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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON PARTITION OF TOPOLOGICAL SPACES 

Ju. BREGMAN, Riga, B. SAPIROVSKIJ, MOSCOW, A. SOSTAK, Riga 

(Received November 29, 1982) 

0. INTRODUCTION 

The problem considered in our paper goes back to a classical work of F. Bernstein 
[1] in which he proved that in every complete separable metric space Ythere is a sub­
set A such that neither A nor Y\ A contain a homeomorphic copy of the Cantor 
discontinuum D030. In its modern interpretation this problem was apparently set 
for the first time by Z. Frolik about 1972. He asked whether there exists a Hausdorff 
space ysuch that for every its subspace A the Cantor set D030 is embeddable either 
in A or in Y\ A (or, less generally, either A or Y\ A contains the segment I = [0, 1]). 
This problem is of importance only in the case when Y is asked to be Hausdorff: 
rather a simple construction of J. Pelant, J. Nesetril and V. Rodl allows, for every 
F!-space X, to find a Tj-space ysuch that if A c Ythen either A or Y\ A contains 
a subset (but essentially not closed!) homeomorphic to X (see e.g. [2]). 

During the recent years a number of papers devoted to this problem has appeared 
(see e.g. [3], [4], [5], [6], [7], [8], [32]). 

In our paper all these results are improved and generalized in various directions. 
First, the only topological properties of D030 and I essential in our considerations are 
the countable compactness and unscatteredness. (Recall that a space I is called 
unscattered if it contains a subspace which is dense in itself.) 

Thus in our paper the following result is proved under some set-theoretical assump­
tions. 

Theorem. In every topological space there are subspace X0 and Xt such that 
X = X0 u X1 and neither X0 nor Xt contain a closed {in X) countably compact 
regular unscattered subspace F. In particular, if X is Hausdorff, then every com-
pactum contained in X0 or Xx is scattered. {See theorems (8.6) and (9.7).) 

The set-theoretic assumption ACP* under which we prove this theorem is essentially 
weaker than the assumption ACP? = (Kx < c)&(/xNo < /x+) for every p. ^ c. An 
other assumption which is also sufficient for us is the axiom of constructibility 
V = L. Hence this theorem improves W. Weiss's result which is the strongest one 
among the results of this kind obtained before, and which asserts that under V = L, 
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in every Hausdorff space X there exist subsets X0 and Xx neither of which contain I)000 

and X = Xx u X2. 
However, we believe that the most natural is the following general version of our 

theorem (see Sections 8, 9). 

Theorem [ACP # ] V [V = L]. For every topological space X there exists a parti­
tion (see 2.1) @t = [Ra : a < c} such that for every closed regular countably com­
pact subset F without isolated points the intersections Ra n F are everywhere dense 
in F for all Ra (thus $ -= [Ra : a < c} is a decomposition (see 2.2) for all such F 
simultaneously). In particular, for every Hausdorff compact space X without 
isolated points there exists a (universal) decomposition 3% = \Ra : a < c} such that 
if F is a closed subset without isolated points then [F n JRa] = F for every a < c. 

Let us give the outline of the exposition adopted in the paper. We begin with 
preliminaries where some basic notations, definitions and concepts used in the paper 
are introduced and discussed. The second section also has an auxiliary character; 
we prove there some elementary facts on partitions and decompositions. In the third 
section the fundamental for our theory concept of a relatively countable closedness, 
or rc-closedness, is introduced and studied. Although the majority of the results 
about rc-closedness obtained here are used in the basic construction (Section 6), 
some are adduced only for the sake of completeness. The fourth section is devoted 
to the continuous mappings with values in I. The results of this section are also 
essentially used in the basic construction, but we consider them to be of interest 
by themselves and therefore they are given here sometimes in a more general form than 
it is necessary for our applications. In the short fifth section the notion of a t-universal 
partition of a set A in a space X is introduced (it is a specification of the usual parti­
tion). This notion is basic for the induction in the proof of main results (see Section 
6). We draw attention to the fact that the deepest results on the r-universal partitions 
are obtained in case when the partitioned set A is rc-closed in X. 

The next sixth section contains the principal amout of the technique in the whole 
work. We introduce here the notion "the statement SX(X | JLI) holds for a space X 
and cardinals T and ji" (Definition 6.1) and prove by induction that this statement 
really holds "very often" (see e.g. (6.18)). As a corollary we obtain that "usually" 
topological spaces have Kj-iniversal partitions (6.19), (6.20)). 

As was mentioned above, to apply the results of Section 6 for the proof of our 
principal results we need some additional set-theoretic assumptions. The majority 
of these assumptions are formulated and discussed in the next section — the seventh 
section. 

In the eighth section the set-theoretic assumptions discussed in Section 7 are applied 
to the results of Section 6 to get the main theorems of the work (see (8.1) —(8.10)); 
some of these theorems were already stated above. 

The last four sections, 9 — 12, have the nature of appendices. In Section 9 the results 
of W. Weiss [3] on partition of topological spaces under the assumption of the axiom 

28 



of constructibility are improved and generalized. The proof of this generalization is 
again based on the technique of Section 6. 

In Sections 10 and 11 the main results are applied to obtain some corollaries of 
rather a varied nature. 

The concept of an rc-closed set which is the key notion for the whole work (see 
Section 4) leads us also to a new class of topological spaces called quasi-sequential 
spaces. This class enters rather naturally the hierarchy of classes of spaces, the topo­
logy of which is defined by countable subsets (spaces of countable tightness, sequential 
spaces etc.). Quasi-sequential spaces are studied in the last Section 12. 

1. PRELIMINARIES 

The notions and concepts which are used but not defined in the paper can be found 
in usual handbooks on general topology, for example, in the well-known Engelking's 
book [10]. There one can find also facts and theorems used in the paper if no other 
reference is given. 

No separation axiom is assumed unless explicitly stated. All mappings of topo­
logical spaces are continuous. A mapping / : X -> Y is called an injection if it is 
one-to-one, i.e., if xx =f= x2 implies f(xt) + f(x2). A mapping / : X -> Y is called 
a surjectionif f(X) = Y. A mapping which is both a surjection and an injection is 
called a bijection. 

Script letters always signify a family of sets, while capital letters are usually used 
to denote topological spaces and sets. Specifically, the letters X, Y and Z will always 
signify topological spaces. Small Greek letters are used only for cardinals and 
ordinals. We do not distinguish in notations between a cardinal T and the minimal 
ordinal of the cardinality T. Moreover, sometimes we identify in notations an ordinal T 
and the set T(T), consisting of all ordinals a less than T. Thus the equality T = T(T) 
means exactly that T is a cardinal. Nevertheless, following the tradition we use for 
a countable cardinal and the first uncountable cardinal either the notations co0 and cox 

or the notations K0 and K1? respectively. If T is a cardinal then T + denotes the least 
cardinal larger than T; cf(T) means, as usual, the cofinal character of the cardinal T 
(see e.g. [11]). If A is a set, then \A\ denotes the dardinality of A. As usual, we write c 
for the cardinality of continuum. 

Let X be a topological space and A its subset. Then [A ] x or simply [A ] denotes 
the closure of A in X, A' denotes the set of limit points of A. The notation d(X) 
stands for the density of the space X. As usual, we use R and I, respectively, as 
designations for the real line and the segment [0, 1] endowed with the usual topology, 
N is the set of all natural numbers. 

Let L be a linearly ordered set with a linear order ^ and let a, /? e L. Then we 
write shortly [a, j5], [a, /?[, ] a, /?] and ]a, /?[ instead of {x:xeL, a ^ x ^ /?}, 
{x: x e L, a ^ x < /?}, {xixeL, a < x ^ p} and {x:xeL, a < x < P}9 respec­
tively. 
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The notation X « Y will mean that spaces X and Y are homeomorphic, XQ Y 
will mean that X is homeomorphic to a subset X of 7 while X Q Y will mean that X 
is homeomorphic to a closed subset X of Y. cl 

2. SOME ELEMENTARY FACTS ON PARTITIONS 

Although the next two definitions are well-known and have been used jby various 
authors we reproduce them here both for the sake of completeness and to specify 
these fundamental for our paper notions. 

(2.1) Definition. A disjoint family 0t of subsets of a set X is called a partition of X 
(or a partition in X) if \J{R : R e 0t} = X. 

