Casopis pro péstovani matematiky

Jurij H. Bregman; Boris Emylievich Sapirovskij; Alexander P. Sostak
On partition of topological spaces
Casopis pro péstovdni matematiky, Vol. 109 (1984), No. 1, 27--53

Persistent URL: http://dml.cz/dmlcz/118194

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/118194
http://project.dml.cz

Casopis pro p&stovini matematiky, roé. 109 (1984), Praha

ON PARTITION OF TOPOLOGICAL SPACES

Ju. BREGMAN, Riga, B. Sapirovskn, Moscow, A. SosTAk, Riga

(Received November 29, 1982)

0. INTRODUCTION

The problem considered in our paper goes back to a classical work of F. Bernstein
[1] in which he proved that in every complete separable metric space Y there is a sub-
set A such that neither A nor Y\ A contain a homeomorphic copy of the Cantor
discontinuum D*°. In its modern interpretation this problem was apparently set
for the first time by Z. Frolik about 1972. He asked whether there exists a Hausdorff
space Y such that for every its subspace A the Cantor set D“° is embeddable either
in 4 orin Y\ 4 (or, less generally, either 4 or Y\ A contains the segment I = [0, 1]).
This problem is of importance only in the case when Y is asked to be Hausdorff:
rather a simple construction of J. Pelant, J. NeSetfil and V. Rddl allows, for every
T,-space X, to find a T-space Y such that if A = Y then either A or Y\ A contains
a subset (but essentially not closed!) homeomorphic to X (see e.g. [2]).

During the recent years a number of papers devoted to this problem has appeared
(see e.g. [31, [4], [5]. [6]. [7]. [&]. [32))

In our paper all these results are improved and generalized in various directions.
First, the only topological properties of D*° and I essential in our considerations are
the countable compactness and unscatteredness. (Recall that a space I is called
unscattered if it contains a subspace which is dense in itself.)

Thus in our paper the following result is proved under some set-theoretical assump-
tions.

Theorem. In every topological space there are subspace X, and X, such that
X = X, U X, and neither X, nor X, contain a closed (in X) countably compact
regular unscattered subspace F. In particular, if X is Hausdorff, then every com-
pactum contained in X, or X, is scattered. (See theorems (8.6) and (9.7).)

The set-theoretic assumption ACP* under which we prove this theorem is essentially
weaker than the assumption ACP{ = (¥; < ¢)& (u™° < pu*) for every p 2 ¢. An
other assumption which is also sufficient for us is the axiom of constructibility
V = L. Hence this theorem improves W. Weiss’s result which is the strongest one
among the results of this kind obtained before, and which asserts that under V = L,
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in every Hausdorff space X there exist subsets X, and X, neither of which contain D®°
and X = X, u X,. 4

However, we believe that the most natural is the following general version of our
theorem (see Sections 8, 9).

Theorem [ACP#] \VJ [V = L]. For every topological space X there exists a parti-
tion (see 2.1) # = {R, : & < ¢} such that for every closed regular countably com-
pact subset F without isolated points the intersections R, n F are everywhere dense
in F for all R, (thus & = {R, : « < ¢} is a decomposition (see 2.2) for all such F
simultaneously). In particular, for every Hausdorff compact space X without
isolated points there exists a (universal) decomposition # = {R, : & < ¢} such that
if F is a closed ‘subset without isolated points then [F n R,] = F for every a < ¢.

Let us give the outline of the exposition adopted in the paper. We begin with
preliminaries where some basic notations, definitions and concepts used in the paper
are introduced and discussed. The second section also has an auxiliary character;
we prove there some elementary facts on partitions and decompositions. In the third
section the fundamental for our theory concept of a relatively countable closedness,
or rc-closzdness, is introduced and studied. Although the majority of the results
about rc-closedness obtained here are used in the basic construction (Section 6),
some are adduced only for the sake of completeness. The fourth section is devoted
to the continuous mappings with values in I. The results of this section are also
essentially used in the basic construction, but we consider them to be of interest
by themselves and therefore they are given here sometimes in a more general form than
it is necessary for our applications. In the short fifth section the notion of a t-universal
partition of a set A in a space X is introduced (it is a specification of the usual parti-
tion). This notion is basic for the induction in the proof of main results (see Section
6). We draw attention to the fact that the deepest results on the z-universal partitions
are obtained in case when the partitioned set A is rc-closed in X.

The next sixth section contains the principal amout of the technique in the whole
work. We introduce here the notion ‘‘the statement S,(X | u) holds for a space X
and cardinals T and > (Definition 6.1) and prove by induction that this statement
really holds “very often” (see e.g. (6.18)). As a corollary we obtain that “usually”
topological spaces have N;-iniversal partitions (6.19), (6.20)).

As was mentioned above, to apply the results of Section 6 for the proof of our
principal results we need some additional set-theoretic assumptions. The majority
of these assumptions are formulated and discussed in the next section — the seventh
section.

In the eighth section the set-theoretic assumptions discussed in Section 7 are applied
to the results of Section 6 to get the main theorems of the work (see (8.1)—(8.10));
some of these theorems were already stated above.

The last four sections, 9~ 12, have the nature of appendices. In Section 9 the results
of W. Weiss [3] on partition of topological spaces under the assumption of the axiom
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of constructibility are improved and generalized. The proof of this generalization is
again based on the technique of Section 6.

In Sections 10 and 11 the main results are applied to obtain some corollaries of
rather a varied nature.

The concept of an rc-closed set which is the key notion for the whole work (see
Section 4) leads us also to a new class of topological spaces called quasi-sequential
spaces. This class enters rather naturally the hierarchy of classes of spaces, the topo-
logy of which is defined by countable subsets (spaces of countable tightness, sequential
spaces etc.). Quasi-sequential spaces are studied in the last Section 12.

1. PRELIMINARIES

The notions and concepts which are used but not defined in the paper can be found
in usual handbooks on general topology, for example, in the well-known Engelking’s
book [10]. There one can find also facts and theorems used in the paper if no other
reference is given.

No separation axiom is assumed unless explicitly stated. All mappings of topo-
logical spaces are continuous. A mapping f: X — Y is called an injection if it is
one-to-ome, i.., if x; % x, implies f(x,) # f(x,). A mapping f:X — Y is called
a surjectionif f(X) = Y. A mapping which is both a surjection and an injection is
called a bijection.

Script letters always signify a family of sets, while capital letters are usually used
to denote topological spaces and ssts. Spzcifically, the letters X, Yand Z will always
signify topological spaces. Small Greek letters are used only for cardinals and
ordinals. We do not distinguish in notations between a cardinal = and the minimal
ordinal of the cardinality . Moreover, somstimes we identify in notations an ordinal ©
and the set T(t), consisting of all ordinals ¢ less than 7. Thus the equality © = T(r)
means exactly that t is a cardinal. Nevertheless, following the tradition we use for
a countable cardinal and the first uncountable cardinal either the notations w, and @,
or the notations ¥, and N, respectively. If 7 is a cardinal then t* denotes the least
cardinal larger than 7; cf(z) means, as usual, the cofinal character of the cardinal =
(see e.g. [11]). If A is a set, then | 4| denotes the dardinality of 4. As usual, we write ¢
for the cardinality of continuum.

Let X be a topological space and A its subset. Then [4]y or simply [4] denotes
the closure of 4 in X, A’ denotes the set of limit points of A. The notation d(X)
stands for the density of the space X. As usual, we use R and I, respectively, as
designations for the real line and the segment [O, 1] endowed with the usual topology,
N is the set of all natural numbers.

Let Lbe a linearly ordered set with a linear order < and let , € L. Then we
write shortly [, 8], [« B[, ] B] and Ja, B[ instead of {x:xeL, « < x < B},
{x:xeL a2x<p}, {x: xeL, a <x < B} and {x:xeL, & <x < B}, respec-

- tively.
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The notation X = Y will mean that spaces X and Y are homeomorphic, XQ Y
will mean that X is homeomorphic to a subset X of Y while X Q Y will mean that X
is homeomorphic to a closed subset X of Y. ol

2. SOME ELEMENTARY FACTS ON PARTITIONS

Although the next two definitions are well-known and have been used ;by various
authors we reproduce them here both for the sake of completeness and to specify
these fundamental for our paper notions.

