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ON GRAPHS WITH NON-ISOMORPHIC 2-NEIGHBOURHOODS 

HALINA BIELAK, Lublin 

(Received May 25, 1982) 

1. INTRODUCTION 

Let G = (V(G), E(G)) be a finite undirected graph with the vertex set V(G) and the 
edge set E(G). We assume that G is a graph without loops and multiple edges. The 
distance dG(x, y) between vertices x and y in G is the least number of edges in the 
path from x to y. Let L/x, G) = {y e V(G) : dG(x, y) = j} and Lj(x, G) = {y e V(G): 
: dG(x, y) > j}, for x e V(G). The subgraph of G induced by L}(x, G) is called the 
j-neighbourhood of x in G and denoted by N/(x, G). The subgraph of G induced 
by Ly(x, G) is called the j+-neighbourhood of x in G and denoted by N/(x, G). 

At the first Czechoslovak symposium on graph theory (Smolenice 1963) A. A. 
Zykov posed the problem: Given a graph H, does there exist a graph G such that H 
is isomorphic to N^x, G) for all x e V(G)? This problem, known as the Trahtenbrot-
Zykov problem, has been investigated in many papers (see [1], [3], [5] and [6]). 
We have studied the generalization of the Trahtenbrot-Zykov problem to the j -
neighbourhoods, for j ^ i, [2]. Another direction of research was proposed by J. 
Sedte&k [7] in 1979. He studied the class eigl of connected graphs G with the fol­
lowing property: If x and y are two vertices of G, then N^x, G) and Ni(y, G) are not 
isomorphic. He proved 

Theorem 1.1 [7]. For every positive integer m ^ 6 there exists a graph G on m 
vertices belonging to ^Pj. 

In this paper we deal with the class c€2 of graphs G with the property: If x and y 
are two vertices of G, then N2(x, G) and N2(y, G) are not isomorphic. We derive 
a result similar to Theorem 1.1 for the class <€2 and for every m ^ 7. We also study 
relationships between the classes (61 and c62. In Section 2 we consider graphs G 
belonging to ^ t and/or ^2> f° r which L2(x, G) 4= 0 for all x e V(G), and in Section 3 
we omit this last condition. In our considerations we also use %>l, the class of graphs 
with non-isomorphic N^x, G) for all x e V(G). 

Graph-theoretic terms not defined here can be found in [4]. 
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2. MAIN RESULTS 

In this section we study graphs G in the class %>2i and assume L2(x9 G) # 0 for 
all vertices x of G. Such graphs on 7, 8, 9, 10 and 11 vertices are presented in Figs. 2 
and 3. We also study relationships between the classes (&l and <#2- The results of this 
section are based on the following construction. 

л+5» • n+3 

Fig. 1. The graph G*. 

Let G be a graph with n vertices. We consider the graph G* presented in Fig..l, 
where a double line between two subgraphs indicates that every vertex of the first 
subgraph is adjacent to every vertex inthesecond one, while a single line between two 
vertices indicates that they are adjacent. Table 1 lists all 1-, 2- and ^-neighbourhoods 
in the graph G*. 
. We have the following observations: 

Proposition 2.1. If G is a graph with at least two vertices, then G belongs to c€1 

if arid only if G* belongs to^^. 

Proof follows directly from the second column of Tab. 1. • 

Table 1 

vertex X N^x, G*) N2(x, G*) NÍ"(*,G*) 

n+ 1 GKJ K2 гкx 2K! 

7 2 + 2 Kt UK2 G G+Ki 

«+ з Ki K2 F 

« + 4 * 2 G u Ä^ G + K! U K! 
«+ 5 G Ki S 

l ^ i^ n щц, G) + гкy NÏЏ, G) U K2 tffft G) U P3 

F: S: 
ß ̂  

.-(T> / \ .-(T> m 9 / \ • 
Ч-У 

m 9 
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Proposition 2.2. If G is a graph with at least one vertex, then G belongs to <€X 
if and only if G* belongs to <<£*. 

Proof follows directly from the fourth column of Tab. 1. • 

Proposition 2.3. Let Gbe a connected graph with at least three vertices and A(G) < 
< n — 1, where A(G) is the maximum degree of G. If G belongs to the intersection 
of (&2

 and %>X> then G* belongs to the intersection of c€2 and 9%X-

Proof follows directly from the third and fourth columns of Tab. 1. • 

To present further results we define the sequence of graphs G*, G*,..., G*,..., as 
follows: G* = G and G*+l = (Gf)*, for a given graph G. 

Theorem 2.1. For every integer m ^ 7 there exists a graph on m vertices belonging 
to <et n <£2. 

Proof. If m is an integei greater than or equal to 7, then the graph G*, where 
i = entire ((m — 7)/5) and G is isomorphic to the (m — 6 — 5i)th graph of Fig. 2, 
has m vertices and by Propositions 2.1-2.3 it belongs to <e1 and <#2- • 

Fig. 2. Graphs in the classes * l f
 <€2 and ^X-

Theorem 2.2. For every integer m §; 7 there exists a graph on m vertices belonging 
to <e2 - • « ! . 

Proof. The proof of this theorem is similar to that of Theorem 2.1. For G we take 
the (m - 6 - 5i)th graph of Fig. 3. • 

296 



Fig. 3. Graphs in the classes ^ 2 , *& t >̂ut n o t in t n e c^ass *&i • 

Fig. 4. Graphs in the class <#- but not in the classes ^ f and <&2. 

Theorem 2.3. For every integer m = 6 there exists a graph on m vertices be­
longing to €€1 — <#2-

Proof. Let m be an integer greater than or equal to 6 and assume i = entire 
((m — 6)/5). The graph Gf, where G is isomorphic to the (m — 5(i + l))th graph 
of Fig. 4, has m vertices and belongs to <Sl — <&2. This follows from Propositions 2.1 
and 2.2, and from the fact that if G $ <g\9 then G? £ <#2, for i = 1. • 

3. REMARKS 

Let us now consider the graph G" presented in Fig. 5. 
Note that G" has exactly one vertex x for which L2(x, G") = 0, namely x = n + 1. 
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We use this construction to derive another subclass of ^ x n <#2 (and <&£ — %u 

<#! — <$2 as well). To this end we define the sequence of graphs for a given graph G 
with n vertices: __ 

G0, Gx , . . . , Gf , . . . , | 

n+1 n+2 
Fig. 5. The graph G . 

where G0 = G and Gf+ i = (Gf)~. One can easily see that starting with G isomorphic 
to the first or the second graph in Fig. 2 (Fig. 3, Fig. 4) one obtains graphs with m 
vertices in the class <̂ 2 n

 c&1 (<#2 — <gu <e± — ^ 2 , resp.), where m ^ 7 (m ^ 7, 
m ^ 6). All 1-, 2- and 1 "^-neighbourhoods in G~ are shown in Tab. 2. 

Table 2 

vertex x N^x, G~) N2{x, G~) N?(x, G~) 

n + 1 G \J Kx K0 K0 

n + 2 Kt G G 
1 ̂  I g II . N^i, G) + K! N^O', G) U Kt 1Vf(l, G) U K! 

Ko = (0,0). 

Acknowledgement. The author is indepted to M. M. Systo for suggestions regarding 
the presentation of the paper. 
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