(2.2) Definition. If 0t is a partition of a topological space X and \R\ = X for every 
Re 0t then 0t is called a decomposition of X. 

The next result can be found e.g. in [12], p. 434: 

(2.3) Proposition. Let IF be a family of subsets of a set X, \&r\ = T and |F| = T 
for every F e J5". 77zerc fhere ex/5/5 a partition 0t = {Ra : G < %} of the set X such 
that \Ra n F| _ T for every c < T and every F e SF. 

This proposition leads one easily to the following statement which was already 
used in A. V. Archangelskij's paper [9]. 

(2.4) Proposition. Let X be a topological space such that \x\x = \x\ = T and 
& = {F :F cz X, |F| = T, d(F) = I}. Then there exists a partition 0t = {Ra : 

c l 

:o < x} of the set X such that \Ra n F| = Tfor all a and all F e 2F. 

Proof. Every closed subset F of X with d(F) _ X is uniquely determined by a set 
G cz F of cardinality L Hence \3F\ = |X|A = T and therefore the assertion of (2.4) 
follows immediately from (2.3). 

The last proposition implies the following well-known statement (see e.g. [12], 
p. 524). 

(2.5) Corollary. In every topological space X of cardinality c there exists a parti­
tion 0t = {R„ : a < c} such that \Rff n F| = c for every a < c and every closed 
separable subset F of cardinality c. 

3. RELATIVELY COUNTABLY CLOSED SUBSETS 

The notion of a relatively countably closed set, which is defined below and plays 
a fundamental role in our theory, belongs to the sort of "folklore" notions. Many 
authors have used it without giving it a special name in various constructions and 

30 



proofs. For example, practically all constructions of countably compact extensions, 
of topological spaces as well as completions of countably compact spaces are based 
on this notion; it was also essentially used by A. Gryzlov [13], W. Comfort [14], 
[15] and others. 

(3.1) Definition. A subset A cz X is called relatively countable closed (or relatively 
countably compact, if one prefers it) in X if every countable set N cz A which is 
not closed in X, is not closed in A either (i.e., N' 4= 0 implies A u^ l ' 4= 0). We shall 
usually abbreviate"relatively countably closed" as "rc-closed". 

(3.2) Remark. One can easily notice that a subset A of a Tx-space X is rc-closed 
iff every sequence (xn) ne N which has a cluster point x0 in X also has a cluster point 
a0eA. 

The proofs of the following propositions about rc-closed subsets are obvious and 
therefore omitted. 

(3.3) Proposition. Every countably compact subset A of a Tt-space X is rc-closed 
inX. 

(3.4) Proposition. IfX is a countably compact Tx-space and A is rc-closed in X> 
then A is countably compact. 

(3.5) Proposition. Every bs0-closedl) (and therefore also every closed) subset A 
of a space X is rc-closed in X. 

(3.6) Proposition. If A cz B cz X and A is rc-closed in B while B is rc-closed in X> 
then A is rc-closed in X as well. 

(3.7) Proposition. If A cz B cz X and A is rc-closed in X, then A is rc-closed in B 
as well. 

(3.8) Proposition. If A is rc-closed in X and F is tf0-closed in X, then A n F is 
rc-closed in F. 

Proof. The intersection A n F is obviously K0-closed in A and hence by (3.5) 
A n F is rc-closed in A. Therefore by (3.6) A n F is rc-closed in X and hence also in F. 

(3.9) Proposition. Every rc-closed subset A of a T^-spaceX is sequentially closed2) 

*) A subset A of X is called K0-closed if [A]«0 = A, where [A]«0 = \J{[N]x:Nc Ay 

INI ^ K 0}. Obviously every closed set is sure to be K0-closed. It is known (and easy to be 
checked that a space X has a countable tightness (i.e. t(X) < K0) iff every its K0-closed subset 
is closed. 

) A subspace A of X is called sequentially closed in X if A contains the limits of all its con­
verging sequences. A space X is called sequential if every its sequentially closed subset is closed. 
For example, all first countable spaces are sequential. 
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in X. Hence in a sequential Tt-space every rc-closed subspace is closed. 
The proof immediately follows from (3.2). 

(3.10) Remark. From (3.5) and (3.9) we conclude that if X is a Tj-space, then every 
its K0-closed set is rc-closed and every rc-closed set is sequentially closed. The con­
verses do not hold — for examples see (12.4) and (12.5). 

(3.11) Proposition. LetX, Ybe topological spaces, where Yis moreover a Tx-space, 
and f :X -> Ya closed mapping. If A is an rc-closed subset in X, then f (A) is an 
rc-closed subset in Y. 

Proof. Let M = {yn : n e N} a f(A) and M' n (Y\f(A)) 4= 0. We have to show 
that in this case M' r\f(A) 4= 0, too. Since yis a Tx-space, wihout loss of generality 
we may assume that yn 4= ym if n 4= m. For every neN take xn ef~1(yn) n A and 
consider a set P = [xn : n e N} c A. This set is not closed in X (otherwise M = f(A) 
would be closed!) and since A is an rc-closed set, there exists x0 e P' n A. It is easy 
to notice that .yo = f(x0) is an accumulation point for M and hence M' n f (A ) 4= 0. 

(3.12) Proposition. Let f :X -> Y be a closed mapping, X a Tt-space and B an 
rc-closed subset of Y. Then the preimage f~*(B) is an rc-closed subset in X. 

Proof. Notice first that without loss of generality one can assume thatf is a bijec-
tion and hence y i s a Tx-space, too. Really, sincefis closed, the image y0 == f(X) is 
a closed Tt-subspace of Y, and we may speak about the preimage of the set B0 = B n 
n y0 instead of the preimage of the set B. 

Let x 0 e l b e a cluster point of a sequence (xn)neN czf_ 1(£) where xn 4s xm if 
n 4= m and consider the sequence (yn = f(xn))neN. Obviously y0 = f(x0) is its cluster 
point and hence there exists a cluster point b0 e B. Moreover, without loss of gener­
ality one can assume that yn 4= bo f° r every neN, and therefore xn £f_1(bo) for 
every n e N. Now to complete the proof it is sufficient to show that there exists 
a0 ef~l(b0) which is a cluster point of (xn)neN. 

Really, otherwise since X is a Tt -space there would be a neighbourhood U of 
f~l(b) such that (xn)neN a X\U and therefore f(X\ U) would be a closed set in Y 
which contains the whole sequence (yn)neN but not b0. 

(3.13) Proposition. Let f:X - t Y be a closed mapping, where Y is a sequential 
T^space and A an rc-closed subset of X. Then f (A) is closed in Y. Moreover, the 
mapping f = f\A : A -> Y is closed1). 

Proof. The first statement follows directly from (3.11) and (3.5). Now the second 
can be easily obtained from (3.8) and (3.9). 

(3.14) Remark. In case of a countably compact set A the propositions (3.9), (3.11) 
and (3.13) are well-known and easily proved. 
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(3.15) Proposition. For every set A cz X there exists an rc-closed set A in X such 
that A cz land | A | = |A|Ko 2). 

Proof. Let A0 = A and suppose that for every a < J? where /? < OJ1 we have 
defined sets Aa cz X in such a way that the following three conditions hold: 

(a) K | ^ M|N°, 
(b) if a' < a then Aa, cz Aa9 

(c) if a' < a, (a' + a) M cz Aa,, | M | g K0 and M' * 0, then M' n Aa * 0. 

Let A* = \J{Aa : a < /?}, and for every countable set M cz A* satisfying M' + 0 
take a point x(M) e M' and define Ap = A* u {x(M) : M cz A*, | M | g K0, M' * 0}. 
Obviously A satisfies the conditions (b) and (c). To check the condition (a) notice 

that \A,\ ^ K T ° = (z Kir ° ^ («oMr°r° = Mr-
Let now A = U { ^ -^ < ^ i } - Since cffcoj) = a^ > co0, the conditions (b) 

and (c) allow us to conclude that A is rc-closed in X. On the other hand, by (a) we 
have | A | = (ox\Ap\ = co^*0 = |A|*° 2). 

(3.16) Corollary. If A cz X and |A | — c then there exists an rc-closed set A in X 
which contains A and \A\ = c. 