(2.1) Definition. A disjoint family £ of subsets of a set X is called a partition of X
(or a partition in X) if U{R : Re #} =

(2.2) Definition. If # is a partition of a topological space X and [R] = X for every
R € & then Z is called a decomposition of X.
The next result can be found e.g. in [12], p. 434:

(2.3) Proposition. Let & be a family of subsets of a set X, |97| < 7 and |F| =T
for every F € F. Then there exists a partition # = {R, : ¢ < t} of the set X such
that |R,7 N F| = 1 for every ¢ < T and every Fe &.

This proposition leads one easily to the following statement which was already
used in A. V. Archangelskij’s paper [9].

(2 4) Proposition. Let X be a topological space such that |X|’1 |X| =1 and
={F:Fc X, |F| =, d(F) £ A}. Then there exists a partition & = {R, :

10 <1} of the set X such that |R, " F| = t for allo and all Fe &

Proof. Every closed subset F of X with d(F) < 1 is uniquely determined by a set
G c F of cardinality 1. Hence lgf' | < |X1‘1 = 7 and therefore the assertion of (2.4)
follows immediately from (2.3).

The last proposition implies the following well-known statement (see e.g. [12],
p. 524).

(2.5) Corollary. In every topological space X of cardinality ¢ there exists a parti-
tion # = {R,:0 < ¢} such that [R, " F| = ¢ for every o < ¢ and every closed
separable subset F of cardinality c.

3. RELATIVELY COUNTABLY CLOSED SUBSETS

The notion of a relatively countably closed set, which is defined below and plays
a fundamental role in our theory, belongs to the sort of “folklore” notions. Many
authors have used it without giving it a special name in various constructions and
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proofs. For example, practically all constructions of countably compact extensions
of topological spaces as well as completions of countably compact spaces are based
on this notion; it was also essentially used by A. Gryzlov [13], W. Comfort [14],
[15] and others.

(3.1) Definition. A subset A < X is called relatively countable closed (or relatively
countably compact, if one prefers it) in X if every countable set N = A which is
not closed in X, is not closed in 4 either (i.e., N' & @ implies 4 U N’ + 0). We shall
usually abbreviate“relatively countably clossd” as “‘rc-closed”.

(3.2) Remark. One can easily notice that a subset 4 of a Tj-space X is rc-closed
iff every sequence (x,) n € N which has a cluster point x, in X also has a cluster point
age A. .

The proofs of the following propositions about rc-closed subsets are obvious and
therefore omitted.

(3.3) Proposition. Every countably compact subset A of a Ty-space X is rc-closed
in X.

(3.4) Proposition. If X is a countably compact Ty-space and A is rc-closed in X,
then A is countably compact.

(3.5) Proposition. Every No-closed") (and therefore also every closed) subset A
of a space X is rc-closed in X.

(3.6) Proposition. If A = B < X and A is rc-closed in B while B is rc-closed in X,
then A is rc-closed in X as well.

(3.7) Proposition. I[f A =« B =« X and A is rc-closed in X, then A is rc-closed in B
as well.

(3.8) Proposition. If A is rc-closed in X and F is Ny-closed in X, then AN F is
rc-closed in F.

Proof. The intersection A N F is obviously Ny-closed in 4 and hence by (3.5)
A n Fisrc-closed in A. Therefore by (3.6) A N F is re-closed in X and hence also in F.

(3.9) Proposition. Every rc-closed subset A of a Ty-space X is sequentially closed®)

1) A subset 4 of X is called Ny-closed if [A)y, = 4, where [Alx, = U{[Nlx: N < 4,
N < No}. Obviously every closed set is sure to be Nj-closed. It is known (and easy to be
checked that a space X has a countable tightness (i.e. #(X) < N,) iff every its Ny-closed subset
is closed.

2 ) A subspace 4 of X is called sequentially closed in X if A contains the limits of all its con-
verging sequences. A space X is called sequential if every its sequentially closed subset is closed.
For example, all first countable spaces are sequential.
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in X. Hence in a sequential Ty-space every rc-closed subspace is closed.
The proof immediately follows from (3.2).

(3-10) Remark. From (3.5) and (3.9) we conclude that if X is a T;-space, then every
its N,-closed set is rc-closed and every rc-closed set is sequentially closed. The con-
verses do not hold — for examples see (12.4) and (12.5).

(3-11) Proposition. Let X, Y be topological spaces. where Y is moreover a Ty-space,
and f: X = Y a closed mapping. If A is an rc-closed subset in X, then f(A) is an
rc-closed subset in Y.

Proof. Let M = {y,:neN} = f(4) and M’ n (Y\f(A4)) + 0. We have to show
that in this case M’ N f (A) #* @, too. Since Yis a T,-space, wihout loss of generality
we may assume that y,  y,, if n & m. For every ne N take x,€f~*(y,) n 4 and
consider aset P = {x, :n€ N} < A. This set is not closed in X (otherwise M = f(A4)
would be closed!) and since 4 is an rc-closed set, there exists x, € P’ N A4. It is easy
to notice that y, = f(x,) is an accumulation point for M and hence M’ n f(4) =+ 0.

(3.12) Proposition. Let f: X — Y be a closed mapping, X a Ty-space and B an
re-closed subset of Y. Then the preimage f ~(B) is an rc-closed subset in X.

Proof. Notice first that without Joss of generality one can assume that f is a bijec-
tion and hence Y is a T;-space, too. Really, since f is closed, the image Y, = f(X) is
a closed T;-subspace of Y, and we may speak about the preimage of the set B, = B n
N Y, instead of the preimage of the set B.

Let xo € X be a cluster point of a sequence (x,),ey <= f~'(B) where x, # x,, if
n + m and consider the sequence (y, = f(X,))nen- Obviously yo = f(xo) is its cluster
point and hence there exists a cluster point b, € B. Moreover, without loss of gener-
ality one can assume that y, # b, for every ne N, and therefore x, ¢ f~'(b,) for
every ne N. Now to complete the proof it is sufficient to show that there exists
ay € f~Y(b,) which is a cluster point of (x,),cy-

Really, otherwise since X is a Tj-space there would be a neighbourhood U of
J~1(b) such that (x,),.y = X \U and therefore f(X \ U) would be a closed set in ¥
which contains the whole sequence (y,),.y but not b.

(3-13) Proposition. Let f: X — Y be a closed mapping, where Y is a sequential
T,-space and A an rc-closed subset of X. Then f(A) is closed in Y. Moreover, the
mapping f' = f|,: A - Y is closed").

Proof. The first statement follows directly from (3.11) and (3.5). Now the second
can be easily obtained from (3.8) and (3.9).

(3-14) Remark. In case of a countably compact set A the propositions (3.9), (3.11)
and (3.13) are well-known and easily proved.
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(3.15) Proposition. For every set A = X there exists an rc-closed set A in X such
that A = 4 and |4] £ |4]*?).

Proof. Let A, = A and suppose that for every ¢ < f where f§ < w; we have
definzd s=ts A, = X in such a way that the following three conditions hold:

(a) |Ad| = [4]*,

(b) if &’ < a then A4,. = A,,

(c) if ' <, (o *a) M c A,, |M| £ 8 and M’ % 0, then M' N 4, + 0.

Let Ay = U{A4, : « < B}, and for every countable set M = Aj satisfying M’ = 0
take a point x(M) € M’ and define 4; = A5 U {x(M): M < A}, |M| £ Ry, M’ + 0}.
Obviously A satisfies the conditions (b) and (c). To check the condition (a) notice
that |4, = [431% = (X JA)% = (sl = |4

Let now 4 = U{4;:8 < w,}. Since cf(w,) = w; > w,, the conditions (b)
and (c) allow us to conclude that A4 is rc-closed in X. On the other hand, by (a) we
have || £ o,|4,| = o, |4 = |4[* ).

