
The amalgamation of the groups G, H with respect to the map /: <a> -* <b>, 
f(a) = b, is the solvable group K of all matrices of the form 

1 0 p q 
0 e ~ r 0 s 
0 0 1 r 
0 0 0 1 

p, q, r, s e R. Further, the n-th amalgamation power of the group G or H (with 
respect to the described amalgamating decomposition) is a solvable Lie group G ( n ) 

or H(n) of all matrices of the form 

0 e - ' qn 

1 

or 
0 sn rn 

1 t 

respectively, where p, t, qh rh s( e R, i = 1, 2,..., n. 

3. AMALGAMATIONS OF HOMOGENEOUS RIEMANNIAN SPACES 

This chapter is divided into three parts and is devoted mainly to the proof of Main 
Theorem. 
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3.1. Amalgamations of affine reductive spaces with parallel metrics 

Definition 3.1. Let (M, ^) be an affine reductive space, g such a Riemannian metric 
on M that Vg = 0. The triple Jt = (M, V, g) is called the affine reductive space 
with a parallel metric. The class of all affine reductive spaces with parallel metrics 
will be denoted by Q. 

Now some basic notions for affine reductive spaces with parallel metrics will be 
introduced. 

The local isomorphisms and the isomorphisms of spaces of the class Q are defined 
similarly to affine reductive spaces, but the maps are required to be also isometric. 
The direct product of the spaces Jtx = (M1? Vl9 gx), Jt2 = (M2, V2, g2) from Q 
is the space Jtt x Jt2 = {M1 x M2 , Vt x V2, gx x g2) e Q. 

Let (M, ^ , a) e O, 0 G M be a fixed point and V = Mo . Denote by R, f the curvature 
and the torsion tensor of the connection ^, respectively. Then the conditions b), c), d) 
from Proposition 2.1 and the condition 

a') V X, Ye V: R0(X, Y) (R0) = R0(X, Y) (f„) = R0(X, Y) (g0) = 0 

are satisfied. 

Definition 3.2. A Riemannian infinitesimal ar-manifold is a collection 'V = 
= (V, g, R, T), where if is a real vector space, g is a scalar product on f and R, T 
are respectively tensors of type (l , 3), (1, 2) on if such that the condition a') and the 
conditions b), c), d) from Proposition 2.1 are satisfied (without the index 0). 

The isomorphisms, direct products and submanifolds of Riemannian infinitesimal 
ar-manifolds are defined as in Definition 2.3; we only add to (1) the conditionf(gi) = 
= g2, to (2) the condition g(X, Y) = g^n^X, n^Y) + g2(n2X, 7i2Y) and to (3) the 
condition g\V = g'. 

The infinitesimal model of an affine reductive space with a parallel metric is 
defined in the same way as in the non-metric case. It again determines the space 
uniquely up to a local isomorphism. 

The next proposition is the analogue of Proposition 2.5 for Riemannian in­
finitesimal ar-manifolds: 

Proposition 3.3. Let if = (V, g, R, f) be a Riemannian infinitesimal ar-mani­
fold. Then there is a unique (up to an isomorphism) simply connected space Jt = 
= (M, ̂ , g) e Q with the infinitesimal model if. 

Now the operation of amalgamation will be specified for Riemannian infinitesimal 
ar-manifolds. 

Definition 3.4. Let TV = (V,g, R, T) be a Riemannian infinitesimal ar-manifold. 
An orthogonal vector space decomposition V = W + A is called amalgamating 
if the conditions a), b), c) from Definition 2.10 are satisfied. 
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Let irl = (Vl9 gl9 Rl9 f±)9 i^2 = (V2, g2, R2, f2) be two Riemannian infinitesimal 
ar-manifolds, Vx = Wx + Al9 V2~W2 + A2 amalgamating decompositions and 

/ : s4\ -* stf2 an isomorphism. 

Definition 3.5. The amalgamation of Riemannian infinitesimal ar-manifolds ir
1 

and iT2 with respect to the isomorphism / is a Riemannian infinitesimal ar-manifold 
irx u sr2 = (V, g, £, f ) such that (V, R9 f) = (Vl9 Rl9 ft) u ,(K2, R2, f2) and the 
metric g on Vis defined via 

(7) g{w1 + w2 + ax + f(a i ) , w[ + w2 + a[ + f(a[)) = 

= gi(^1? w;) + g2(w29 w2) + ^ ( a - . , ad + 92(f(ai)J(a'i)))> 

Wj.wJeJF,, al9a1sAl9 F=l,2. 

