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Časopis pro pěstování matematiky, rot, 108 (1983). Praha 

ON SEMISIMPLE CLASSES OF ABELIAN LINEARLY 
ORDERED GROUPS 

GABRIELA PRINGEROVA, PreSov 

(Received November 5, 1981) 

Radical classes and semisimple classes of linearly ordered groups were defined and 
investigated by Chehata and Wiegandt [2]. Jakubik [4] studied radical classes of 
abelian linearly ordered groups; cf. also [6]. 

In this paper the notion of semisimple class of linearly ordered groups will be 
modified in order to obtain the possibility of working with the abelian case only. 
Some questions concerning the lattice «̂ fl of all semisimple classes of abelian 
linearly ordered groups will be dealt with; analogous questions for radical classes of 
abelian linearly ordered groups were studied in [4]. 

Let S0 and Ga be the least and the greatest element of Sfa (i.e., 5 0 = {{0}} and Ga 

is the class of all abelian linearly ordered groups). We denote by Sfp the collection 
of all principal semisimple classes of abelian linearly ordered groups. For X e Sfa 

let a(X) and a'(X) be the collection of all elements of Sfa Which cover X or which are 
covered by X, respectively. Sample results: 

Let Gj and G2 be non-zero non-isomorphic archimedean linearly ordered groups 
and let X be the semisimple class generated by {Gl5 G2}. Then the interval [S0, K] 
of Sfa fails to be modular. Let GeGa, G 4= {0} and let 7 be the semisimple class 
generated by G. Then there exists C c= [S0, 7] n Sfp such that (i) C is a proper 
collection and (ii) C is linearly ordered. A collection Ct c Sfa is constructed such 
hat Cx is a proper collection and an antichain (i.e., any two distinct elements of C 
are incomparable). For X e Sfa a sufficient condition is found under which a'(X) = 0 
(there are infinitely many such semisimple classes X). A proper collection .4j c y p 

is constructed such that a(X) = 0 for each XeAv A proper collection A2 c Ga 

is described having the property that if X is a principal semisimple class generated 
by some G e A29 then a\X) is a one-element collection; as a corollary we obtain that 
the collection of all prime intervals [7, Z] of the lattice Sfa such that Z is principal, 
is a proper collection. 
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1. BASIC PROPERTIES OF THE LATTICE OF SEMISIMPLE CLASSES 

In this paper we shall deal with objects belonging to some type of the following 
hierarchy: 

sets and their elements; classes of linearly ordered groups; collections of classes 
of linearly ordered groups. 

A collection C will be called proper if there exists an injective mapping of the 
class of all cardinals into C. Greek letters will denote ordinals (unless they are explici-
tely defined to have a different meaning). 

By considering a subclass X of Ga we always assume that X is closed under iso­
morphisms and that {0} e X. 

For the terminology concerning lattice and linearly ordered groups cf. G. Birkhoff 
[1] and L. Fuchs [3]. The group operation in a linearly ordered group will by written 
additively. 

All linearly ordered groups dealt with in this paper are assumed to be abelian; 
the words 'linearly ordered group' will always mean 'abelian linearly ordered group'. 

Let S be a nonempty class of linearly ordered groups. S is said to be c-hereditary, 
if for each Ge S and each convex subgroup H of G we have H e S. 

Let HUH2, ...,Ha, ...(a < <5) be linearly ordered groups. Let G be a linearly 
ordered group and let 

(*) G = Gt 3 G2 3 ... => Ga 2 ...(a < S) 

be a descending chain of convex subgroups of G such that 

(n,<„ G,)/G, 
is isomorphic to Hfi for each 1 < f$ < S. Assume that f)a<d Ga = {0}. Then the 
linearly ordered group Gjf)a<d Ga is called a transfinite co-extension of linearly 
ordered groups Ha (a < S). 

Let Ga be the class of all linearly ordered groups. 

1.1. Definition. A nonempty class S of linearly ordered groups is said to be a semi-
simple class if 

(a*) S is c-hereditary, and 
(b*) S is closed under transfinite co-extensions. 

(The analogous notion concerning the case when we do not suppose the com-
mutativity of the linearly ordered groups under consideration was studied in [2]; 
cf. Definition 4 and Theorem 2 of [2].) 