(3.16) Corollary. If A = X and |A| < ¢ then there exists an rc-closed set A in X
which contains A and I/T, <-c

Appyling Proposition (3.4) to (3.15) one obtains (3.16)

(3.17) Corollary. If X is a countably compact Ty-space then for every A = X
there exists a countably compact set A = X which contains A and |4| < |A[™;
in particular, if |A| < ¢, then IE] <e

4. SOME REMARKS ON MAPPINGS INTO I

The first type of problems considered here is the problem of discovering such
subssts in topological spaces which can be (continuously) mapped onto the segment
I = [0, 1]. The method employed here is the one which is essentially developed in
[16]. It is based on the notion of a dyadic system defined by B. Efimov in 1970 [17]
and as a matter of fact goes back to the paper pf P. S. Aleksandroff and V. 1. Po-
nomarev [18].

(4.1) Definition. A system U = {&/,:xeL} where o, = {Fy, F.} for every
ae Land all F2, F! are closed nonempty subsets of a topological space X is called
dyadic if

(@ 0Ly Ao Ay, (Hoysovs Ay €N),

1y £’ = f| 4 denotes the restriction of a mapping fto a set A.

2) To be more precise, |4| < |4|%° N, if we do not want to exclude the case |4| = 1. This
remark is essential, however, only if X is not a T;-space.
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(b) F? N F! = 0 for every ae L.
Here o/, A ... A o,, denotes the so called structural intersection of the familics
Ao ooy Dgpic LGN o Ny, ={Fin...0Fr:Flledd,, i=1,..,n¢=
= 0 or¢g; = 1}. Note that this definition differs quitc unessentially from the one given
in [17]; see also [16].

(4.2) Theorem. In every Urysohn*) countably compact unscattered space X there
exists a closed separable subspace H which can be mapped onto I by a closed
mapping.

Proof. Without loss of generality we assume that X is dense in itself. Take %, =
= {U3g, Uy}, where UJ and Uj are arbitrary nonempty sets satisfying [Ug] n [Ug] =
= (. Assume that for all k £ n — 1 we have defined pairs of nonempty open sets
U, = {Uy, Uy} in such a way that the system {&/, = {[U}], [U;]}:k =0,...,n — 1}
is dyadic and consider the family 4, = A{%,: k < n — 1}. It is disjoint and consists
of 2" nonempty open set: 4, = {G;: i =0,...,2" — 1}. Since for every =0, ...
..., 2" — 1 the set G, is open and hence contains more than one point, there exist
nonempty open sets V¢, V' such that [V’] n [V}'] = @ and ¥? U V! =G,. Let now
Ur=U{V:i=0,..,2" -1}, e = 0,1 and o, = {[Uy], [U,]}. Thus we obtain
a dyadic system {&,: k = 0, ..., n}. Obviously, the system & = {&,: n < w,} is
dyadic as well.

Since the space X is countably compact, the family ¥ = A{s/,: n < w,} does not
contain empty sets. Define F = N{[Ur] v [Us]:n < wo}; Fi = F n [Uy], where
e =0, 1. Note that FO U F! = F and F? n F}! = 0 for every n < w,, while all F,
are nonempty. ,

For every n < w, consider a mapping f, : F —> D, = {0, 1} such that f,(F;) =
= {e}, e = 0, L. It is easy to notice that the diagonal mapping f = 4{f,:n < wo} :
:F - D = [[{D, :n < w,} maps the space F onto the space D“°. Really, for
every x € D®° according to the definition of f we have

=) = N{fr (%) :n < 0} = N{F&Y 1 n < 0o} =
=F o (N{[U"] 1 n < wo} = N{[U*™] :n < wo} .

(Here &(x, n) = 0 if x € Uy and &(x, n) = 1 if x € U,.) From the definition of the
structural intersection it follows immediately that

F7x) = N{[U"] :n < wo} €9 = A{, 1 n < 0o}
and hence (as & is dyadic) f ~!(x) #+ 0.
Take an arbitrary countable set N in F such that [f(N)] = D“. Since [N] is

countably compact, f[N] is countably compact in D*° and hence f[N] = [f(N)] =
= D°,

1) Recall that a space X is called Urysohn if for every two points xy, x, € X there exist neigh-
bourhoods Uy, and Uy, such that [Ux,] () [Ux,] = 0.
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Let H = [N],f' = f|lu : H — D* and consider a surjection r : D*° — I (see [16]).
To complete the proof one has to notice only that the composition k = ro f' is
a mapping of a separable countably compact closed subspace H of X onto I.

(4.3) Remark. This theorem was proved for compacta and Cech complete spaces
by one of the authors in the course of writing the paper [19] (see also [16], [20], [21]
etc.). Furthermore, for these classes of spaces the converse is true as well. Namely,
if there exists a compactum H < X which can be mapped onto I, then X is unscat-
tered. Really, in this case the corresponding mapping f: H - I may be chosen
irreducible, therefore there exists a dense in itself subset S « H and hence X is
unscattered. On the other hand, for a countably compact space X this is not true. The
corresponding example constructed under certain additional set theoretic assump-
tions is contained in [21].

(4.4) Remark. One can casily generalize Theorem (4.2) to the class of G,subsets
of countably compact Urysohn spaces. We shall now formulate the most general
result of this type (see (4.5)). Since it will not be further used in the paper the proof
is omitted.

(4.5) Proposition. Suppose X is an Urysohn unscattered space and there exists
a sequence of n-bases B = {B, : n < w,} (see e.g.[16]) with the following property:

(p) if 9 = {G,:n < w,} is a sequence of sets where G, € B, and [G,] = G,,,,
then N% + 0.

In this case there exist a closed surjection f : H — I where H is a closed subset of X .
If, moreover,

(p') 9 is a base for the set N¥,

then H can be chosen separable.

It is easy to sce that every G; subset of a countably compact Urysohn space has
a countable system of z-bases with the properties (p) and (p’). Therefore Theorem
(4.2) is also a corollary of this proposition.

The second group of problems considered here concerns the problem which is in
a known sense opposite to the first one. Namely, we ascertain here some cases when
the image f(X) of a mapping f : X — I is so “small” in I that I \ f(X) contains D®°.
The central result in this group is the following theorem.

(4.6) Theorem. If there is no mapping of a space X onto I, then D*° Q I\ f(X)
for every mapping f: X — I.

Proof. Let f : X — I be a mapping such that I = f(X) and consider a surjection
r:l -1 =J[{I,:n < we} (here I, =1 for every n < w,; the existence of such
a mapping is ensured e.g. by [16]). Nowlet f=rof: X > I and f, = m,o f : X —
- I,, where =, : I° — I, is the corresponding projection.
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For every n < w, take a point b, € I, \ ﬁ,(X) and let a = (a,)nn be an arbitrary
point in 1*°. Denote C(a) = H{{a", b,}:n < wo}. We shall first show that C(a)\
\{a) e I\ f(X).

Really, if x € C(a), x # a, then there exists n* < w, such that z,.(x) = b, and
hence 7,4(x) € I, \ 7,.( /(X)) Therefore, obviously, x e I°\ f(X).

Now, since C(a) ~ D™, wz may find C°® = C(a)\ {a} such that C® ~ D®°. Take
a compactum H < I for which r(H) = C° and r|y is irreducible (see e.g. [10], p.
179). 1t is easy to notice that r is a homeomorphism and therefore H ~ D“°.

Thus, to complete the proof we have to notice only that H < I\ f(X), but this is
obvious, since H < r~}(C°) < r {(I*°\ J(X)) = I\ f(X).

An easy consequence of Theorem (4.6) is the following

4.7) Proposifion. Let A be a subset of I containing D*° and M < I, |M| <e
Then A\ M also contains D*°.