Appyling Proposition (3.4) to (3.15) one obtains (3.16) 

(3.17) Corollary. If X is a countably compact Tx-space then for every A cz X 
there exists a countably compact set A cz X which contains A and \A\ :_ \A\*0; 
in particular, if \A\ _" c, then \A\ g c. 

4. SOME REMARKS ON MAPPINGS INTO I 

The first type of problems considered here is the problem of discovering such 
subsets in topological spaces which can be (continuously) mapped onto the segment 
I = [0, 1]. The method employed here is the one which is essentially developed in 
[16]. It is based on the notion of a dyadic system defined by B. Efimov in 1970 [17] 
and as a matter of fact goes back to the paper pf P. S. Aleksandroff and V. I. Po-
nomarev [18], 

(4.1) Definition. A system 91 = {s/a : a e L } where s/a = {Fa, F*} for every 
a e Land all F°, F* are closed nonempty subsets of a topological space X is called 
dyadic if 

(a) 0 $ s/ai A ... A < „ (.«/,.,..., < „ e 21], 

1) f = /\A denotes the restriction of a mappingfto a set A. 
2) To be more precise, |A | < |A |Xo X, if we do not want to exclude the case |A | = 1. This 

remark is essential, however, only if Xis not a Tt -space. 
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(b) F£ n F* = 0 for every a e L. 
Here s/ai A • •• A ^ a „ denotes the so called structural intersection of the families 
•*«., ..-> < . , 1.e. ^ A ... A < . = {^1 n ... n Fan \ F'a\ e < „ i = 1, ..., w, C| = 
= 0 or et = 1}. Note that this definition diners quite unessentially from the one given 
in [17]; see also [16]. 

(4.2) Theorem. In every Urysohn1) countably compact unscattered space X there 
exists a closed separable subspace H which can be mapped onto I by a closed 
mapping. 

Proof. Without loss of generality we assume that X is dense in itself. Take °U0 = 
= {Uo, U0}> where Uo and U0 are arbitrary nonempty sets satisfying [U°] n [U0] = 
= 0. Assume that for all k ^ n — 1 we have defined pairs of nonempty open sets 
<%k = {u°9 ul} in such a way that the system {s/k = {[U£], [U*1]}: k = 0, ..., n - 1} 
is dyadic and consider the family <&n = f\{tf£k\ k = n — 1}. It is disjoint and consists 
of 2n nonempty open set: &n = {Gt\ i = 0, . . . , 2n - 1}. Since for every = 0, . . . 
..., 2" — 1 the set G{ is open and hence contains more than one point, there exist 
nonempty open sets V,0, V> such that [V?] n [V/] = 0 and V? u V> czGf. Let now 
Ue

n = \J{Vf\ i = 0, . . . , 2n - 1}, e = 0, 1 and stn = {[l/JJ], [l/J]}. Thus we obtain 
a dyadic system {stk\ k = 0 , . . . , n}. Obviously, the system s4 = {stfn\ n < co0} is 
dyadic as well. 

Since the space X is countably compact, the family ^ = /\{s/n\ n < co0} does not 
contain empty sets. Define F = f|{[^«] u [^n] : n < to0}\ Fe = F n [U*], where 
e = 0 ,1 . Note that F° u F* = F and F° n F* = 0 for every n < co09 while all F„ 
are nonempty. 

For every n < co0 consider a mapping fn\ F -> Dn = {0, 1} such that fn(F*) = 
= {e}, £ = 0, 1. It is easy to notice that the diagonal mapping f = A{fn\n < co0} \ 
\ F -> Dwo = Y\{Dn \ n < co0} maps the space F onto the space D600. Really, for 
every x e D030 according to the definition off we have 

f-\x) = n{/._1(*) ••n<co0} = n{Ff •"' : n < co0} = 
= Fn (n{[U?x•">] : n < co0} = ntftlf"0] : « < co0} . 

(Here e(x, n) = 0 if xeUn and £(x, w) = 1 if x e U*.) From the definition of the 
structural intersection it follows immediately that 

/ _ 1 W = n{ [ t f f ' n ) ] : n < co0} e V = A{sJn : n < co0} 

and hence (as stf is dyadic) f~1(x) 4= 0. 

Take an arbitrary countable set N in F such that [f(N)] = D"0. Since [N] is 
countably compact, f[N] is countably compact in D™0 and hence f[N] = [f(N)] = 
= D™0. 

*) Recall that a space X is called Urysohn if for every two points xlt x2 e X there exist neigh­
bourhoods UXl and UX2 such that [UXl] f] [UX2] = 0. 
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Let H = [ N ] , / ' = f\H : H -> Dwo and consider a surjection r : D™0 -> I (see [16]). 
To complete the proof one has to notice only that the composition h = r°f is 
a mapping of a separable countably compact closed subspace H of X onto I. 

(4.3) Remark. This theorem was proved for compacta and Cech complete spaces 
by one of the authors in the course of writing the paper [19] (see also [16], [20], [21] 
etc.). Furthermore, for these classes of spaces the converse is true as well. Namely, 
if there exists a compactum I / c I which can be mapped onto I, then X is unscat-
tered. Really, in this case the corresponding mapping / : H -> I may be chosen 
irreducible, therefore there exists a dense in itself subset S a H and hence X is 
unscattered. On the other hand, for a countably compact space X this is not true. The 
corresponding example constructed under certain additional set theoretic assump­
tions is contained in [21]. 

(4.4) Remark. One can easily generalize Theorem (4.2) to the class of G/<5subsets 
of countably compact Urysohn spaces. We shall now formulate the most general 
result of this type (see (4.5)). Since it will not be further used in the paper the proof 
is omitted. 

(4.5) Proposition. Suppose X is an Urysohn unscattered space and there exists 
a sequence of n-bases & = {&n : n < co0} (see e.g. [16]) with the following property: 

(p) if & = {Gn '• n < wo} ™ a sequence of sets where Gn e @n and [G„] <= Gn+l, 
then 0 ^ * 0-

In this case there exist a closed surjection f : H -> I where H is a closed subset ofX. 
If, moreover, 

(p') & is a base for the set f)&, 

then H can be chosen separable. 

It is easy to see that every G5 subset of a countably compact Urysohn space has 
a countable system of 7r-bases with the properties (p) and (p'). Therefore Theorem 
(4.2) is also a corollary of this proposition. 

The second group of problems considered here concerns the problem which is in 
a known sense opposite to the first one. Namely, we ascertain here some cases when 
the image f(X) of a mapping / : X -> I is so "small" in I that I \f(X) contains D™0. 
The central result in this group is the following theorem. 

(4.6) Theorem. If there is no mapping of a space X onto I, then D™0QI\f(X) 
for every mapping f :X -> I. 

Proof. Let / : X -> I be a mapping such that I 4= f(X) and consider a surjection 
r : I -> I000 = \\{ln : n < co0} (here In = I for every n < co0; the existence of such 
a mapping is ensured e.g. by [16]). Now let / = rof:X-^Im and /„ = 7i„of:X-+ 
-> I„, where nn : 1°*° -> /„ is the corresponding projection. 
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For every n < co0 take a point bn eIn\f„(X) and let a = (an)neN be an arbitrary 
point in r ° . Denote C(a) = Yl{{an> K) : n < wo}- We shall first show that C(a)\ 
\{a) c r s / ( l ) . 

Really, if x e C(a), x 4= a, then there exists n* < co0 such that nn*(x) = bn and 
hence 7rM*(x) e In \ nn*(J(X)). Therefore, obviously, xeI0i0\f(X). 

Now, since C(a) « IT0, we may find C° c C(a)\{a} such that C° « I)0"0. Take 
a compactum H cz I for which r(H) = C° and r|H is irreducible (see e.g. [10], p. 
179). It is easy to notice that r is a homeomorphism and therefore H « Dmo. 

Thus, to complete the proof we have to notice only that If cz I \f(X), but this is 
obvious, since If cz r ^ C 0 ) cz r~^I"0 \ J(X)) cz I\f(X). 

An easy consequence of Theorem (4.6) is the following 

(4.7) Proposition. Let A be a subset of I containing D™0 and M cz I, | M | < c. 
Then A\M also contains Dm. 