It is not difficult to verify that the conditions (4), (5) from Section 2.3 are satisfied 
for ir = r1v sr2. 

Remark 3.6. Similarly as in the case of infinitesimal ar-manifolds it is possible to 
define amalgamations of more than two Riemannian infinitesimal ar-manifolds. 

Let Jt1 = (Ml9 Vl9 gx)9 Ji2 = (M2, ^ 2 , g2) be affine reductive spaces with parallel 
metrics and ir1 = (Vl9 gl9 Ru ft)9 ir2 = (yl9 gl9 Rl9 f2) their infinitesimal models. 
Suppose that there are amalgamating decompositions Vx = Wx + Al9V2 = W2 + A2 

such that there is an amalgamation ir
1 u sir2 with respect to some isomorphism 

/ : sf1 -> st2. 

Definition 3.7. A simply connected space Jt = (M, V9 g) e Q with the infinitesimal 
model ir

1 u siT2 is called the amalgamation of Jt1 and Jt2 with respect to the iso­
morphism/ and is denoted by JtY u sJi2. 

Remark 3.8. According to Remark 3.6 it is possible to amalgamate more than two 
spaces from the class Q. 

Similarly as in the case of affine reductive spaces we can construct the foliations 
&* l9 !F2 on Jl1 u SM2 = (M, V9 g)9 the properties of which are characterized in 
the following two propositions (which are only slight modifications of the results 
of [5], Chapter IV). 

Proposition 3.9. Let us choose i e {1, 2}. Then every leaf Lt of the foliation 2F\ 
is an autoparallel submanifold of the space (M, V). The space {Lh V

Li
9 gLi) is an 

affine reductive space with a parallel metric with the infinitesimal model r t and 
thus locally isomorphic to the space (Mi9 ¥i9 gt). 

Proposition 3.10. The Riemannian manifold (Li9g
Li) is a totally geodesic sub-

manifold of the manifold (M, g) (notation as in Proposition 3.9). 
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3.2. Irreducibility Theorem 

Here we shall prove that any amalgamation of two affine reductive spaces with 
parallel metrics preserves irreducibility. 

Let us consider a space Jt = (M, V, g) e Q. The symbol V will always denote the 
Riemannian connection on (M,g). Further, denote by R the curvature tensor of 
the connection V. The symbol D will be used for the difference tensor DXY = 
= v x Y - ^ Y 

Making use of the methods introduced in [5], Chapter III, we get : 

Proposition 3.11. Let a space (M, ¥, g)e Q and oeQ be given. Then for every 
X,Y,Ze M0 we have: 

(8) f(X, Y) = DYX - DXY, 

(9) R(X, Y) = R(X, Y) - [Dx, DY-\ - DT{X,Y), 

(10) 2 g(DYX, Z) = g(f(X, Y), Z) + g(T(X, Z), Y) + g(f(Y, Z), X). 

Let us consider a space Jt = (M, V, g) e Q and a point o e M. Denote by V = 
= (V, g, R, T) the Riemannian infinitesimal ar-manifold of the space M at the 
point o. Further, suppose that there exists an amalgamating decomposition V' = 
= W+A. 

Proposition 3.12. For the difference tensor D and the Riemannian curvature 
tensor R we have: 

a) DAA cz A, DWA cz W, DAW a W, 

b) R(A, A) A cz A, R(A, A)W czW, R(A, W) A cz W. 

Proof, a) Apply (9). b) Apply (10). 

Later on we shall need the following lemma which makes use of some basic 
properties of the exponential map exp: gl(V) -*• GL(V). 

Lemma 1. Let V be a finite dimensional vector space over the field R of real 
numbers, G a connected subgroup of the group GL(V) and g its Lie algebra. Then 
for every vector subspace U cz V we have: 

G(U) czU if and only if g(U) c U . 

If V is a vector space with a scalar product and G consists of orthogonal transfor­
mations, then for every vector subspace U cz V we have: 

g(U) cz U if and only if g(Ux) cz U1. 

Let (M, g) be a connected and simply connected analytic Riemannian space and 
x e M. According to [2], Vol. I, Chapter III, the Lie algebra Q(X) of the holonomy 
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group with the reference point x is generated by all endomorphisms of the vector 
space Mx of the form 

(VkR)(X9 Y;Ul9...9Uk)9 

where X, Y, Ul9..., Uk e MX9 k = 0, 1,... . 

