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Časopis pro pěstování matematiky, roč. 108 (1983), Praha 

ON AN EXTREMAL CHARACTERIZATION OF PARTITIONS 

JAROSLAV MORAVEK, Praha 

(Received November 29, 1982) 

In this note we are concerned with equivalence relations on a finite set, where 
the factor sets of these equivalence relations have a given cardinality. These equi­
valence relations are characterized as solutions of an extremal problem in a set of 
tolerances (i.e. reflexive and symmetric relations). 

Let n and fc be positive integers, fc ^ n, and let Sn = {s l 5 s 2,..., sn} be an n-
element set. Let 0tn denote the set of all reflexive and symmetric relations Q £ Sn x Sn, 
and let us set £%n

k) for the set of all QE0tn satisfying the following condition: 

VS c Sn: If (S x S) n Q £ {(s, s) | s 6 S} then card (S) ^ fc. 

A partition of a finite set into fc pair-wise disjoint nonempty subsets will be called 
a k-partition. A relation QE 0tn will be called a k-equivalence if Q is an equivalence 
relation, and the factor set induced by Q is a fc-partition of S„. 

The following theorem characterizes fc-equivalences (or, equivalently speaking, 
fc-partitions) on the set Sn as solutions of a class of minimization problems on 0tn

k)> 

Theorem 1. Let # e 0tn
k). Then the following assertions are equivalent: 

(i) § is a k-equivalence. 

(ii) There exist positive numbers cu c2 , . . . , cn such that 

£ Cj . card ({sj} x Sn) n §) = min { £ cy . card (({sy} x S„) n g) | Q E ®n
k)) . 

I=i y - i 

Proof. 

I. (i) <= (ii): This implication is equivalent to the b) part of Theorem 2 of [1]. 
Indeed, let <&n denote the set of all undirected graphs without loops and multiple 
edges G = <Sn, JB(G)>, having Sn for the set of vertices; E(G) denotes the set of all 
edges of G. Further, let us denote by &n

k) the set of all graphs Ge^„ such that 
VS c sn: If there is no pair of distinct adjacent vertices s, s' in S then 

card (S) g fc . 
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(This can be equivalently expressed by saying that a(G) g fc, where a(G) denotes 
the number of stability of G, cf. [2], p. 260.) 

Let us define a mapping <p : 0tn
k) -> &n

k) as follows: <P(Q) =f G iff Vjr V/ (sj and s r 

are adjacent in G iff (j # / and (s,-, Sj.) e Q))9 and observe the following facts: 

(a) q> is bijective; 
(b) Q is a fc-equivalence iff <p(g) is a k-clique graph, i.e. a graph having exactly fc 

connected components where each component is a complete subgraph, cf. [ l ] ; 
n n n 

(c) X CJ • c a r d (({51} x sn) n o) = J] c,.. d;(<p(g)) + £ CP w h e r e d1(G) denotes 
1=i 1=i I=i 

the degree of the vertex Sj in G. 

The b) part of Theorem 2 in [1] can the stated as follows: If cl9 c29..., cn are positive 
numbers and if G e &n

k) is a graph such that 

icjdj(G) = min{icjdj(G)\Ge<Zn
k)} 

I=i J=i 

then G is a fc-clique graph. By using this fact and the properties (a), (b), (c) of <p the 
implication (i) <= (ii) immediately follows. 

II. (i) => (ii): Let £ be a fc-equivalence on Sn and let {Vl9 V29..., Vk} be the fc-
element factor set induced by §. Let us set: 

c/=f(caid(Fx)r
2 iff SjeVx 

(/== l ,2, . . . ,n; x = l,2,...,fc). 