Proof. In case A = I this is an immediate corollary of the previous theorem. 
Suppose now that A « Dwo and consider a mapping r of A onto I (see [16] or Theo­
rem (4.2)). If M cz A, \M\ < c, then r(M) = M° cz I, |M°| < c and hence by (4.6), 
D400 « B cz I \ M°. Take now a compactum H cz A for which r(H) = B and r' = 
= r ^ is irreducible. Then r' is a homeomorphism and hence, obviously, D™0 ^ 
« I f Q A \ M . 

The following statement is well-known (see e.g. [5]). 

(4.8) Proposition. If F is a closed subset of I and |F| > K0, then DW0 Q F and 
hence |F| = c. 

Finally, we can get the following statement which is fundamental for us. 

(4.9) Proposition. If the mapping f :X -+1 is closed, M cz X and \f(X)\ > K0 

but |f(M)| < c then there exists a closed separable subset H of X, such that H cz 
czX\M and IT0 * f(H) cz I\f(M) x). 

Proof. According to (4.8), D°°Qf(X) and hence by (4.6), IT0 » K cz f(X) \ 
\ f(M). Take any countable N czf_1(K) such that f(N) = K and let H = N. 

Obviously f[N] = [f(N)] and therefore [N] cz X\M and f(H) = K. 

5. UNIVERSAL PARTITIONS 

The following two definitions present a concretization and a specification of the 
notion of a partition; they will play the basic role for the induction in the next 
section. 

1) In particular, |H| ^ c in this case. 
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Let T be a cardinal, T = Kx, and let A be a subset of a topological space X. 

(5.1) Definition. A partition 0t = {Ra : a < c} of a set A is called z-universal 
(shortly, a wT-partition) of A in X if for every K0-closed subset F in X and every 
closed mapping f: F -> I the inequality |f(F n A)| = T implies |f(F n I*a)| = c 
for all a < c. In case X = A we call ^ a ux-partition of the space X. 

(5.2) Definition. A subset A of X is called a ux-set if there exists a wT partition of A 
in X. In particular, if A = X, then X is called a ux-space. 

(5.3) Remark. We shall usually write just "w-partition" and "w-set" instead of 
"wc-partition" and "wc-set", respectively. 

(5.4) Remark. We extend formally the notions introduced in (5.1) and (5.2) to 
the case T = K0, defining a u^-partition and a u^0-set as a w^.-partition and a wXl-set, 
respectively. Besides, we usually abbreviate them as "w0-partition" and "w0-set", 
respectively. 

(5.5) Remark. Since |I| = c, it is obvious that the definitions (5.1) and (5.2) are 
substantial only if T ^ c. Therefore in what follows when speaking about wT-parti-
tions and wT-sets we shall always assume that K0 _̂  T ^ c. 

(5.6) Remark. If T = a = c, then every wT-partition is obviously a w^-partition, 
too. In particular, every wT-partition (for z fg c) is also a w-partition. The following 
proposition offers the case when the converse is true. 

(5.7) Proposition. If A is an rc-closed subset in a topological space X and 0t is 
its ux-partition, then 0t is a u0-partition of A, too. In particular, every u-partition 
of an rc-closed set is a u0-partition. 

Proof. Let F be an K0-closed set in X. Then A n F is an rc-closed set in F (3.8) 
and therefore for every closed mapping f : F -> I the set f(A n F) is rc-closed and 
hence also closed in I (see (3.11), (3.9)). If, moreover, |f(A n F)| _ z > K0 then 
by (4.8), \f(A n F)| = c. 

(5.8) Corollary. If A is an rc-closed ux-subset of a space X then A is also a w0-
subset of X. 

(5.9) Definition. A partition 01 of a space X is called hereditary with respect to 
a family & c 2X if for every F e & the system 0tF = {F n R : R e 0t\ is a parti­
tion of F. 
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(5.10) Denotation. Let ^*(X) denote the family of all K0-closed subsets F of X 
for which there exist closed mappings / : F -> I such that |f(F)| > K0. The family 
of all oversets of elements F from 2F*(X) will be denoted by ^(X), i.e. 

&(X) = {F cz X : 3F* cz F, F* G 3F*(X)}. 

Directly from the definition we get the following 

(5.11) Proposition. A u-partition 01 of a space X is hereditary with respect to 
3?(X). 

6. INDUCTION 

(6.1) Denotation. By SX(X | p), where X is a topological space, T and p are cardi­
nals, we denote the following statement SX\X | p): "For every pair of subsets A a B 
where B is rc-closed in X and |A | = p. there exists a wt-set A in X such that A cz A 
cz J5 and |AT| = p. 

CZ 

(6.2) Remark. In conformity with (5.3) we write S(X \ p) instead of St(X \ p). 
Furthermore, in conformity with (5.4) we define additionally the statement S^0(X \ p) 
as the statement S^^X | p) and write simply S0(X | p) in this case. 

(6.3) Remark. According to (5.5) the statement SX(X \ p) is substantial only for 
T ^ c. Therefore in what follows when writing SX(X | p) we shall always assume 
T ^ c Besides, it is easy to notice that the minimal p for which ST(X \ p) has an 
appropriate sense is c, so further we assume that p~t. 

(6.4) Remark. The remark (5.6) implies that if T ^ a g c and the statement 
SX(X | p) holds, then the statement SjX | p) holds as well. 

(6.5) Proposition. Let SX(X I p) hold for some cardinals T and p. If A is an rc-
closed set in a spaceX and \A\ ^ p then A is a u0-set in X. In particular, SX(X \ \x\) 
implies that X is a u0-space. 

Proof. Let B = A, then by (6.1) A is a uT-set in X and therefore (see (5.7)J A is 
also a w0-set in X. 

If p = p*° then the previous proposition can be improved in the following way: 

(6.6) Proposition. If p = p*° then the statement SX(X \ p) is equivalent to the 
statement S0(X | p). In particular, the statement S(X | p) is equivalent to S0(X | p) 
in this case. 

Proof. Supposed cz B, \A\ ^ /xand B is an rc-closed set in X. Then by (3.15) there 
exists a set AT which is rc-closed in B, and therefore by (3.6) also in X, such that A cz 
cz A <z 5 and \1\ ^ p. By (6.5), A is a u0-set and thus the statement S0(X\ p) holds. 
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The aim of this section is, roughly speaking, to show that the statement S0(X \ p) 
holds "very often". This will be proved by induction on the cardinal p. We begin 
with proving the basis for this induction, i.e., the statement S0(X | c) (recall that 
according to our assumption p ~ c). 

(6.7) Lemma. The statement S0(X | c) holds for every space X with \x\ _ c. 

Proof. Let A c B c X, |A | ^ c and let B be rc-closed in X. By (3.16) and (3.6) 
there exists an rc-closed set A in X such that | A | = c and A c A a B. Now by (2.5) 
there exists a partition 0t = {jRa : a < c} of A in X such that 

(*) |Ka n H| _ c for every a < c and every closed separable subset H c A, 
\H\ = c. 

Let now F be an K0-closed subset of X and / : F -> I — a closed mapping such 
that | /(F n A)\ > X0. To complete the proof we have to show the inequality 
| / (F n Ra)\ = c for all a. 

By (3.8) the set F = F n A is rc-closed in F and hence the mapping / ' = f\F : 
: F -> I is also closed (see (3.13)). Suppose that \f(Rao n F)| < c for some a0. Since 
obviously Ra n F = Ra n F for every a, this inequality means that \f'(RaQ n F)\ < c 
and therefore according to (4.9) there exists a separable closed subset H of F such 
that |H| = c and H n RaQ = 0. Since F is K0-closed in A the set H is also closed in A. 
The existence of such H contradicts (*). Hence | /(F n Ka)| ^ c for all a and there­
fore R is a w0-partition of A. Thus the statement S0(X \ c) holds. 

To continue the induction we need first some simple facts about chains. We begin 
with the following well-known definition. 

(6.8) Definition. A chain in a set X is a well-ordered by inclusion non-decreasing 
family s4 of subsets of X, i.e. s# = {A* : a < v}, where v is an ordinal and Ap c A* 
iff P < a < v. 

(6.9) Proposition. Let srf = {Aa : a < v} be a chain in a space X and \A*\ < T 
for all a < v. Then \\Jstf\ ̂  T. Moreover, 

(6.9.a) if cf(T) # cf(v), then \\)st\ < T; 

(6.9.b) if all A* est are closed and \Js/ # A* for a < v, then cf(v) =" d([Jst); 

(6.9.c) i/ a// Aa e s/ are closed, \Jstf =(= A* for a < v and d(U^) < cf(T), then 

| U ^ | < T. 