Let S?a be the collection of all semisimple classes of linearly ordered groups. 
Sfa is partially ordered by inclusion. Under this partial order, Ga is the greatest ele­
ment of Sfa, and the class S0 = {{0}} is the least element of Sfa. \iSt is a nonempty 
subcollection of Sf„ then the intersection S of all semisimple classes belonging to Sx 
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fulfils the condition (a*) and (b*), thus S is the meet (in the sense of the given partial 
order) of St in Sfa; this yields 

1.2. Theorem. Sfa is a complete lattice. 
For each subclass X =# 0 of Ga we denote by 
TgX — the intersection of all semisimple classes S with X ^ S; 
Sub X — the class of all convex subgroups of linearly ordered groups belonging 

to X; 
co-Ext X — the class of all transfinite co-extensions of linearly ordered groups 

belonging to X. 
It is obvious that TgX is the smallest semisimple class containing X as a subclass; 

TSX is said to be the semisimple class generated by X. If G e Ga and S = {G}, then 
we also write TgX = TS(G) and TS(G) is said to be a principal semisimple class. We 
denote by Sf p the collection of all principal semisimple classes. 

1.3. Theorem. Let X be a subclass of Ga. Then T,X = co-Ext SubK. 

Proof. Denote Y = co-Ext SubX. Because TgX is a semisimple class with X c 
c TSX, we obtain from 1.1 that Y c TSX is valid. Further, the relation co-Ext Y = Y 
obviously holds. Therefore we have only to verify that Sub Y = Y. 

Let GeY. There exists a descending chain {Ga} (a < 5) of convex subgroups of G 
with Gt = G such that 

fl«<* Ga = {0} , 

and for each /? < 5, the linearly ordered group 

fy = (0y</, Gy)lGp 

belongs to SubK. Let H be a convex subgroup of G, H 4= {0}. There exists a least 
P < 5 with Gp cz if. Consider the descending chain 

H=> G, 2 G,+1 2 ... 2 Ga=> ...(jS = a < 5) 

of convex subgroups of H. We have clearly 

Hn(f)fi<a<5Ga) = {0}. 

The linearly ordered group HJGfi is a subgroup of Gfi, hence H/G^ belongs to Sub X. 
Thus H e Y and therefore Sub Y = y. 

We denote by A and v the lattice operations in the complete lattice Sfa. (If X, Ye 
€ Sfa and X c y, then we write also .3T g K) In fact, the operation A coincides 
with the intersection of classes. The operation v in Sfa is constructively described 
by the following 

1.4. Theorem. Let I be a nonempty class and for each i e / let X\ be a semisimple 
class. Then Vi€iXt = co-Ext \JieiXt. 
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Proof. This follows immediately from 1.3 and from the fact that SubX, = Xt. 
If X1,X2eSfa, X1 = X2, then [Xl9X2] denotes the collection of all Xe^a 

with X1 ^ X g X2. 
We denote by Gx 0 G2 the lexicographic product of Gx and G2 (cf. e. g. [3] for this 

notation). 

1.5. Lemma. Let Gx and G2 be non-zero archimedean linearly ordered groups 
such that G2 is not isomorphic to G2. Then Ts(Gt 0 G2) A TS(G2) = S0. 

Proof. By way of contradiction, assume that there is Ge Ts(Gt o G2) A TS(G2) 

with G =(= {0}. Let us denote by c(G) the system of all convex subgroup of G partially 
ordered by inclusion; in fact, under this partial order, c(G) is linearly ordered. 

From G e TS(G2) it follows that there is K2 e c(G) such that G/K2 is isomorphic 
to G2; let f be an isomorphism of G/K2 onto G2. Assume that # e c(G), K2 £ # c 
!= G. Then H/K2 is a convex subgroup of G/K2 and thus f_1(#/K2) is a convex 
subgroup of G2. Since G2 is archimedean, we have either f-1(#/K2) = {0} or 
f_1(#/K2) = G2. Hence either # = K2 or # = G. This implies that K2 is covered 
by G in c(G). Similarly, from G e Ts(Gt 0 G2) we obtain that there is K3 6 c(G) such 
that either (i) G/K3 is isomorphic to Gl9 or (ii) G/K3 is isomorphic to Gx 0 G2. If (i) 
is valid, thenK3 is covered by Gin the chain c(G), whence K3 = K2; in such a case Gt 

would be isomorphic to G2, which is a contradiction. Thus (ii) holds and hence the 
interval [K3, G] of c(G) (being isomorphic to the interval [{0}, GY 0 G2] of c(Gt 0 G2)) 
has exactly three elements; hence K3 is covered by K2 in c(G); moreover, K2/K3 

is isomorphic to Gv We have K2 4= {0} and K2 e TS(G2); thus there is K2 e c(K2) 
such that K2/K2 is isomorphic to G2. This implies that K2 = K3 and therefore G2 

is isomorphic to Gl5 which is a contradiction. 