Proof. In case A = I this is an immediate corollary of the previous theorem.
Suppose now that 4 ~ D" and consider a mapping r of 4 onto I (see [16] or Theo-
rem (4.2)). If M < 4, |M| < ¢, then r(M) = M° = I, [M°| < ¢ and hence by (4.6),
D® ~ B < I\ M°. Take now a compactum H < A for which r(H) = B and r' =
= rl,, is irreducible. Then ' is a homeomorphism and hence, obviously, D“° =
~HQANM.

The following statement is well-known (sec e.g. [5]).

(4.8) Proposition. If F is a closed subset of I and IFI > Ny, then D*°Q F and
hence |F| =c
Finally, we can gzt the following statement which is fundamental for us.

(4.9) Proposition. If the mapping f:X — I is closed, M = X and |f(X)| > N,
but If(M)l < ¢ then there exists a closed separable subset H of X, such that H <
c X\M and D*™ ~ f(H) = INf(M) 1)

Proof. According to (4.8), D O f(X) and hence by (4.6), D*° ~ K < f(X)\
\f(M). Take any countable N = f~!(K) such that f(N) =K and let H = N.
Obviously f[N] = [f(N)] and therefore [N] =« X\ M and f(H) = K.

5. UNIVERSAL PARTITIONS
The following two definitions present a concretization and a specification of the
notion of a partition; they will play the basic role for the induction in the next
section.

1y In particular, |[H| = ¢ in this case.
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Let 7 be a cardinal, T > N,, and let 4 be a subset of a topological space X.

(5.1) Definition. A partition # = {R,:a < ¢} of a set A is called t-universal
(shortly, a u.-partition) of A4 in X if for every N,-closed subset F in X and every
closed mapping f:F — I the inequality |f(F N A)l > 1 implies |f(F ) Ra)l >c
for all « < ¢. In case X = A4 we call Z a u.-partition of the space X.

(5.2) Definition. A subset 4 of X is called a u,-set if there exists a u, partition of A
in X. In particular, if A = X, then X is called a u,-space.

(5.3) Remark. We shall usually write just “u-partition” and “u-set” instead of
“ue-partition” and ‘‘u-set”, respectively.

(5.4) Remark. We extend formally the notions introduced in (5.1) and (5.2) to
the case 1 = N, defining a uy,-partition and a uy -set as a uy -partition and a uy -set,
respectively. Besides, we usually abbreviate them as ‘“‘ug-partition” and ‘‘u,-set”,
respectively.

(5-5) Remark. Since |I| = ¢, it is obvious that the definitions (5.1) and (5.2) are
substantial only if T < ¢. Therefore in what follows when speaking about u -parti-
tions and u_-sets we shall always assume that N, < 7 < ¢.

(5-6) Remark. If 7 < ¢ < ¢, then every u.-partition is obviously a u,-partition,
too. In particular, every u-partition (for t < ¢) is also a u-partition. The following
proposition offers the case when the converse is true.

(5.7) Proposition. If A is an rc-closed subset in a topological space X and & is
its u-partition, then Z is a uy-partition of A, too. In particular, every u-partition
of an rc-closed set is a uy-partition.

Proof. Let F be an Ny-closed set in X. Then A n F is an rc-closed set in F (3.8)
and therefore for every closed mapping f : F — I the set f(4 n F) is rc-closed and
hence also closed in I (see (3.11), (3.9)). If, moreover, |f(A N F)| = © > N, then
by (4.8), |f(AnF)| = ¢

(5.8) Corollary. If A is an rc-closed u~subset of a space X then A is also a uy-
subset of X.

(5.9) Definition. A partition # of a space X is called hereditary with respect to
a family & < 2% if for every F e & the system %y = {F n R: Re &} is a parti-
tion of F.
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(5.10) Denotation. Let #*(X) denote the family of all N,-closed subsets F of X
for which there exist closed mappings f : F — I such that |f(F)| > No. The family
of all oversets of elements F from & *(X) will be denoted by Z (X), ie.

F(X)={F <« X:3F* c F, F*e F*(X)} .
Directly from the definition we get the following

(5.11) Proposition. A u-partition & of a space X is hereditary with respect to
F(X).

6. INDUCTION

(6.1) Denotation. By S/(X | 1), where X is a topological space, 7 and u are cardi--
nals, we denote the following statement SyX | 1): “For every pair of subsets 4 < B
where B is rc-closed in X and |4| < p there exists a u~set 4 in X suchthat 4 = 4 <
< Band I/T } s

(6.2) Remark. In conformity with (5.3) we write S(X | ) instead of S¢(X | ).
Furthermore, in conformity with (5.4) we define additionally the statement Sy,(X | 1)
as the statement Sy, (X | u) and write simply So(X | 1) in this case.

(6.3) Remark. According to (5.5) the statement S/(X | p) is substantial only for
© < ¢. Therefore in what follows when writing S,(X ] 1) we shall always assume
7 < ¢ Besides, it is easy to notice that the minimal u for which S/(X l 1) has an
appropriate sense is ¢, so further we assume that u > «¢.

(6.4) Remark. The remark (5.6) implies that if t < ¢ < ¢ and the statement
S(x l 1) holds, then the statement S (X I p) holds as well.

(6.5) Proposition. Let S,(X | ) hold for some cardinals © and p. If A is an rec-
closed set in a space X and |A < pthen Ais a ug-set in X. In particular, S(X | IXI)
implies that X is a ug-space.

Proof. Let B = A, then by (6.1) 4 is a u,-set in X and therefore (sce (5.7)) 4 is
also a u,-set in X.
If p = u™ then the previous proposition can be improved in the following way:

(6.6) Proposition. If u = u™° then the statement S{(X | 1) is equivalent to the
statement So(X | n). In particular, the statement S(X | p) is equivalent to So(X | )
in this case. .

Proof. Suppose A < B, |4| < pand Bis an rc-closed set in X. Then by (3.15) there
exists a set 4 which is rc-closed in B, and therefore by (3.6) also in X, such that 4 <
< A< Band |4] < p. By (6.5), 4 is a u,-set and thus the statement So(X | 1) holds.
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The aim of this section is, roughly speaking, to show that the statement So(X | 1)

holds ‘‘very often”. This will be proved by induction on the cardinal u. We begin
* with proving the basis for this induction, i.e., the statement SO(X | t) (recall that
according to our assumption u = ¢).

(6.7) Lemma. The statement So(X | ¢) holds for every space X with |X| =c

Proof. Let A =« B c X, IAI < ¢ and let B be rc-closed in X. By (3.16) and (3.6)
there exists an rc-closed set 4 in X such that |4| = eand 4 = 4 = B. Now by (2.5)
there exists a partition # = {R, : « < ¢} of 4 in X such that _

(*) |R,, N H| > ¢ for every o < ¢ and every closed separable subset H < 4,
]H | = ¢

Let now F be an N,-closed subset of X and f: F - I — a closed mapping such
that | f(Fn /I), > Ny To complete the proof we have to show the inequality
|f(F A R,)| = ¢ for all a.

By (3.8) the set F = F n 4 is rc-closed in F and hence the mapping f’ = flp :
: F > I is also closed (see (3.13)). Suppose that |f(R,, N F)| < ¢ for some o,. Since
obviously R, n F = R, n F for every «, this inequality means that | f'(Ree 0 F )| <c¢
and therefore according to (4.9) there exists a separable closed subset H of F such
that |H| 2 c¢and H N R,, = 0. Since F is ¥y-closed in 4 the set H is also closed in 4.
The existence of such H contradicts (*). Hence |f(F N R,)| 2 ¢ for all « and there-
fore R is a uq-partition of 4. Thus the statement So(X I ¢) holds.

To continue the induction we need first some simple facts about chains. We begin
with the following well-known definition.