Proof. Consider an arbitrary subset M c= (Jstf such that |M| = T and for every 
x e M fix an ordinal a(x) < v satisfying x e Aa(x). Let j? = sup {cc(x) : x e M}\ it is 
easy to notice that /? = v (otherwise |AL |̂ _ | M | = T!). Hence cf(v) _ |M| = T and 
therefore | U ^ | = T cf(v) = T. 

Assume now that |U^/ | = T and for every A < T fix an ordinal a(A) < v such that 
|Aa(A)| > A (otherwise \\)s/\ < Acf(v) = AT = T!), therefore cf(T) = cf(v). Since the 
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converse inequality cf(v) = cf(T) is obvious we get cf(T) = cf(v) in this case and thus 
(6.9.a) holds. 

To prove (6.9.b) choose M c= \Js4 such that [M] =5 \Jstf and \M\ = d(\Jsrf) and 
let /? = sup {a(x) : x e M}. Notice that in this case ft = v, too (otherwise Ap =) M 
and hence A0 = [Ap] =D (JO> and therefore cf(v) = | M | = d(\)stf). 

Now (6.9.c) follows immediately from (6.9.a) and (6.9.b). 

(6.10) Denotation. Let stf = {A* : £ < v} be a chain in K and «* = {flf : a < c} 
a partition of A*. For every f < v and a < c let A* = \J{A*' : <f < £}, Rl = R* \ A* 
and Ra = U{^a : £ < v}. It is easy to notice that 0t* = {Ra : a < c} is a partition 
of the set A = \Js/. The following lemma specifies some properties of this partition. 

(6.1i) Lemma. For every £ < v let 0fi be a uz-partition of the set A* in X. 

(6.11.a) IfT < c, then 0t* is a ux+-partition of A^ in X. 

(6.11.b) IfT < c and cf(T) 4= cf(v), then 0t* is a ux-partition of the set A in X. 

(6.11.c) If T < c and A is rc-closed in X, then 01* is a u0-partition of A in X. 

(6.11.d) If every A* is rc-closed in X, then 01* is a u0-partition of A in X. 

Proof. We first prove the statements (6.11.a) and (6.1 l.b). Take an K0-closed 
subset F of X and a closed mappingf : F -> I satisfying |f(F n A)\ = T + in case (a) 
and |f(F n A)\ = T in case (b). It is obvious that {f(F n A^) : £ < v} is a chain 
in L Now by (6.9) in case (a) and by (6.9.a) in case (b) there exists a cardinal £0 < v, 
such that 

(*) \f(F n A*°)\ = T but 

(**) \f(F n A*°)\ = T < c. 

(Notice that £0 can be defined as £0 = min {£ < v : |f(F n A*)\ = T.) Since 0fi* is 
a t/T-partition of the set A*0 in K, the inequality (*) implies that |f(F n Rf°)| = c 
for every a < £0. Furthermore, f(F n Ra) => f(F n Ra°) => (f(F n £a°) \f(F n la°j) 
and hence by (**) |f(F n R.a)| = c for every a. But this means exactly that 0t* is 
a wT+-partition in case (a) and a wT-partition in case (b) of the set A = KJ&J in X. 

If moreover, A is rc-closed in X then by (5.7) we conclude that 0t* is a u0-partition 
of A and thus (6.H.c) holds, too. We outline now the proof of (6.H.d). By (3.8), 
(3.10), (3.6) and (3.13) in this case every f(F n A*) is closed in I and therefore, 
applying (6.9.c) to the chain {f(F n A*) : ^ < v} and taking into consideration 
Theorem (4.8) one can conclude that there exists an ordinal £0 < v, satisfying 

(*') |f(F n A«>)\ = N\ , 

(*'*') \f(F n A*°)| = K0 < K2 = T < c. 

0fi° is a «t-partition of A?0 in X and hence also a w0-partition. Therefore the ine­
quality (*') implies that |f(F n Rl°)\ ^ c for every a < <!;0. Now in the same way 
as in the proof of (6.11.a) one can show that |f(F n jRa)| = c for every a < c. But 
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this means exactly that 01* is a w0-partition of the set A in X and thus (6.H.d) is 
proved. 

(6A2) Recall that a cardinal v is called K0-unaccessible (see e.g. [11]) if k**° < v 
for every k < v. Obviously a cardinal v = (fi**°)+ is K0-unaccessible. 

(6.13) Lemma. Let the statement SX(X | k) hold for every k e \ji, v[. 

(6.13.a) If T < c, then SX+(X | v) ho/ds. 

(6.13.b) If T < c and cf(r) 4= cf(v), t/iew 5t(X | v) holds. 

(6.13.c) If T < c and v = v*°, thew S0(X | v) ho/ds. 

(6.13.d) If v is bs0-unaccessible, then S0(X | v) holds. 

Proof. Consider a pair of subsets A cz B where |A | _ v and B is rc-closed in X. 

Express A as A = {aa : a < v}. To prove (6A3.a) and (6.13.b) assume that for every 

a, a < /? < v we have defined sets Aa cz X in such a way that 

(*) axe A* a B for every a, 

(**) |Aa | = rnax( |a | , / i ) , 

(***) if a' < a, 4hen Aa' cz Aa, 

(i*) Aa is a wt-set in X. 

Let A* = {a^} u (U{-4* : a < j8}). Obviously \AP\ = |j8| /i < v. Therefore, applying 
SX(X | k), where /L = |/?| jU, to a pair Ap cz B we conclude that there exists a wt-set Ap 

such that |A^| = k and A^ c A* cz B. Take 4 ' = Ap. It is evident that Ap satisfies 
the conditions (*) — (i*) and hence one can continue the induction and get a chain 
of sets s# = {Aa : a < v} satisfying the conditions (*) —(i*). Let A = \Jstf. Then 
A c: A c: B (by (*)) and | A | = v (by (**)). Applying Proposition (6.11.a) in the case 
(a) and (6.11.b) in the case (b) we obtain that A is a wt+-set in the case (a) and a wt-set 
in the case (b). Thus (6.13.a) and (6A3.b) are proved. To get (6.13.c) we must only 
apply (6.6) to (6A3.a). 

To prove (6A3.d) we construct by induction a chain of sets $4 = {Aa : a < v} 
satisfying the conditions (*), (*'*'), (***), (i'*'), where 

(*'*') |A a | = (max( |a | , /z) ) N o , 

(iV) Aa is an rc-closed w0-set in X. 

If such sets A are already constructed for all a < /? let A? = {a^} u (U{-4a : 
a < P}). By (3.15) there exists an rc-closed set Ap such that Ap cz Ap cz B and 

= |A^|Xo = (|jS| n)*° = k < v. According to (6.5), Ap is a w0-set in X in this 
case, therefore we may define Ap = Ap and continue the induction. We complete 
the proof of (6.13.d) in the same manner as in the previous cases but employ (6.11.d) 
instead of (6.11.a) and thus conclude that A is a w0-set in this case. 

Applying the previous lemma for v = fi+ we obtain immediately the following 

(6.14) Corollary. Let the statement SX(X | n) hold. 
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(6.14.b) IfT < c, then St(X | /i+) hO/ds. 

(6.14.c)ffT < c and (/x+)Ko = ju+, then S0(X | / J + ) holds. 

(6.14.d) If/iKo = /i, then S0(X \ fi+) holds. 

(6.15) Denotation. For every ordinal a and a fixed cardinal JJ. define cardinals /*a 

by induction. Let fi0 = fi, for a = /? + 1 define jua = /x+ and if a is a limit ordinal 
let /ia = sup{/^: /? < a } . 

Thus fix is the a-th cardinal in the class K^ = {v : v ^ /z} of all cardinals which are 
not less than \i and ordered by the natural order. 

(6.16) Lemma. Let the statement SZ(X | fi) hold for some cardinals % and \i. 

(6.16.a) IfT < c and T is regular, then for every X e [/*, /*.[ the statement SX(X \ X) 
holds. Moreover, the statement SX+(X | /zr) holds, too. 