1.6. Lemma. Let Gt and G2 be as in 1.5. Then T^Gj A TS(G2) = S0. 

Proof. By way of contradiction, assume that there exists {0} =# Ge TjGj A 
A TS(G2). From G e Ts(Gf) & follows that there are Kt e c(G) such that G\Kt is 
isomorphic to Gf (i = 1, 2). Both Kx and K2 are covered by G in c(G), hence K1 = K2 

and thus Gx is isomorphic to G2, which is a contradiction. 

1.7. Theorem. Let Gl9 G2 be non-zero archimedean linearly ordered groups. 
Assume that Gx is not isomorphic to G2. Then the interval [S0 , TS(GX) v TS(G2)"\ 
fails to be modular. 

Proof. Put 

Sx = TS(GX) , S2 = TS(G2) , S3 = Tfa o G2) . 

Clearly S0 < Sf (i = 1, 2, 3). Because Gt and G2 are archimedean, we have 

Sub{Gj = {{0},GJ (i = l , 2 ) , 
Sub {Gx o G2} = {{0}, Gu Gx o G2} . 
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Hence according to 1.3, 

(1) S, = co-Ext {{0}, G,} (i = 1, 2) , 

(2) S3 = co-Ext {{0}, Gl9 Gx o G2} . 

From (1) and (2) we conclude that Sx < S3. According to 1.5 and 1.6, 

(3j Si A S2 = S$ A 52 = SQ 

is valid. Moreover, in view of 1.3 we have S3 ^ 5X v 52 (because of Gx o G2 e 
G co-Ext {Gl5 G2}), thus 

(4) S- v S2 = S3 v S2 . 

From (3) and (4) it follows that the lattice [50, St v S2] is not modular. 

1.8. Corollary. The lattice £fa is not modular. 

2. ON THE INTERVALS [S, X] 

Let a be an infinite cardinal. We denote by o(a) the least ordinal having the 
property that the power set of all ordinals less then Q)(a) is a. Let J(a) be the linearly 
ordered set dual to co(a). 

For each G e Ga we put 
Gl

a = r,.eJ(a) Gj , 

where each Gj is isomorphic to G. (The symbol T denotes the operation of the 
lexicographic product, cf. e. g. [6].) Further, let G\ be the linearly ordered group 
consisting of all fe G\ such that the set {j e J(a) :f(j) 4= 0} is finite. If G 4= {0} 
and a > card G, then card G2 = a. Moreover, for each non-zero convex subgroup G; 

of G\ we also have card G' = a. Because G\ is a transfinite co-extension of G, we 
infer 

2.1. Lemma. For each GeGa and for each infinite cardinal a, G\ belongs to 
TS(G). 

2.2. Lemma. Let GeGa9 G 4= {0} and let a be a cardinal with a > card G. 
Then G does not belong to TS(G\). 

Proof. By way of contradiction, assume that G belongs to TS(G\). Hence Ge 
e co-Ext Sub {G\}. Thus there exists a convex subgroup H of G with H 4= G such that 
GjH is isomorphic to a convex subgroup H^ of G\. Then H! 4= {0} and according 
to the construction of G\ we have card Hx = a. Therefore card G = card G/H = a, 
which is impossible. 
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2.3. Corollary. The lattice Sfa does not contain any atom. 

Proof. Let X e Sa,X 4= 5 0 . Hence there exists G e l with G 4= {0}. Thus TS(G) = 

= X. Let a be a cardinal with a > card G. In view of 2.1 we have TS(G\) = TS(G). 
From 2.2 we obtain TS(G\) 4= TS(G), hence TS(G*) < TS(G). Because of G2

a 4= {0} 
we have TS(G\) 4= 5 0 . Therefore S0 < TS(G\) < X and thus X fails to be an atom 
in Sea. 

Corollary 2.3 can be sharpened by using the following consideration. 

2.4. Lemma. Let {0} 4= GsGa. Let a, f$ be infinite cardinals with card G < a < 
< p. Then S0 4= TS(G

2) < Ts(G
2
a). 