(6.8) Definition. 4 chain in a set X is a well-ordered by inclusion non-decreasing
family o/ of subsets of X, i.e. & = {4* : ¢ < v}, where v is an ordinal and 4* < 4*
ff f<a<w

(6.9) Proposition. Let o/ = {A*:« < v} be a chain in a space X and |A"| <7
for all o < v. Then [U&/I < 1. Moreover,

(6.9.a) if cf(z) + cf(v), then |U| < ;

(6.9.b) if all A*e o are closed and Usl + A* for a < v, then cf(v) < d(U~);
| (6.|9.c) if all A€ s are closed, Ust + A® for a < v and d(U) < cf(c), then
U < 1.

Proof. Consider an arbitrary subset M < |J&f such that |M I = 7 and for every
x € M fix an ordinal o(x) < v satisfying x € A*®. Let B = sup {a(x) : x e M}; it is
easy to notice that 8 = v (otherwise |A”| > IM | = 1!). Hence cf(v) £ lM l = 7 and
therefore |UsZ| < tcf(v) = .

Assume now that [U.sa’l l = 7 and for every A < 7 fix an ordinal a(4) < v such that
IA“‘“I > 1 (otherwise |UsZ| < Acf(v) < At = 1!), therefore cf(z) < cf(v). Since the
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converse inequality cf(v) < cf() is obvious we get cf(t) = cf(v) in this case and thus
(6.9.2) holds.

To prove (6.9.b) choose M = U such that [M] > s/ and [M| = d(Us/) and
let B = sup {«(x) : x € M}. Notice that in this case § = v, too (otherwise A* > M
and hence 4”7 = [4*] > Us/), and therefore cf(v) < [M| = d(U+).

Now (6.9.c) follows immediately from (6.9.a) and (6.9.b).

(6.10) Denotation. Let o/ = {A°: ¢ < v} be a chain in X and %° = {R}:a < c}
a partition of A% Forevery ¢ < vand a < clet 4° = J{4% : & < &}, R = RiNA°
and R, = U{R: ¢ < v}. It is easy to notice that #* = {R,: « < ¢} is a partition
of the set 4 = /. The following lemma specifies some properties of this partition.

(6.11) Lemma. For every ¢ < v let #° be a u_-partition of the set A® in X.
(6.11.a) If © < ¢, then R* is a u,,-partition of A*in X.

(6.11.b) If = < ¢ and cf(t) # cf(v), then &* is a u -partition of the set A in X.
(6.11.c) If T < c and A is re-closed in X, then &* is a uy-partition of 4 in X.
(6.11.d) If every A% is rc-closed in X, then ®* is a uy-partition of 4 in X.

Proof. We first prove the statements (6.11.a) and (6.11.b). Take an Ny-closed
subset F of X and a closed mapping f : F — I satisfying | f(Fn ﬁ), > 7% in case (a)
and |f(F n A)| = 7 in case (b). It is obvious that {f(F n 4%):¢ < v} is a chain
in I. Now by (6.9) in case (a) and by (6.9.a) in case (b) there exists a cardinal &, < v,
such that

(*) |[f(F n 4%)| 2 © but

(**) lf(F N A~¢°), <7<e¢
(Notice that &, can be defined as &, = min {& < v :|f(F n 4%)| 2 t.) Since %% is
a u.-partition of the set A% in X, the inequality (x) implies that |f(F n R¥)| = ¢
for every a < &,. Furthermore, f(F n R,) = f(F n R¥) o (f(F n RP)\f(F n 4%))
and hence by (xx) |f(F n R,)| 2 ¢ for every a. But this means exactly that %* is
a u,,-partition in case (a) and a u,-partition in case (b) of the set 4 = U in X.

If moreover, A4 is rc-closed in X then by (5.7) we conclude that #* is a u,-partition
of 4 and thus (6.11.c) holds, too. We outline now the proof of (6.11.d). By (3.8),
(3-10), (3.6) and (3.13) in this case every f(F n A°) is closed in I and therefore,
applying (6.9.c) to the chain {f(F n 4°):¢ < v} and taking into consideration
Theorem (4.8) one can conclude that there exists an ordinal £, < v, satisfying

(*) [F(F n a®)| 2 8,
(*’*’) |f(F N /‘F°)l SXo<¥N; =St<e

A% is a u -partition of 4% in X and hence also a u,-partition. Therefore the ine-
quality («') implies that |f(F n R®)| 2 ¢ for every « < &. Now in the same way
as in the proof of (6.11.a) one can show that |f(F n R,)| 2 ¢ for every a < ¢. But
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this means exactly that #* is a u,-partition of the set 4 in X and thus (6.11.d) is
proved.

(6.12) Recall that a cardinal v is called Ny-unaccessible (see e.g. [11]) if A% < v
for every A < v. Obviously a cardinal v = (u™°)* is Ny-unaccessible.

(6.13) Lemma. Let the statement S(X | A) hold for every i€ [p, v[.
(6.13.2) If © < ¢, then S,+(X | v) holds.

(6.13.b) If © < ¢ and cf(z) # cf(v), then S(X | v) holds.

(6.13.c) If T < ¢ and v = V™, then So(X i v) holds.

(6.13.d) If v is No-unaccessible, then So(X | v) holds.

Proof. Consider a pair of subsets 4 = B where |A| =< v and B is rc-closed in X.
Express A as A = {a, : « < v}. To prove (6.13.a) and (6.13.b) assume that for every
o, o < f§ < vwe have defined sets A* = X in such a way that

(*) a,€ A* = B for every «,
(*%) A% < max (Iocl, 1),
(***) if o < a,.then A% < A°%
(i*) A% is a u-set in X.
Let A% = {a,} U (U{4*: @ < B}). Obviously I/_l”l < |B| i < v. Therefore, applying
S(X l ), where 1 = I ﬁl i, to a pair A? = B we conclude that there exists a u_-set A*
such that ‘Z”| < A and Af ¢ 4# < B. Take A? = AP. It is evident that A® satisfies
the conditions (x)—(ix) and hence one can continue the induction and get a chain
of sets o = {A*:a < v} satisfying the conditions (x)—(ix). Let 4 = Js/. Then
A < A = B(by (x)) and |/T | < v (by (*x)). Applying Proposition (6.11.a) in the case
(a) and (6.11.b) in the case (b) we obtain that 4 is a u,.-set in the case (a) and a u,-set
in the case (b). Thus (6.13.a) and (6.13.b) are proved. To get (6.13.c) we must only
apply (6.6) to (6.13.a).

To prove (6.13.d) we construct by induction a chain of sets o = {4*:a < v}
satisfying the conditions (), (x'#), (xxx), (i'+"), where

(¢'#) |47] < (max (Ja], )™,

(') A*is an re-closed ug-set in X.

If such sets A are already constructed for all o < B let 4% = {a,;} L (U{4*:
ta < B}). By (3.15) there exists an rc-closed set A” such that 4’ ¢ 4” = B and
|4%| < |4°* = (|B| )™ = 4 < v. According to (6.5), A% is a ug-set in X in this
case, therefore we may define A* = 4” and continue the induction. We complete
the proof of (6.13.d) in the same manner as in the previous cases but employ (6.11.d)
instead of (6.11.a) and thus conclude that A is a u,-set in this case.

Applying the previous lemma for v = u* we obtain immediately the following

(6.14) Corollary. Let the statement S(X | u) hold.
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(6.14.) If © < ¢, then S(X | u*) holds.
(6.14.c) If T < e and (u*)° = u*, then So(X | 1*) holds.
(6.14.d) If u™ = p, then So(X | u*) holds.

(6.15) Denotation. For every ordinal « and a fixed cardinal p define cardinals g,
by induction. Let yq = p, for a = § + 1 define p, = u; and if o is a limit ordinal
let p, = sup {p;: B < a}.

Thus g, is the a-th cardinal in the class K, = {v : v 2 u} of all cardinals which are
not less than u and ordered by the natural order.

(6.16) Lemma. Let the statement S(X | ) hold for some cardinals © and p.

(6.16.a) If © < ¢ and 7 is regular, then for every Je (1, [ the statement S(X | 2)
holds. Moreover, the statement S.+(X | ) holds, too.