We shall show that for Cj (j = 1,2,..., n) defined in this way and for all Q e 0tn
k)

9 

(1) i cj . card (({Sj} xSn)n$)^i Cj . card (({Sj} x Sn) n Q) . 
1 = 1 1 = 1 

Indeed, let Q* e 0tn
k) be a relation minimizing the function 

Q h-> X *y • card (({s,} x Sn) no ) (Q e 0tn
k)) , 

1=i 

i.e. we have 

(2) £ cj . card (({s,} x Sn) n <>*) = £ Cj . card (({s,} x S„) n c) 
i = i 1=i 

for all Q e &tn
k). 

Because of the proved (i) <= (ii) part of this theorem Q* is a fc-equivalence; let 
{Wl9 Wl9..., Wk} be the corresponding factor set. Now, it is sufficient to verify the 
inequality (1) for Q = Q*. We have 

(3) £ cj. card (({S]} x S.) n *) = £ X (card (Fx))-2 . card ({5,} x Fx) = 
/ = 1 x = l sjeVm 
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-i KcaidW1--!'!-* . 
x = l sjeVM X = l 

Furthermore, for Xj = card (({sj} x S„) n 0*) (j = 1, 2,.. . , n) we obtain 

(4) Z*71==Z Z ^ - Z Z ^ W ' - Z i - * . 
J = l X = 1 S J 6 ^ X-BlljClTw * = i 

Now, by using (3), (4) and the Cauchy-Lagrange inequality we have 

(5) £ c, . card (({s,.} x SJ n o*) = £ c;x; - /V1 . ( £ x/1) • ( Z V i ) -̂  
i = i I=i J = i I=i 

y=l x=l5yeK„ 

By combining (3) and (5) we complete the proof. • 

This theorem shows that each fc-equivalence o e $n
k) can be obtained as a solution 

of the extremal problem 
n 

(6) minimize £ Cj . card (({sy} x S„) n Q) w.r.t. Q e &n
k), 

1=i 

for appropriately chosen positive numbers c} (j -= 1, 2,.. . , n). 

We conclude this note by describing a special case when the extremal problem (6) 
has a unique solution. 

Theorem 2. Let a k-partition {Vu V2,..., Vk} of Sn satisfy the following con­
dition: 

card (Vx) * card (Vx,) if x * x', 
and /ef us set 

c/^(card(Vx))-2 (flT s,eVx 

(j = 1,2,..., n; K = 1,2,..., k). 

Then the extremal problem (6) has a unique solution 

Q = {(s, s') e Sn x Sw | 3x (s e Vx and s' e Vx)} . 

Proof. Letg* be any solution of the extremal problem (6) and let {Wu W2,..., Wk} 
denote the corresponding factor set induced by Q*. By keeping the notation of the 
proof of Theorem 1 we must have the equality in (5), and hence 

(E^;1).(i:^) = (EVo)2. 
I=i 1=1 1=1 

Thus, n-tuples (vectors) ((V*.)"1* (V^)""1* •••> (Vx«)_1) a n d (V(cix0-V(c-*x*)' ••• 
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..., yj(cnxn)) must be linearly dependent, and hence there exists a X > 0 such that 

xjl = XcjXj (j = 1,2,..., n) 

or, equivalency speaking, 

(7) Xj^y/k.y/Cj (I = 1-2,..., n). 

Substitution of (7) into (4) yields 

n n 

k = J^xJl = yJX . XVC1 = VA • k ' 
1=1 1=1 

whence 
A-= 1. 

Now, let Vx n FVX, 4= 0. Then there exists an element Sj e Vx n JVX,, and by using 

(7) for X = 1 we have 

card (Vx) = Vc/1 = x, = card (({Sj} x Sn) n o*) = card (Wx,). 

Thus, we have proved 

Vx Vx'(Vx n JVX, * 0 => card (Vx) = card (Wx)). 

By combining this conclusion with the condition of the theorem we obtain 

(8) V* 3x'(Vx 2 Wx) . 

Since {Vl5 V2,..., Vh} and {TVt, JF2,..., Wk} are fc-partitions of the same set Sn we 
obtain from (8) that 

{v1,v2,...,vk} = {wl,w2,...,wk}, 

which completes the proof. • 
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