Proof. Since Gj 4= {0}, we have S0 4= TS(G^). From the construction of the 
linearly ordered groups G%, G\ and from a < ft it follows that G\ is an infinite co-
extension of G2

a, hence Gj e TS(G\). Hence Ts(G
2
fi) = TS(G\). Now it suffices to verify 

that G2 does not belong to TS(GJ). By way of contradiction, assume that G2
a e 

e T^Gfi) = co-Ext Sub{GJ}. Thus there exists a convex subgroup II of G2
a with 

H 4= G2
a such that G2JH is isomorphic to some IIX e Sub {G|}. Thus Ht 4= {0} and 

hence card II x = /? implying card G^/II = /?, which is a contradiction. 

2.5. Theorem. Let X e Sfa, X 4= S0. There exists a subcollection C of [S0 , K] 
such that (i) C is linearly ordered, (ii) C is a proper collection, and (iii) C c 5^p. 

Proof. There exists GeX with G 4= {0}. For each cardinal a > card G we 
construct Xa = Ts(Gl)\ let C be the class of all such Xa. Each G2

a is an infinite co-
extension of G, hence G\ e TS(G) £ X, and hence Xa 6 [5 0 , X]. From 2.4 it follows 
that (i) and (ii) are valid. The assertion (iii) obviously holds. 

2.6. Corollary. Let XeSfa, X 4= S0. Then the interval [S0 , K] is a proper col­
lection. 

It remains an open question whether the condition (i) can be replaced by the 
condition (i') 5 is an antichain. The following weaker result is valid: 

2.7. Theorem. There exists a subcollection S of Sfp such that (i) S is an antichain, 
and (ii) 5 is a proper collection. 

Proof. If Ix and I2 are disjoint linearly ordered sets, then we denote by Ix © I2 

the set I = I! u I2 which is linearly ordeied in such a way that for pairs of elements 
belonging to the same I{ (i = 1, 2) the linear order in I is the same as in Ii9 and for 
each pair ix ell9 i2 el2 we put i- < i2. Let Ge Ga, G 4= {0}, a > card G. Let I(a) 
be a linearly ordered set dually isomorphic to J(a); we shall assume that I(a) n 
n J(a) = 0. Put I*(a) = J(a) © I(a) and for each i e I*(a) let Gt be a linearly ordered 
group isomorphic to G. Put 

•K« = -"»e/*(a)G/ . 
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Let Ka be the set of all/ e Ka such that {i e I*(a): f(i) * 0} is finite. The construction 
of Ka implies: 

(a) If K0 is a non-zero convex subgroup of Ka9 then card K0 = a. 
(b) If H0 is.# convex subgroup of Ka with Ka 4= H0, then card Ka\H0 = a. 

Now let /? be a cardinal with /? > a. From (a) and (b) it follows that neither Ka e 
e Ts(Kfi) nor Kp e Ts(Ka) can hold. Hence Ts(Ka) is incomparable with Ts(Kfi). Let S 
be the class of all Ts(Ka)9 where a runs over the the class of all cardinals larger than 
card G. Then S fulfils the conditions (i) and (ii). 

3. SEMISIMPLE CLASSES HAVING NO DUAL COVERS 

Let a be an infinite cardinal and let co(oc) be as in § 2. For each G e Ga we put 

G« = ^iel(a) &i > 

where 1(a) is a linearly ordered set isomorphic to co(a) and G{ is isomorphic to G 
for each i e /(a). 

3.1. Lemma. Let GeGa9 G + {0}, a > card G. Then Ga does nor belong to TS(G). 

Proof. By way of contradiction, assume that Ga belongs to TS(G). Thus according 
to 1.3, Gaeco-Ext Sub {G}. Hence there exists a convex subgroup Hx of Ga and 
a convex subgroup {0} =# H2 of G such that Ga\Hx is isomorphic to H2. From the 
structure of Ga it follows that card Ga/Hx = a; because of card H2 < a, we arrived 
at a contradiction. 

Let X be a semisimple class and let G e Ga. Let {Ht}ieI be the set of all convex 
subgroups of G having the property that G\Ht belongs to X. We denote 

X(G) = ClieIHi. 