(6.16.b) If ¥, < ¢, then for every ien, um[ the statement SO(XIA) holds.
Moreover, the statement Sy,(X I t,) holds, too.

(6.16.c) If 1 = N, < cand v < ¢, then for every L€ [, u,[ the statement S,(X | 1)
holds. Moreover, the statement S,+(X | i) holds, too.

(6.16.d) If u™° = p, then for every A€ [, p,,] the statement So(X | 2) holds.

Proof. Let A = u, where 0 < & < 7 and assume that for every f§ < « the cor-
responding statement of the lemma is proved. To prove (6.16.a) notice first that for
a regular cardinal the inequality cf(y,) & cf(z) holds (if « is a limit cardinal, then
of(u,) = of(a) < |o| < =cf(z), if @ =B + 1, then g, = p7 and hence cf(y,) =
= ji, = ¢ > 1 = cf(1)). Therefore, applying (6.13.b) we get the statement S (X | A)
and therefore also the statement S(X | 2) for every Le [, #.]- Moreover, applying
(6-13.a) we get S,+(X | #,) and thus complete the proof of (6.16.a).

Proposition (6.16.b) is a trivial corollary of (6.16.a).

To prove (6.16.c) we may assume that v > N, (since the case v < ¥, is contained
in (6.16.b.)!). Take « <v and let o = loc|+ N,. Obviously, ¥; £ 6 £ v < ¢ and
cf(0) = 0. As the statement Sy (X | ) holds by assumption and ¢ = N, therefore
the statement S,(X | u) is true, too. Now applying (6.16.a) to S,(X | 1) we get the
statement S,(X | 4) for every A€ [, u,] and therefore, obviously, the statement
S,(X | 4) holds for every A € [u, u,]. To complete the proof of (6.16.c) we only have
to apply (6.13.a) once again and get S,+(X | ).

To prove (6.16.d) notice first that if & < w, and u™° = g, then p, is No-unaccessible.
Therefore (6.16.d) is an immediate corollary of (6.13.d).

(6.17) Lemma. Let the statement S(X | ) hold for a space X and a cardinal
# = . Then for every Ae[u, p[ where v < ¢ the statements S,(X | 1) and
S,+ (X | n,) hold. Therefore S(X | 2) holds for every e [p, m[.

Proof. If v £ ¥, then the statement of the lemma follows directly from (6.16.d).
Consider now v e [Ny, ¢[. By (6.6) the statement S(X | 1) is equivalent in this case
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to the statement So(X | 1) and hence we can apply Proposition (6.16.c) and get the
statements S,(X | 4) and S,+(X | u,) for all A€ [n, u,[.
Since ¢ = ¢, from Lemmas (6.7) and (6.17) we obtain the following

(6.18) Proposition. Let X be an arbitrary topological space and t < ¢. Then
(6.18.a) S(X | A) holds for every Ae[c, ¢,
(6.18.b) S.o(X | ¢,) holds,
and therefore
(6.18.c) the statement S(X | Z) holds for every i€ [¢, ¢[.

(6.19) Proposition. If there exists © < ¢ such that the inequality ¢ < |X| <c¢
holds, then X is a uy-space.

Proof. By Proposition (6.18.c) the statement S(X | 1) holds for every A€ [¢, ¢]
and in particular, for A = |X | Hence by (6.5), X is a u,-space.

(6.20) Corollary. Let |X| 2 ¢. Then X is a ug-space in each of the following
cases:

(6.20.2) if |X| £ €ups
(6.20.b) if |X| < ¢, and N, < ¢
(6.20.c) if |X| < ¢ and ¢ is a limit cardinal.

7. SOME SET-THEORETIC AXIOMS

To apply the results of Section 6 for deriving our main theorems in the next section
we need some additional set-theoretic axioms which are discussed below.

It is well-known that the statement “u™° < u* for every infinite cardinal x”* does
not depend on the ZFC system of axioms [11]. Moreover, it was already used by
some authors to obtain topological results (see e.g. [22], [23]).

(7.1) Denotation. By ACP; (The First Countable Power Axiom) we denote the
following statement

ACP, = “u® < pu* for every cardinal u = ¢”.
In general for an arbitrary ordinal &« > 0, 0 < & < ¢, let
ACP, = “u™ < y, for every cardinal p = ¢” (see (6.15)).
Besides, if o > 1, let
ACP(a) = “p™ < p, for every cardinal p = ¢”.
(7.2) Remark. It is obvious that for every ordinal o, 0 < o < ¢, the stament ACP,

is equivalent to the statement ACP(oc + 1). Moreover, if f = a, then the statement
ACP() implies the statement ACP(p).
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(7.3) Denotation. By ACP (The General Countable Power Axiom) we denote the
following statement

ACP = “Forevery cardinal u > cthere exists a cardinal T < ¢such that ™ < p,”.

(7.4) Denotation. By ACP*, ACP(«)* and ACP} we denote the statements
ACP& (N < ¢), ACP(«) & (X, < ¢)and ACP, & (¥, < ¢), respectively.

(7.5) Remark. It is known (see e.g. [11]) that ACP{ is independent of the ZFC
system of axioms, hence the rest of the statements considered in (7.4) are also in-
dependent of the ZFC system of axioms.

(7.6) Remark. From (7.2) it follows that if « > 1 then
ACP} = ACP(x)* = ACP(x + 1)* <> ACP}.
If, moreover, locl+ < ¢, then
ACP} = ACP*.
In particular,
ACP{ = ACP(w,)* = ACP(w,)* < ACP} = ACP*.

(7.7 Remark. It is easy to notice that ACP* is equivalent to the following state-
ment:

[ACP(¢) & (¢ is a limit cardinal)] V ACP, & (¢ = =% > R,).

It is just the statement ACP¥, the weakest of the assumptions considered above,
which will be employed in the next section to derive the main results.

8. THE MAIN RESULTS

(8.1) Theorem [ACP*]. For every topological space X with IX] = cand every
cardinal A = ¢ there exists a cardinal © < ¢, for which the statement S (X | A)
holds. Hence the statement S(X ' 1) holds for every space X and every cardinal
A=

Proof. According to Lemma (6.7) the statement So(X | ¢) holds for a space X
and hence the statement S(X | ¢) holds, too. Assume that the statement S(X [ v) is
already proved for every ve[¢, A[.

Let g = '™ (i.e. p = min {a : o™ > 1}).

Obviously u is Np-unaccessible and p e [¢, A[, hence by (6.13.d) the statement
So(X | #) holds.

According to ACP* there exists a cardinal t such that u™° < p, and therefore
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Consider now the three cases:

(1) If p < 2 < p™, then obviously A e [/l, lt,[ and therefore by (6.16.0) the state-
ment S,(X | 1) holds.

(2) If 2 = p®, then A€ [u, p,] and Proposition (6.16.c) allows to conclude that
at least the statement S,.(X , 4) holds. But applying (6.6) we get that in this case
the statement So(X | 4) is also true.

(3) In the last case, i.e. 2 = p, the statement Sy(X | ) has been already obtained
before.

Thus in each of the cases the statement S (X | 2) holds for some t < «¢.
The previous theorem together with Proposition (6.5) immediately imply the
following

(8.2) Corollary. [ACP*] Every topological space X with |X| > ¢ isaug-space.
With the help of Proposition (5.11) we can combine Proposition (6.19) and the
above lemma in the following way:

(8.3) Theorem. For a topological space X with |X| = ¢ there exists a partition
R = {R, : o < ¢} which is hereditary with respect to the family F(X)') in each
of the following cases:

(8.3.a) if IXI < ¢, for some cardinal T < ¢,

(8.3.b) if ACP* holds.

The following theorem is just another version of the previous one.

(8.4) Theorem. For a topological space X with |X| = ¢ there exists a partition
R = {R,:a < ¢} which is a simultaneous decomposition of all closed regular
countably compact subsets F without isolated points (i.e. [FAR,]=F for
every such F and all « < ¢), if either (8.3.2) or (8.3.b) holds.