Let us consider a simply connected space (M, ¥9 g)e Q and a point x e M. Denote 
by <£ the Lie algebra of all endomorphisms of the vector space Mx generated by 
the set 

{(DkR)(X9 Y; Ul9..., Uk)\ X9 Y9 Ul9 ..., UkeMx, k = 0, 1,...} . 

Since VR = 0, we have DkR = VkR for all k = 0, 1, . . . , hence <£ = g(x). From 
Lemma 1 we see that the underlying Riemannian manifold (M, g) is irreducible 
if and only if the Lie algebra S£ acts irreducibly on Mx. 

The following theorem is one of the main results of this paper. 

Theorem 3.13. Let Jll9Jt2 be simply connected affine reductive spaces with 
parallel metrics which are irreducible as Riemannian spaces. If an amalgamation 
Jix vj sJt2 exists, then it is irreducible as a Riemannian space. 

Before we start the proof of Theorem 3A3, some suitable notation will be intro­
duced. We also prove some formulas which characterize the Riemannian curvature 
tensor and its covariant derivations VkR = DkR9 k = 1, 2, . . . , on the space 

Jt\ u /e/^2' 
Let <Tj = (Vl9 gl9 Rl9 fx)9 r2 = (V29 g2, R29 T2) be the infinitesimal models of 

the spaces Jix = (Ml9 ¥l9 gt)9 J(2 = (M2, ¥29 g2)9 respectively. Let Vt = Wx + Al9 

V2 = W2 + A2 be amalgamating decompositions and / : s/1 -• s/2 an isomorphism 
(see Definition 3.5). The embeddings / , : Vf -^ Vx u fV29 i = 1, 2, are given by (6). 
We shall use the following notation: 

Wi=fi(Wi)9 A = Ai=fi(Ai)9 Vi=fi(Vi)9 V=V1ufV29 i = 1,2. 

Proposition 3.14. Let X9 Y9 Ul9 ...,UkeVi be given, i = 1, 2, k = 1, 2 , . . . . Then 
the following formulas are satisfied: 

a ) L ( ^ x ^ = / ) / i W L ( r ) , 

b) flR^X, Y) Z) -- R{fi{X),fi{Y))f{Z), 

c) fi^R^X, Y,Z; Uu...,Uk)) = {DkR){fi{X),fi{Y),fi{Z);fi{Ul),...,fi{Uk)), 

where Di9Ri denote the difference tensor and the Riemannian curvature tensor, 
respectively, on the space (Mi9 ¥i9 gt)9 i = 1, 2. 

Proof. It is sufficient to notice that the maps / , : Vf -• V,- c V, / = 1, 2, are iso­

morphisms. 
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Lemma 2. Let r, s € {1, 2}, r =j= s, be given. Then we have: 

a) DWWS = 0, 

b) DWrVs cz PVr, DrsPVr c Wr, 

c) K(Vr, Vr) PVS c Ws, K(7„ Ws) Vr c IF,. 

Proof. Let us consider Ye PFr, X e Ws, Z e V. From (10) we get 2g(DYX, Z) = 0. 
Hence DWWS = 0, because Z e Vis arbitrary. Part b) is a consequence of a). Making 
use of Proposition 3.12 and part a), we get assertion c). 

Lemma 3. Let k ^ 0 be an integer, r,se {1, 2}, r 4= s and let j e {1, 2 , . . . , k + 3} 
Then for each Uj e Wsandfor every Ul9..., U7-1? U/+i,..., Uk+3 e Vr we have 

(D*R ) (U 1 , . . . ,U f c + 3 ) e F s . 

Proof. We shall proceed by induction with respect to k. The case k = 0 fol­
lows from c), Lemma 2. Let us suppose that the assertion is true for k — 1 S 0. 
Then 

(&R)(Ult..., Uk+3) = (D(Dk-lR))(Uu ...,Uk+3) = 

= D„k Jffl'-^XU . , . . . , U,+2) - ( D * - 1 * ) ^ ^ , U2,..., Uk+2) - ... 

. . . - ( ^ - ^ ( U ! , . . . , ^ , , ^ ^ ^ ) . 