(6.16.b) If Kx < c, then for every Xe[fi,jx^±[ the statement S0(X | X) holds. 
Moreover, the statement S#2(X | /iKl) holds, too. 

(6A6.c) IfT = Kx < c and v < c, then for every X e [fi, fiv[ the statement SV(X | X) 
holds. Moreover, the statement SV+(X | /iv) holds, too. 

(6A6.d) If//*0 = n, then for every X e [//, /xWo] the statement S0(X | X) holds. 

Proof. Let X = iia where 0 < a < T and assume that for every /? < a the cor­
responding statement of the lemma is proved. To prove (6.16.a) notice first that for 
a regular cardinal the inequality cf(/za) 4= cf(T) holds (if a is a limit cardinal, then 
cf(/ia) = cf(a) ^ |a| < T = cf(T), if a = /? + 1, then /*a = /t+ and hence cf(^a) = 
= /za _ c > T = cf(Tj). Therefore, applying (6.13.b) we get the statement SX(X | X) 
and therefore also the statement SX(X | ?) for every X e [ji, / /J . Moreover, applying 
(6.13.a) we get SX+(X | jur) and thus complete the proof of (6A6.a). 

Proposition (6.16.b) is a trivial corollary of (6.16.a). 
To prove (6.16.c) we may assume that v ^ Kx (since the case v < Kx is contained 

in (6.16.b.)!). Take a < v and let a = |a|+ K t. Obviously, Kx ^ a ^ v < c and 
cf(<r) = G. As the statement 5Nl(X | \i) holds by assumption and a = K1? therefore 
the statement Sa(X | fi) is true, too. Now applying (6A6.a) to Sa(X | //) we get the 
statement Sff(X | X) for every X e [pt, / j j and therefore, obviously, the statement 
SV(X | X) holds for every X e [/z, / / J . To complete the proof of (6.16.c) we only have 
to apply (6.13.a) once again and get SV+(X | /jv). 

To prove (6.16.d) notice first th^t if a ^ cn0and/r*° = JI, then //a is K0-unaccessible. 
Therefore (6.16.d) is an immediate corollary of (6.13.d). 

(6.17) Lemma. Let the statement S(X | fi) hold for a space X and a cardinal 
ji = JUXO. Then for every X e [n, juv[ where v < c the statements SV(X | X) and 
Sv+ (X | /zv) hold. Therefore S(X | A) ho/ds for every X e [n, iiv[. 

Proof. If v fg K0 then the statement of the lemma follows directly from (6.16.d). 
Consider now v e [Ki5 c[. By (6.6) the statement S(X \ /x) is equivalent in this case 
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to the statement S0(X | JU) and hence we can apply Proposition (6A6.c) and get the 
statements SV(X | X) and SV+(X | fiv) for all X e \ji, //v[. 

Since cXo = c, from Lemmas (6.7) and (6.17) we obtain the following 

(6.18) Proposition. Let X be an arbitrary topological space and T < c. Then 

(6.18.a) SZ(X | X) holds for every X e [c, ct[, 

(6.18.b) ST->(X|ct) holds, 

and therefore 

(6.18.c) the statement S(X | X) holds for every X e [c, ct[. 

(6.19) Proposition. If there exists T < c such that the inequality c = |X| = cT 

holds, then X is a u0-space. 

Proof. By Proposition (6.18.c) the statement S(X | X) holds for every X e [c, ct] 
and in particular, for X — |X | . Hence by (6.5), X is a w0-space. 

(6.20) Corollary. Let |K| = c. Then X is a u0-space in each of the following 
cases: 

(6.20.a) if \X\ = c^; 

(6.20.b) if \X\ = tm and Kx < c; 

(6.20.c) if IK] < cc and c is a limit cardinal. 

7. SOME SET-THEORETIC AXIOMS 

To apply the results of Section 6 for deriving our main theorems in the next section 
we need some additional set-theoretic axioms which are discussed below. 

It is well-known that the statement "/?*0 _ fi+ for every infinite cardinal JA" does 
not depend on the ZFC system of axioms [11]. Moreover, it was already used by 
some authors to obtain topological results (see e.g. [22], [23]). 

(7.1) Denotation. By ACPX (The First Countable Power Axiom) we denote the 
following statement 

ACPX = 'V*0 =" 1*+ for every cardinal \i ^ c". 

In general for an arbitrary ordinal a > 0, 0 < a < c, let 

ACPa = 'V*° = \ia for every cardinal p. = c" (see (6.15)). 

Besides, if a > 1, let 

ACP(a) = "/JXO < \ia for every cardinal \i = c". 

(7.2) Remark. It is obvious that for every ordinal a, 0 < a < c, the stament ACPa 

is equivalent to the statement ACP(a + 1). Moreover, if /? = a, then the statement 
ACP(a) implies the statement ACP(jS). 
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(7.3) Denotation. By ACP (The General Countable Power Axiom) we denote the 
following statement 

ACP = "For every cardinal^ = c there exists a cardinal T < c such that /*Ko <, fiT
9. 

(7.4) Denotation. By ACP*, ACP(a)* and ACP* we denote the statements 
ACP&(Ki < c), ACP(a)&(Kx < c) and ACPa &(KX < c), respectively. 

(7.5) Remark. It is known (see e.g. [11]) that ACPf is independent of the ZFC 
system of axioms, hence the rest of the statements considered in (7.4) are also in­
dependent of the ZFC system of axioms. 

(7.6) Remark. From (7.2) it follows that if a > 1 then 

ACPf => ACP(a)# => ACP(a + 1)# o ACP*. 

If, moreover, |a|+ < c, then 

ACP* => ACP*. 

In particular, 

ACPf => ACP(co0)
# => ACP(OJ 1 )* <-> ACP*0 => ACP*. 

(7.7 Remark. It is easy to notice that ACP* is equivalent to the following state­
ment: 

[ACP(c)& (c is a limit cardinal)] V ACPT & (c = T + > Ht). 

It is just the statement ACP*, the weakest of the assumptions considered above, 
which will be employed in the next section to derive the main results. 

8. THE MAIN RESULTS 

(8.1) Theorem [ACP*]. For every topological space X with \x\ ^ cand every 
cardinal X = c there exists a cardinal T < c, for which the statement SX(X | X) 
holds. Hence the statement S(X | X) holds for every space X and every cardinal 
X = c. 

Proof. According to Lemma (6.7) the statement S0(X | c) holds for a space X 
and hence the statement S(X | c) holds, too. Assume that the statement S(X \ v) is 
already proved for every v e [c, A[. 

Let ft = Xm° (i.e. \i = min {a : a*0
 = X}). 

Obviously \x is K0-unaccessible and / i e [c , A[, hence by (6.13.d) the statement 
S0(X | p) holds. 

According to ACP* there exists a cardinal T such that n*° = /zt and therefore 

li = * = V*° ^ M. • 
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Consider now the three cases: 

(1) If 11 < A < /xXo, then obviously A e [/*, j / t[ and therefore by (6.16.c) the state­
ment SX(X | A) holds. 

(2) If A = /i*°, then Ae [/z, /zT] and Proposition (6A6.c) allows to conclude that 
at least the statement SX+(X | A) holds. But applying (6.6) we get that in this case 
the statement S0(X | A) is also true. 

(3) In the last case, i.e. A = p, the statement S0(X \ A) has been already obtained 
before. 

Thus in each of the cases the statement SX(X \ A) holds for some T < c. 
The previous theorem together with Proposition (6.5) immediately imply the 

following 

(8.2) Corollary. [ACP # ] Every topological space X with \x\ = c isau0-space. 
With the help of Proposition (5.11) we can combine Proposition (6.19) and the 

above lemma in the following way: 

(8.3) Theorem. For a topological space X with \X\ = c there exists a partition 
0t = {Ra : a < c} which is hereditary with respect to the family ^(X) *) in each 
of the following cases: 

(8.3.a) if \x\ _ cT f0r some cardinal % < c, 

(8.3.b) if ACP* holds. 

The following theorem is just another version of the previous one. 

(8.4) Theorem. For a topological space X with \x\ _ c there exists a partition 
01 — {Ra : a < c} which is a simultaneous decomposition of all closed regular 
countably compact subsets F without isolated points (i.e. [F n Ra~] = F for 
every such F and all a < c), if either (8.3.a) or (8.3.b) holds. 