Proof. Notice that according to (4.2) every closed countably compact subset F
belongs to #*(X). If, moreover, F is regular and has no isolated points then every
its open subset U belongs to #(X). Therefore Theorem (8.3) implies that [F n R,] =
= F for every R, € &.

(8.5) Corollary. If X is a Hausdorff compactum without isolated points then
under the assumption of (8.3.a) or (8.3.b) there exists a decomposition # = {R, :
ta < ¢} such that for every closed subset F without isolated points [F n R,] = F
holds for every a < ¢.

The next two theorems (8.6) and (8.8) which we assume to be the main results of
the work are obvious corollaries of Theorem (8.3) or (8.4).

1y See (5.9), (5.10).
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(8.6) Main theorem I. For every topological space X satisfying ¢ < IXI <ec
for some © < ¢ (in particular, © £ w,) there exists a partition & = {Ro, R,} of X
such that every its countably compact R,-closed regular subspace F contained
in R, (¢ = 0, 1) is scattered.

(8.7) Corollary. If X is a Hausdorff space and ¢ < IXI < ¢, for some t© < ¢ (in
particular, T < w,) then there exists a partition & = {Ry, Ry} of X such that
every compactum F contained in R, (s =0, 1) is scattered.

(8.8) Main theorem II [ACP*]. For every topological space X there exists a parti-
tion {Ry, R} such that every its countably compact Ny-closed regular subspace F
contained in R, (¢ = 0, 1) is scattered.

(8.9) Corollary. [ACP*]. For every Hausdorff space X there exists a partition
{Ro, Ry} such that every compactum F contained in R, (¢ = 0, 1) is scattered.

(8.10) Remark. The previous results can be improved in the following way. Theo-
rems (8.6) and (8.8) remain true if F is only a G,-subset of a countably compact
No-closed regular subspace G of a space X. Corollaries (8.7) and (8.9) are true also
provided F is a Cech complete subspace of X. We shall not present here these modi-
fications of our results in detail.

9. APPENDIX I. PARTITIONING OF TOPOLOGICAL SPACES UNDER THE
AXIOM OF CONSTRUCTIBILITY

Assuming the Hédel axiom of constructibility [V = L] W. Weiss ([3], see also
[4]") has proved that

every Hausdorff space X can be partitioned into two subsets R, and R,, neither
of which contain the Cantor set D“°.

Here, employing the results of Section 6 we improve this theorem of W. Weiss
(see Theorem (9.3)).

(9.1) Denotation. Following K. Devlin [25] we denote by [J, the following
combinatorial principle. \
There is a sequence of sets {C, : ¢ < p* and ¢ is a limit ordinal} such that

(9.1.a) C;is closed and unbounded in ¢,

(9-1.b) cf(&) < p implies |Cy| < p,

1) Notice that the proof of the same result in [4] (see Corollary 7) is incomplete unless the
axiom of constructibility is assumed.
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(9.1.¢) if y is a limit point in C; then C, = y N C,.

R. Jensen has shown that Gddel’s axiom of constructibility implies that [J, holds
for every infinite cardinal p.

Recall also that the axiom of constructibility implies the GCH.

The following lemma is just a modification of W. Weiss’s Lemma 4 in [3] (see
also Lemma 4 in [4]).

(9.2) Lemma. [V = L]. If So(X | v) holds for every v < p,,, then So(X | s ,)
holds as well.

Proof. Let A = B where B is an rc-closed subset of X and |A| < Hoo+y (see
(6.15)). Enumerate A as A = {a;:& < ft,,+1}- Inductively we shall construct
a system & = {Af, :n€N, & < [+, With the following properties:

(1) age A;*' < B,

(2) 45 = AT,

(3) 4L =

(4) 4; is an re-closed ug-set in X,

(5) if & < & then U{4: :neN} = U{4i:neN},

(6) if £ is a limit ordinal and |C,| < p, then U{4} : &' € C;} < 4

Assume that for all ¢ < A and for all ne N the sets A5 are already constructed.
If 2 =¢ 41, for every neN let A} = {ag} U A% If A is a limit ordinal, consider
m = inf {k :|C;| £ w} (see (9.1)) and let A} =0 for n < m and A = Y{4}:
: £ € C,} for n = m. Since, obviously, |4} < u, and py°= p, according to Proposi-
tion (3.15), there exists an rc-closed set A* such that 4} = 4, = B and |4}| < p,
Moreover, since So(X | ,) holds, by (6.5) 4, is a ug-set and we let A} = 4. It is
obvious that 4} satisfies the conditions (1)—(6) and thus we get the system o =
= {A}:neN, & < py+1} With properties (1)—(6). Moreover, 4 = s/ < B.

Let A% = U{4}: neN}. Since all 4 are uq-sets, therefore A are uy-sets, too;
moreover, o/ = {A°: & < p,, ..} is a chain. To complete the proof we shall show
that 4 = )« is also a uy-set.

Really, for each & < p,,,+ consider a u-partition #° = {RS : « < ¢} of the set A%
and let 4%, #*, R, R, and be defined in the same manner as in (6.10). Let F be an -
closed subset in X and I': F — I a closed mapping such that |f(F n 4)| 2 ¢ = X,.
Obviously {f(F n A%): & < p,.4+,} is a chain in I. Let & = inf {& : [f(F n 4%)| 2
2 ¢}, it is easy to notice that |f(F N A%)| = ¢. We shall show that |f(F n A" <
< Ny In case &, = & + 1 this is obvious. Let now &, be a limit ordinal. Then for
every n 2 m = min {k : |Cg| £ ) the system {f(F N 45) : & € C,,} is an increasing
chain of countable subsets of I. Therefore also the sets B, = U{f(F n 4}) : £ Cy,}
are countable, and hence the set f(F n 4%°) = U{B,:n Z m} is countable, too.
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Noticing that f(F n R,) = (f(F n R®)Nf(F n 4%) we can conclude that |f(F n
N R,)| = ¢ for every a < v. Hence #* is a u,-partition of the set 4 and therefore 4
is a ug-set. Since the inequality |A| £ p,,+, is obvious we can conclude now that the
statement So(X | #+1) I true.

The following theorem is a natural analog of Theorem (8.1).

(9-3) Theorem [V = L]. For every topological space X and every cardinal A = ¢
the statement So(X | A) holds.

Proof. Notice first that since the axiom of constructibility implies the GCH the
statements So(X | 4) and S(X | 1) are equivalent.

According to (6.18.c) the statement S(X | ¢) is true. Assume the correctness of the
statement S(X | v) for all ve [c, A[ and let u = A'/% (see (8.1)). It is easy to notice
that p < 1 < p™ and therefore either p¥ = u (provided cf(u) > wo) or p™° = u*
(provided cf(p) = wo) [11]. Since, obviously, u is No-unaccessible, the statement
So(X | 1) holds according to (6.13.d). Hence to complete the proof we have to con-
sider the case when A = u*, i.e. cf (u) =< m,-. But in this case there exists an ordinal v
(v 2 ¢) satisfying p = v,, and the statement S,(X | &) holds for every ¢ < v,,.
Employing the previous lemma we get from here the statement SO(X | Voo+1) as Well.
To complete the proof oneonly has to notice that v, ,, = u* = 4 in this case.

Applying (6.5) to the previous theorem we obtain the following

(9.4) Corollary [V = L]. Every topological space X is a uy-space.
Quiie in the same manner as Theorems (8.4)—(8.9) were derived from (8.2) one
can easily get the following statements just from (9.4).

(9.5) Corollary [V = L]. A topological space X with |X| = ¢ has a partition
R = {R,:a < ¢} which is hereditary with respect to the family #(X) (see (5.10)).

(9.6) Corollary [V = L]. For every topological space X there exists a partition
{Ro, Ry} such that every countably compact Ny-closed regular subset F contained
in R, (e = 0, 1) is scattered.