Using part b) of Lemma 2 and the induction assumption we see that the last sum is 
contained in Ws. V 

Let us define linear maps Tl5 T2 as follows: 

Tt: V-> V1 , Ti(x) = x for x e V! , TX(X) = 0 for x e W2 , 

T2: V-» V2 , T2(X) = x for x e V2 , T2(X) = 0 for xeW1. 

Proposition 3.15. Let A:V-*V be an endomorphism, k ^ 0 an integer and 
Ul9 ..., Uk+3eVi. Choose r e {1, 2 , . . . , k + 3}. Then 

xi((D
kR)(Ul9...,Ur.1,A(Ur),Ur+1,...,Uk+3))^ 

= (DkR)(U1,...,Ur.l9ri(A(Ur))9 Ur+l9...9Uk+3)9 i = 1,2. 

Proof. Let Ul9 ...9Uk+3eVt be given, i e { l , 2 } . Then Xi((DkR)(Ul9 ...9Ur.l9 

A(Ur), Ur+l9..., Uk+3)) = Ti((DkR)(Ul9..., l/ r_ l f A(Ur) - Tf(4Ur)), 
l / r + 1 , . . . , Uk+3)) + xft&R)(Ul9..., L/ r . l f rf(A(Ur)), Ur+1,..., Ufc+3)) = 
= Ti((DkR) (Ul9..., Ur.1? Tt(A(Ur))9 Ur+l9..., Uk+3)) = (DkR) (Ul9..., I / , . , , 
Tf(A(Ur)), Ur+1,..., Ujk+3), where we have used also Lemma 3. 

Corollary. For each integer k ^ 0 and for a// vectors X,Y9 Ul9U29 ...9Uk 

from Vf we have: 
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Xi o ((DkR) (X9 Y;U19...9 Uk)) = ((DkR) (X9 Y; Ul9..., Uk)) o xi9 i = 1, 2. 

Proof. It is sufficient to take r = 3 and .4 = id in Proposition 3.15. 

Let us denote by $£\ the Lie algebra generated by the set of endomorphisms 

{(DkR)(X9 Y; Ul9 ..., Uk); X9 Y9 Ul9..., UkeVi9 fc = 0, 1,...} 

of the vector space V, i = 1, 2. 

Proposition 3.16. Let U be an $£\-invariant subspace of the vector space V 
Then Tt(U) is an ^£^invariant subspace ofVas well (i = 1, 2). 

Proof. Let us consider fe ^t. Applying Corollary of Proposition 3.15 w& get: 

f(xJU)) = (for/)(U) = ( T . O / ) ( U ) = r;(/(U)) c= Ti(U). 

Proof of Theorem 3.13. Let (V, a, R9 f) be the infinitesimal model of the amal­
gamation Mj u fM2. Let JS? be the Lie algebra of endomorphisms of the vector 
space Vgenerated by the set {(DkR)(X9 Y; Ul9..,, Uk); X9 Y9 Ul9..., Uke V9 k = 
= 0,1,...}.,Further, suppose that U is an J&f-invariant subspace of V9 U # 0. Now 
it is sufficient to prove that U = V. 

First we show that dim U = dim Vi9 i = 1, 2. Let us suppose that tx(U) 4= 0. 
The subspace U is also if i-invariant. Proposition 3.16 implies the J^-invariance of 
the subspace TX(U). Since the Riemannian space (Ml9g1) is irreducible, we get 
Tl(U) = V!. Then r2(U)' + 0 and similarly t2(U) =/V2. 

Now the equality U = V will be proved. Suppose that dim U < dim V. Since the 
holonomy group with the reference point x consists of ortlibgonal transformations 
of the vector space V(for any x e M), we s£e from Lemma 1 that U1 is alsoaiiif-
invariatit subspace of V. Let us denote s = dim U, fe = dim At = dim Al9 m = 
= dim Vl9 n = dim V2. Then we have: 

(11) 5 = max {m, n) ;> m , 

(12) m + n — fc -- s '_• max {m, n} ^ n , 

because U, U1 are non-trvial S£-invariant subspaces of V. From (11) and (12) we 
get — fc —̂ 0, i.e. fc _ 0, a contradiction. Hence dim U = dim Vand U = V 

Remark 3.17. Theorem 3.13 can be generalized to the amalgamation of more than 
two spaces. 

3.3. Amalgamations of homogeneous Riemannian spaces 

To prove our Main Theorem we only have to define properly the amalgamation 
of two homogeneous Riemannian spaces. 