Proof. Notice that according to (4.2) every closed countably compact subset F 
belongs to ^*(X). If, moreover, F is regular and has no isolated points then every 
its open subset U belongs to !F(X). Therefore Theorem (8.3) implies that [F n Ra~\ = 
= F for every Ra e 0t. 

(8.5) Corollary. If X is a Hausdorff compactum without isolated points then 
under the assumption of (8.3.aJ or (8.3.b) there exists a decomposition 0t = {Ra : 
: a < c} such that for every closed subset F without isolated points [F n Ka] = F 
holds for every a < c. 

The next two theorems (8.6) and (8.8) which we assume to be the main results of 
the work are obvious corollaries of Theorem (8.3) or (8.4). 

J) See (5.9), (5.10). 
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(8.6) Main theorem I. For every topological space X satisfying c g |X| ^ cr 

for some T < c (in particular, % = cO0) there cxlsfs a partition 01 = {K0, Rt} of X 
such that every its countably compact K0-c/Oscd regular subspace F contained 
in RE (s = 0, 1) is scattered. 

(8.7) Corollary. If X is a Hausdorff space and c ^ |X| g cT for some x < c (in 
particular, x g OJ0) then there exists a partition 01 = {K0, KJ Of X such that 
every compactum F contained in RE (s = 0, 1) is scattered. 

(8.8) Main theorem II [ACP*] . For every topological space X there exists a parti­
tion {R0, Rt} such that every its countably compact K0-c/Oscd regular subspace F 
contained in RE (s = 0, 1) is scattered. 

(8.9) Corollary. [ACP*]. For every Hausdorff space X there exists a partition 
{R0, RI] such that every compactum F contained in Re (s = 0, l) is scattered. 

(8.10) Remark. The previous results can be improved in the following way. Theo­
rems (8.6) and (8.8) remain true if F is only a G5-subset of a countably compact 
K0-closed regular subspace G of a space X. Corollaries (8.7) and (8.9) are true also 
provided F is a Cech complete subspace of X. We shall not present here these modi­
fications of our results in detail. 

9. APPENDIX I. PARTITIONING OF TOPOLOGICAL SPACES UNDER THE 
AXIOM OF CONSTRUCTIBILITY 

Assuming the Hodel axiom of constructibility [V = L] W. Weiss ([3], see also 
[4]1) has proved that 

every Hausdorff space X can be partitioned into two subsets R0 and Ri9 neither 
of which contain the Cantor set Dmo. 

Here, employing the results of Section 6 we improve this theorem of W. Weiss 
(see Theorem (9.3)). 

(9.1) Denotation. Following K. Devlin [25] we denote by DM the following 
combinatorial principle. 
There is a sequence of sets { Q : t; < p.+ and £ is a limit ordinal} such that 

(9. La) Q is closed and unbounded in £, 

(9.Lb) cf(£) < ft implies |C€| < JI, 

1) Notice that the proof of the same result in [4] (see Corollary 7) is incomplete unless the 
axiom of constructibility is assumed. 
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(9.1.c) if y is a limit point in C4 then Cy = y n Cv 

R. Jensen has shown that Godel's axiom of constructibility implies that D^ holds 
for every infinite cardinal /«. 

Recall also that the axiom of constructibility implies the GCH. 
The following lemma is just a modification of W. Weiss's Lemma 4 in [3] (see 

also Lemma 4 in [4]). 

(9.2) Lemma. [V = L]. If S0(X \ v) holds for every v _ / ^ then S0(X \ / ^ o + i ) 
holds as well. 

Proof. Let A cz B where B is an rc-closed subset of X and |A | _ ^w o + 1 (see 
(6A5)). Enumerate A as A = {a% : £ < j.i(0o+l}. Inductively we shall construct 
a system stf = {A\ : n eN, £ < /«wo + 1} with the following properties: 

( l )a.eA r ' <=#> 
( 2 ) 4 « = A r i , 

(3) | 4 | ^ /*„, 
(4) An is an rc-closed w0-set in X, 

(5) if f < £ then U { ^ ' : « G N } cz \J{An:neN}, 

(6) if .5 is a limit ordinal and \C4\ = fin then \J{An' : £' e C j cz A\. 

Assume that for all ^ < X and for all n e N the sets A\ are already constructed. 
If I = <!; -f- 1, for every n eN let An = {a j u Af. If A is a limit ordinal, consider 
m = inf {fc : \CX\ = pik} (see (9.1)) and let Ax

n = 0 for n < m and An = U{-4-j : 
: c e CA} for n _ m. Since, obviously, |A^| _ JUW and ^ ° = \in according to Proposi­
tion (3.15), there exists an rc-closed set Ak such that AnaAn^B and \An\ _ nn. 
Moreover, since S0(X \ /i„) holds, by (6.5) An is a w0-set and we let An = An. It is 
obvious that An satisfies the conditions (l) —(6) and thus we get the system stf = 
= {A* :neN, £ < /J^-n} with properties (lj — (6). Moreover, A cz (Jsf cz B. 

Let A5 = \J{A\ : neN}. Since all A\ are w0-sets, therefore A* are w0-sets, too; 
moreover, si = {A^ : f < ^Wo + i} is a chain. To complete the proof we shall show 
that A = . U ^ i s also a w0-set. 

Really, for each c; < /*W0+1 consider a w0-partition ^ = {KJ : a < f} of the set A5 

and let A*% ^*, JR|, $ a and be defined in the same manner as in (6.10). Let F be an K0-
closed subset in X and I: F -> I a closed mapping such that |f(F n A)| _ c = Kx. 
Obviously {f(F n A*) : i < lv,+ 1} is a chain in I. Let {0 = inf {£ : |f(F n A*) 
_ c}, it is easy to notice that |f(F n A*°)| _ c. We shall show that |f(F n A*0) 
_ K0. In case £0 = <̂  + 1 this is obvious. Let now £0 be a limit ordinal. Then for 
every n = m = min {fc : \Cio\ _ pik} the system {f(F n A-;) : c; e C?0} is an increasing 
chain of countable subsets of I. Therefore also the sets Bn = \J{f(F n ^t) ' £ E Q0} 
are countable, and hence the set f(F n A*0) = \J{B„:n = m} is countable, too. 
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Noticing that f(F n Ra) => (f(F n Rl°)\f(F n A*0) we can conclude that |f(F n 
n Ra)\ = c for every a < v. Hence ^ * is a w0-partition of the set A and therefore A 
is a uo^^t. Since the inequality | A | _ JUWO+1 is obvious we can conclude now that the 
statement S0(X \ lJW0+1) is true. 

The following theorem is a natural analog of Theorem (8.1). 

(9.3) Theorem [V = L]. For every topological space X and every cardinal X = c 
the statement S0(X | X) holds. 

Proof. Notice first that since the axiom of constructibility implies the GCH the 
statements S0(X | X) and S(X | X) are equivalent. 

According to (6.18.c) the statement S(X \ c) is true. Assume the correctness of the 
statement S(X \ v) for all v e [c, A[ and let \x = A1/Xo (see (8.1)). It is easy to notice 
that \x = A = lxKo and therefore either ^Ko = fi (provided cf(lx) > o;0) or JJ?° = /x + 

(provided cf(/x) = c00) [11]. Since, obviously, \i is N0-unaccessible, the statement 
S0(X | /*) holds according to (6.13.d). Hence to complete the proof we have to con­
sider the case when k = \i+, i.e. cf(/z) = co0. But in this case there exists an ordinal v 
(v = c) satisfying /x = vWo and the statement S0(X \ £) holds for every £ < vwo. 
Employing the previous lemma we get from here the statement S0(X | v^+i) as well. 
To complete the proof one only has to notice that vwo + 1 = fi+ = A in this case. 

Applying (6.5) to the previous theorem we obtain the following 

(9.4) Corollary [V = L]. Every topological space X is a u0-space. 
Quice in the same manner as Theorems (8.4) —(8.9) were derived from (8.2) one 

can easily get the following statements just from (9.4). 

(9.5) Corollary [V = L]. A topological space X with \x\ _ c has a partition 
ffl = {Ra : a < c} which is hereditary with respect to the family ?F(X) (see (5.10)). 

(9.6) Corollary [V = L]. For every topological space X there exists a partition 
{R0, Rx} such that every countably compact tt0-closed regular subset F contained 
in R8 (e = 0, 1) is scattered. 