(9.7) Corollary [V = L]. For every Hausdorff space X there is a partition
{Ro, Ry} such that every compactum F contained in R, (¢ = 0, 1) is scattered.

(9.8) Corollary [V = L]. For a topological space X with |X| 2 ¢ there exists
a partition # = {R, 1 ¢ < ¢} which is a simultaneous decomposition of all closed
regular countably compact subsets F without isolated points.

(9.9) Corollary [V = L]. If X is a Hausdorff compactum without isolated points
then there exists a decomposition & = {R, :a < ¢} such that for every closed
subset F without isolated points [F n R,] = F holds for every o < ¢ .
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10. APPENDIX II. SOME TOPOLOGICAL APPLICATIONS
OF THE MAIN RESULTS

Here we derive some simple corollaries ot the results obtained in the previous
sections.

(10.1) Theorem [ACP*]V [V = L]. 4 Hausdorff compactum X without non-
trivial convergent sequences can be partitioned into two subsets X = Ry U R, in
such a way that every compactum contained in R, or in R, is finite.

Proof follows immediately from (8.9),(9.7) and the known fact that every scattered
Hausdorff compactum contains a non-trivial convergent sequence [26].

(10.2) Remark. For the Cech-Stone compactification SN of a countable discrete
space N the statement of the previous theorem holds without any additional set-
theoretic assumption because one can apply Proposition (2.4) instead of Theorem
(8.7) in this case.

The next theorem allows to discover some differences in the properties of the
connectedness and linear connectedness.

Recall that a topological space is called hereditarily disconnected if it does not
contain connected subsets of cardinality larger than 1 [27]. Analogously we shall
call a space hereditarily linearly disconnected if it does not contain any linearly
connected subset of cardinality larger than 1. A

It is not difficult to show that already the plane R?cannot be partitioned into two
hereditarily disconnected subsets R, and R;. The situation with the hereditarily
linear disconnectedness is quite different: it is established by the following theorem
(10.3).

(10.3) Theorem [ACP*]V [V = L]. Every Hausdorff space can be partitioned
into two hereditarily linearly disconnected subsets.

Proof follows immediately from (8.9) and (9.7).

11. APPENDIX III. APPLICATION TO COMBINATORICAL SET THEORY

A well-known theorem of P. Erdos and R. Rado [28] states that for every infinite
set X its exponent (i.e. the set of all its subsets) exp X can be represented as a union
of two sets exp X = P, U P, in such a way that for every infinite A€ P,, ¢ = 0, 1,
there exists B = A which belongsto P, _,. The aim of this section is to obtain a certain
generalization of this fact (Theorem 11.2)). Its proof is based on the results of Sections
8 and 9. We begin with the following definition.

(11.1) Definition. Let A = X and B = A. By the exponent of A modulo B we call
the set
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exp(4/B)={C:BcCc 4}.

(11.2) Theorem [ACP*]V [V = L]. The exponent of an infinite set X can be
represented as a union of two subsets exp X = Py U P, in such a way that for every
pair of subsets B = A satisfying |A \ B, = N, neither Py nor P, contain exp (A[B).

Proof. Define a mapping ¢ :exp X — D* (D is a discrete two-point space) by the
equality ¢(4) = Z = (6x),, where AeexpX and 6, =1 if xeA and 6, = 0, if
x ¢ A. It is obvious that ¢ is a bijection. According to Theorem (8.9) or (9.7) the
space D¥ can be partitioned into two subsets R, and R, in such a way that every
compactum contained in R,, ¢ = 0, 1 is scattered. Let P, = ¢"%(R,), ¢ = 0, 1. It is
obvious thatexp X = P, U P,. Moreover, neither P, nor P, contain some exp (4/B)
with [A \ Bl = Ny. Really, if there is a pair B = A such that |A \B] = Ny and exp
(4/B) = P,, then

@(exp (4/B)) = I{D, : xe ANB} x I{{0,} : xe X\ 4} x
x {1} :xe B} ~ DI*\? c R,

but this contradicts our assumptions.

(11.3) Remark. If B = @ then Theorem (11.2) turns into the above mentioned
theorem of P. Erdos and R. Rado (up to the set theoretic assumptions, of course).

(11.4) Remark. The problem of representing the exponent of a set X as a union
of two subsets neither of which contain an exponent exp (4/B) for some pair B = 4
(=X) with infinite difference was considered by one of the authors in [7]. There,
this problem was reduced to that of patritioning topological spaces. The technique
employed here in the proof of Theorem (11.2) is approximately the same as in [7].

12. APPENDIX IV. ON QUASI-SEQUENTIAL SPACES

The notion of an rc-closed subset of a topological space, introduced in Section 3
and used essentially in Section 6 in the process of induction seems also interesting
from another point of view. Namely, it allows naturally to distinguish a new class of
spaces (the so called quasi-sequential spaces) which occupies a place between the
class of sequential spaces and the class of spaces with countable tightness. Further-
more, the class of quasi-sequential spaces seems to be substantial in the theory of
spaces, the topologies of which are characterized by means of countable sets. The aim
of this section is to begin the investigation of these spaces.

(12.1) Definition. A space X is called quasi-sequential if every its rc-closed

subset A is closed.
Proposition (3.9) implies immediately the following
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(12.2) Proposition. Every sequential Ty-space X is quasi-sequential.
On the other hand, applying (3.15) we get

(12.3) Proposition. A quasi-sequential space X has a countable tightness.
Moreover, |[A]] < |A[* for every subset A of X*).

(12.4) Remark. 1. Juhdsz [23] has constructed a hereditarily separable space X,
every countable subset of which has a closure of cardinality 2°. This space, obviously,
represents an example of a space with the countable tightness which is not quasi-
sequential. Recall also that a Hausdorff compactum with the properties of Juhdsz’s
example was constructed later by V. Fedorduk [29].

(12.5) Remark. It is easy to notice that the topological space constructed in [30,
p. 68] is an example of a countable Hausdorff quasi-sequential space which is not
sequential. On the other hand, according to Proposition (12.9) there cannot be
a Hausdorff compactum with such properties.

Applying Remark (3.2) one easily comes to the following characterization of quasi-
sequential spaces.

(12.6) Proposition. A T-space X is quasi-sequential iff for every its non-closed
subset A there exists a sequence (x,,),,EN which has a cluster point a in X but no
cluster points in A.

With the help of this characterization or just from the definitions one can easily
come to the following fact:

(12.7) Proposition. A quasi-sequential sequentially compact space is sequential.

(12.8) Proposition. A countably compact T;-space (in particular, a compact
T-space) X is quasi-sequential iff every its countably compact subset A is closed
in X(i.e. iff it is cc-closed [31]).

Proof follows easily from Propositions (3.3) and (3.4).
(12.9) Theorem [AM]V [LH]. A Hausdorff k-space X is sequential iff it is
quasi-sequential. In particular, every quasi-sequential compactum is sequential.

Proof. Let X be quasi-sequential and let 4 be its subset which is not closed. Then 4
is not rc-closed either, i.e., there exists a countable set M = A such that M’' n
N(X\A4)+0but M'n A =0. Since X is a k-space, without loss of generality we
can choose M in such a way that [M] is compact. According to Proposition (12.3),
|[M]| € e. Now, applying Theorem (1.3) from [22] which is proved under the

1) To be precise, this estimate is true if |4] > 1 or if X is a T;-space.
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assumption of [AM]V [LH] we conclude that [M] is sequentially compact and
therefore according to Proposition (12.7) the space X is sequential.

(12.10) Proposition. If X is a quasi-sequential Ty-space and f : X — Y is a closed
surjection then Y is quasi-sequential as well.

Proof. Take an rc-closed subset B in Y. According to (3.12) the preimage f~!(B)
is rc-closed in X and hence f~1(B) is also closed in X. Therefore B = ff ~!(B) is
a closed subset in Y and hence Y is quasi-sequential.
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