First we prove that every homogeneous Riemannian space admits a suitable 
reductive structure, i.e. the structure of a space from the class Q (O-structure). 
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Proposition 3.18. Let (M, g), M = KJH, be a connected homogeneous Riemannian 
space, where K is some transitive group of isometries on M and H is its isotropy 
subgroup. Then there is at least one structure of a reductive homogeneous space 
on K\H. 

Proof. Since the group H is compact, there is at least one ad(H)-invariant scalar 
product on the Lie algebra ! of the group K. Let m = I)1 with respect to this product. 
We get a reductive decomposition I = m -j- I). 

Let us denote by ^ the canonical connection of the reductive homogeneous space 
M = KjH (with respect to the decomposition I = m -j- I)). The space (M, V) is an 
affine reductive space. Since the tensor g is K-invariant (the group K consists of iso­
metries), we have Vg = 0 and (M, ^, g) e Q. 

Definition 3.19. Let (Ml9 gx), (M2, g2) be homogeneous Riemannian spaces, 
Jtx = (M l 5 Vu gx), Jt2 = (M2, ¥2, g2) some G-structures on them. Let us suppose 
that there exists an amalgamation Jt = Jtx u fJt2 of Jtt and Jt2, Jt = (M, ^ , g). 
The homogeneous Riemannian space (M, g) is then called an amalgamation of the 
homogeneous Riemannian spaces (M l 5 gt), (M2, g2). 

Now our Main Theorem (cf. Introduction) is an immediate consequence of Theo­
rem 3.13. 

The simplest homogeneous Riemannian spaces are Lie groups with invariant 
metrics. We shall show how to amalgamate Lie groups from the class T (described 
in Section 2.5) equipped with left invariant metrics. 

Let G e &~, denote by V the canonical connection of G. Let (g, g, 0, f) be the in­
finitesimal model of the space (G, V, g). Choose a $ [g, g] and an orthonormal system 
{wl5 ..., w„-x} of vectors in such a way that {wl9..., w,,.!, a} is a basis of g and 

n - l 

[9, 9] c <Wi,..., *>„_!>. Let b = a - £ g(wh a) wt and a' = fc/||6||. Then a' $ 
i= 1 

4 <w l9..., w„_!> and {wl9..., wn_1, a'} is an orthonormal basis of g. The decomposi­
tion g = <w1, .., wn_1> -j- < 0 is amalgamating. By virtue of Main Theorem and 
Remark 3.17 we get 

Theorem 3.20. Let G, H be connected and simply connected Lie groups of dimen­
sion > 1 with irreducible invariant metrics g9 h, respectively, and such that [g,g]g 
£ 9, [*), I)] £ I). Then 

a) There is at least one amalgamation of the groups (G, g), (H, h). Any such 
amalgamation is a Lie group with an irreducible invariant metric. 

b) For every n = 2 there is at least one amalgamation power (GCn), g(n)) of the 
group (G, g). Every amalgamation power of the group (G, g) is a Lie group with 
an irreducible invariant metric. 
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4. EXAMPLES OF AMALGAMATIONS OF GENERALIZED SYMMETRIC 
RIEMANNIAN SPACES 

In this chapter we give examples of amalgamations and selfamalgamations of 
some generalized symmetric Riemannian spaces from the classification list of [4], 

Since the initial spaces are connected, simply connected and irreducible, any 
amalgamation of them is again an irreducible space. Hence it is possible to construct 
the infinite series of irreducible generalized symmetric Riemannian spaces in such 
a way that the dimensions of the spaces form an arithmetic progression. 

Examp le 1. A space of dimension 3 and of order 4. ([4], pp. 16—17.) Let us 
consider n copies of this space with the invariants Xu ..., Xn. By an amalgamation of 
these g.s. Riemannian spaces we obtain a g.s. Riemannian space (M' = 
= R2"*1^!, yl9..., xn, yn, z), g'), where -

g' = e2z(dx02 + e-2*(dy i)
2 + £ [c2^(dxt)

2 + e" 2^(d^) 2 ] + ^ dz2 , 
1-2 -• : '' 

Pi = *i > Pi = ^IMI , i = 2 , . . . , n . 