(9.7) Corollary [V = L]. For every Hausdorff space X there is a partition 
{R0, RJ] such that every compactum F contained in RE (e = 0, 1) is scattered. 

(9.8) Corollary [V = L]. For a topological space X with \x\ = c there exists 
a partition 0t = {Ra : a < c} which is a simultaneous decomposition of all closed 
regular countably compact subsets F without isolated points. 

(9.9) Corollary [V = L]. If X is a Hausdorff compactum without isolated points 
then there exists a decomposition & = {Ra : a < c} such that for every closed 
subset F without isolated points [F n Ra~\ = F holds for every a < c . 
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10. APPENDIX II. SOME TOPOLOGICAL APPLICATIONS 
OF THE MAIN RESULTS 

Here we derive some simple corollaries of the results obtained in the previous 
sections. 

(10.1) Theorem [ACP*] V [V = L]. A Hausdorff compactum X without non-
trivial convergent sequences can be partitioned into two subsets X = R0 u Rt in 
such a way that every compactum contained in R0 or in Px is finite. 

Proof follows immediately from (8.9), (9.7) and the known fact that every scattered 
Hausdorff compactum contains a non-trivial convergent sequence [26]. 

(10.2) Remark. For the tech-Stone compactification jSN of a countable discrete 
space N the statement of the previous theorem holds without any additional set-
theoretic assumption because one can apply Proposition (2.4) instead of Theorem 
(8.7) in this case. 

The next theorem allows to discover some differences in the properties of the 
connectedness and lmear connectedness. 

Recall that a topological space is called hereditarily disconnected if it does not 
contain connected subsets of cardinality larger than 1 [27]. Analogously we shall 
call a space hereditarily linearly disconnected if it does not contain any linearly 
connected subset of cardinality larger than 1. 

It is not difficult to show that already the plane R2 cannot be partitioned into two 
hereditarily disconnected subsets R0 and Rt. The situation with the hereditarily 
linear disconnectedness is quite different: it is established by the following theorem 
(10.3). 

(10.3) Theorem [ACP*] V [V = L]. Every Hausdorff space can be partitioned 
into two hereditarily linearly disconnected subsets. 

Proof follows immediately from (8.9) and (9.7). 

11. APPENDIX III. APPLICATION TO COMBINATORIAL SET THEORY 

A well-known theorem of P. Erdos and R. Rado [28] states that for every infinite 
set X its exponent (i.e. the set of all its subsets) exp X can be represented as a union 
of two sets exp X = P0 u Px in such a way that for every infinite A e PB, e = 0, 1, 
there exists B cz A which belongs to Pt _£. The aim of this section is to obtain a certain 
generalization of this fact (Theorem 11.2)). Its proof is based on the results of Sections 
8 and 9. We begin with the following definition. 

(11.1) Definition. Let A cz X and B cz A. By the exponent of A modulo B we call 
the set 
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exp(A/i?) = {C:B c C <= A} . 

(11.2; Theorem [ACP*] V [V = L]. The exponent of an infinite set X can be 
represented as a union of two subsets exp X = P0 u Px in such a way that for every 
pair of subsets B a A satisfying \A \ B| _ K0 neither P0 wor Px contain exp (AJB). 

Proof. Define a mapping cp : exp X -* Dx (D is a discrete two-point space) by the 
equality <p(A) = Z = (Ox),, where AeexpX and Sx = 1 if x e A and 5X -= 0, if 
x $ A. It is obvious that q> is a bijection. According to Theorem (8.9) or (9.7) the 
space Dx can be partitioned into two subsets R0 and Rx in such a way that every 
compactum contained in Re, e = 0, 1 is scattered. Let PE = ^_1(K£), e = 0, 1. It is 
obvious that exp X = P0 u Pv Moreover, neither P0 nor Px contain some exp (AJB) 
with \A\B\ ^ N0. Really, if there is a pair B c A such that \A\B\ ^ K0 and exp 
(A\B) c Pe, then 

<p(exp(A/BJ) = n{Dx : x 6 . 4 \ B } x n{{0JC} : x e K \ A } x 

x n{l x} :xeB} « Z)''4\B ' c K£ 

but this contradicts our assumptions. 

(11.3) Remark. If B = 0 then Theorem (11.2) turns into the above mentioned 
theorem of P. Erdos and R. Rado (up to the set theoretic assumptions, of course). 

(11.4) Remark, The problem of representing the exponent of a set X as a union 
of two subsets neither of which contain an exponent exp (AJB) for some pair B c A 
( c X ) with infinite difference was considered by one of the authors in [7]. There, 
this problem was reduced to that of patritioning topological spaces. The technique 
employed here in the proof of Theorem (11.2) is approximately the same as in [7]. 

12. APPENDIX IV. ON QUASI-SEQUENTIAL SPACES 

The notion of an rc-closed subset of a topological space, introduced in Section 3 
and used essentially in Section 6 in the process of induction seems also interesting 
from another point of view. Namely, it allows naturally to distinguish a new class of 
spaces (the so called quasi-sequential spaces) which occupies a place between the 
class of sequential spaces and the class of spaces with countable tightness. Further­
more, the class of quasi-sequential spaces seems to be substantial in the theory of 
spaces, the topologies of which are characterized by means of countable sets. The aim 
of this section is to begin the investigation of these spaces. 

(12.1) Definition. A space X is called quasi-sequential if every its rc-closed 
subset A is closed. 

Proposition (3.9) implies immediately the following 
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(12.2) Proposition. Every sequential Tx-space X is quasi-sequential. 
On the other hand, applying (3.15) we get 

(12.3) Proposition. A quasi-sequential space X has a countable tightness. 
Moreover, |[-4]| = |A|Kofor every subset A of X1). 

(12.4) Remark. I. Juhasz [23] has constructed a hereditarily separable space X, 
every countable subset of which has a closure of cardinality 2C. This space, obviously, 
represents an example of a space with the countable tightness which is not quasi-
sequential. Recall also that a Hausdorff compactum with the properties of Juhasz's 
example was constructed later by V. Fedorcuk [29]. 

(12.5) Remark. It is easy to notice that the topological space constructed in [30, 
p. 68] is an example of a countable Hausdorff quasi-sequential space which is not 
sequential. On the other hand, according to Proposition (12.9) there cannot be 
a Hausdorff compactum with such properties. 

Applying Remark (3.2) one easily comes to the following characterization of quasi-
sequential spaces. 

(12.6) Proposition. A Tx-space X is quasi-sequential iff for every its non-closed 
subset A there exists a sequence (x„)neN which has a cluster point a in X but no 
cluster points in A. 

With the help of this characterization or just from the definitions one can easily 
come to the following fact: 

(12.7) Proposition. A quasi-sequential sequentially compact space is sequential. 

(12.8) Proposition. A countably compact Tt-space (in particular, a compact 
Tx-space) X is quasi-sequential iff every its countably compact subset A is closed 
in X(i. e. iff it is cc-closed [31]). 

Proof follows easily from Propositions (3.3) and (3.4). 

(12.9) Theorem [AM] V [LH]. A Hausdorff k-space X is sequential iff it is 
quasi-sequential. In particular, every quasi-sequential compactum is sequential. 

Proof. Let X be quasi-sequential and let A be its subset which is not closed. Then A 
is not rc-closed either, i.e., there exists a countable set M c A such that Mf n 
n (X \ A) 4= 0 but M' n A = 0. Since X is a fc-space, without loss of generality we 
can choose M in such a way that [M] is compact. According to Proposition (12.3), 
|[M]| = c. Now, applying Theorem (1.3) from [22] which is proved under the 

i) To be precise, this estimate is true if \A \ > 1 or if X is a Tt -space. 
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assumption of [AM] V [LH] we conclude that [M] is sequentially compact and 

therefore according to Proposition (12.7) the space X is sequential. 

(12.10) Proposition. If X is a quasi-sequential Trspace and f : X -> У is a closed 

surjection then Y is quasi-sequential as well. 

Proof. Take an rc-closed subset В in У According to (3.12) the preimage/ _ 1 (B) 

is rc-closed in X and hence f"1(B) is also closed in X. Therefore В = ff~l{B) is 

a closed subset in У and hence У is quasi-sequential. 
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