As a homogeneous space, M' is a matrix group 

e"z x 

0 
УÍ 

Уг 

1 

*i- yi- • • •> xn> yn> Z e R- The space (M', g') is of order 4. A typical symmetry at the 
origin of R2rt+1 is x\ = -yh y\ = xh z' = - z , i = 1, 2,..., n. 

Examp le 2. A space _qf dimension 4 and of order 3. ([4], pp. 18 — 21.) An n-th 
amalgamation power of this space is a g.s. Riemannian space (M' = R2t^+2(ul, vt,.... 
••;Un,vn,x,y),g'), where 

g' = (-* + v/(*2 + y2 + 1)) Z (duy + (x + V(x2 + y2 + 1)) 

I(^i)2-2>'ZdM idi> i + 
i = l • i = l 

+ [(1 + y2) áx2 + (1 + x2)d>>2 - 2xy dxdy]/[2g2(l + x2 + y2)] , 
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Q > 0 being a real invariant. The space (M', g') is of order 3. A typical symmetry 
at the origin of R2w+2 is given by 

x' = cos §7cx — sin %ny , y' — sin %%x + cos %ny 9 

u'i = cos ^7iuf — sin \%Vi, v; = sin \% u{ + cos \%Vi, 
i = l ,2 , . . . ,n . 

Example 3. A space of dimension 5 and of order 4, type 1. ([4], pp. 27 — 28.) 
An amalgamation of n copies of this space with the invariants Ql9..., Qn is a g.s. 
Riemannian space (M' = R3n+2(x1? yl9 zl9..., xH9yn9 zn9 u, v)9 g')9 where 

g' = du2 + dv2 + £ [(dxf)
2 + (dj;,)2 + C?(x, du - yt dv + dzf)

2] • 
i = i 

The space (M'9 g') is of order 4. A typical symmetry at the origin of R3w+2 is given 
by A = -yi9 y\ = xi9 z'i = - z „ u' = - v , v' = u, i = 1,..., n. 

Example 4. A space of dimension 5 and of order 4, type 7. ([4], pp. 45 — 47.) 
a) An amalgamation of n copies of this space with the invariants ai9 yi9 Xi9 i = 

= 1,..., n, is a g.s. Riemannian space (M' = R4n+1(x1, yl9 ul9 vl9..., xn9 yn9 un, 
vn, t), g'), where 

g' = dt2 + £ [e-2A"('dx. _ du,)2 + e2A<f(*d^ + di?,)2 + 
i = l 

+ a2(e-2*"(dxt)
2 + ezx"(dyt)

2) + 2yt(dyidut - dx,di>,)] . 

The g.s. Riemannian space (M'9 g') is of order 4. A typical symmetry at the origin 
of R4n+1 is x\ = - y f , y[ = xi9 u[ = -vi9 v\ = ui9 t' = -f, i = 1,..., n. 

b) In the case of X = y = 0, and n-th amalgamation power of this space is a g.s. 
Riemannian space (M" = R3n+2(x, j>, ul5 vl9 tl9..., un, un, tn)9 g")9 where 

^" = a2(dx2 + dj;2) + £ [(d*i)2 + (U dx - duf)
2 + (tt dy - di>f)

2] . 
i = l 

For n odd the g.s. Riemannian space (M", g") is of order 4, for n even it is 4-sym-
metric. A typical symmetry of order 4 at the origin of R3n+2 is x' = — y, y' = x, 
u\ = -i?,., i?; = uh t\ = -*,., i = 1, . . . , .n. 

Example 5. A space of dimension 5 and of order 6, type 9. ([4], pp. 51 — 53.) An 
amalgamation of n copies of this space with the invariants ai9 bi9..., an, bn, at = 
= a2 = ... = an = a, is a g.s. Riemannian space (M' = R3n+2(xl5 yl9 zi9... 
...,xn,>;.„ z,,, u, t>), #'), where 

^' = fa2(du2 + du dt; + dt;2) + t KM2 + l)(e2(u+v)(dXi)2 + 
i = l 

+ e - 2 " ^ ) 2 + e-2"(dz()
2 + (26? - 1) (e» dxt dyi + 

+ e"dx ( dz ( - e("+w> d^ dz()] . 
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A typical symmetry of order 6 at the origin of R 3 n + 2 is u' -= v, v' = — (u -f v)t 

x'i = yi9 y'i = -z* z'i = xh i = 1 , . . . , n. 

Acknowledgement. I am grateful to Prof. O. Kowalski for his valuable hints and 
comments. 
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