3.2. Lemma. G\X(G) belongs to X. 

Proof. If we consider the set {HJie/ as partially ordered by inclusion, then this 
set is linearly ordered. Axiom of Choice implies that there exists a well-ordered set 
of indices J such that {HJ eJ is a subset of {HJle/, f)jeJ Hj = X(G)9 and for each 
pah jl9j2 6 J we have 

Ii = h o Hjl 2 Hj2. 
Let ; e J. Then 

Hj = nkHk\Hj (fee J, /c<j) 

is a convex subgroup of the linearly ordered group G/H„ hence Hj e X. Thus G\X(G) 
is a co-extension of linearly ordered groups belonging to X. 
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3.3. Lemma. X(X(G)) = X(G). 

Proof. By way of contradiction, assume that H = X(X(G)) is a proper subset 
of X(G). Hence X(G)/H belongs to X. Thus GjH is a co-extension of linearly ordered 
groups belonging to X and therefore GJHeX. Hence He{Hi}ieI which implies 
H 3 X(G), and so we arrived at a contradiction. 

Remark . For the analogous result concerning semisimple classes of linearly 
ordered groups which need not be abelian cf. [2]. 

3.4. Lemma. Let A, Be Sfa and suppose that A covers B. Then there is He A\B 
such that B v TS(H) = A and B(H) = H. 

Proof. Since B c A there is Hx e A \ B. Put H = B(H^). Since A is c-herediatary, 
we have H e A. According to 3.3, B(H) — H. If H e B, then Ht is a transfinite co-
extension of linearly ordered groups belonging to B, whence Ht e B, which is a con­
tradiction; thus H $ B. Therefore B < B v TS(H) g A. Since B is covered by A we 
infer that B v TS(H) = A. 

3.5. Theorem. Let A e Sfa. Assume that for each G e A and each cardinal a we 
have Ga e A. Then no semisimple class is covered by A. 

Proof. By way of contradiction, suppose that there exists a semisimple class B 
such that B is covered by A. Let H be as in 3.4 and let a be a cardinal, a > card H. 
According to the assumption, Ha e A. Thus Ts(Ha) ^ A. Since H e Ts(Ha), the linearly 
ordered group Ha does not belong to B. 

In view of 3.4 we have Ha e B v TS(H). This together with 1.4 implies that there 
exists a convex subgroup K of Ha with K =j= Ha such that either (i) HaJK belongs 
to B, or (ii) HaJK is isomorphic to a convex subgroup of H. Since card Ha/K = a > 
> card H, the condition (ii) cannot hold; thus (i) is valid. 

In view of the structure of Ha there are linearly ordered groups P, Q such that 
HjK is isomorphic to P o Q, where Q is isomorphic to Ha and either (i t) P = {0} 
or (iij) there is a convex subgroup Px of H with Px #= H such that P is isomorphic 
to HjPv Now HjK e B implies P o Q e B, hence P e B; if (ii±) holds, then HJP1 e B, 
which implies B(H) S P J + H and this is a contradiction (cf. 3.4). Therefore (ix) 
is valid and hence HajK is isomorphic to Ha. This yields ifa e B, which is a contra­
diction. 

From 3.5 we obtain immediately: 

3.6. Corollary. The lattice Sfa contains no dual atoms. 
For H e Ga we denote by Ut(H) the class of all linearly ordered groups G such that 

no convex subgroup of G is isomorphic to H. 

3.7. Lemma. Let H =t= {0} be an archimedean linearly ordered group. Then 
UX(H) is a semisimple class. 
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Proof. Put UX(H) = X. Then we have SubX = X = co-ExtX. Hence in view 
of 1.3, X = TsX. 

3.8. Lemma. Let H be as in 3.7 and let G e UX(H). Then Ga e UX(H) for each 
cardinal a. 

This is an immediate consequence of the definition of Ut(H). 
From 3.7, 3.8 and 3.5 we conclude: 

3.9. Corollary. Let H #= {0} be an archimedean linearly ordered group. Then 
the semisimple class Ut(H) does not cover any linearly ordered group. 

If Hl9 H2 are non-zero archimedean linearly ordered groups and if Ht is not iso­
morphic to H2, then Ht e UX(H2), H2 e U^Hj, whence U^Hj * UlvH2). There­
fore we have: 

3.10. Corollary. The class of all semisimple classes X having the property that X 
does not cover any semisimple class is infinite. 

The above considerations can be sharpened as follows. 

3.11. Lemma. Let A,BeSfa,B < A. Assume that HeA\B, B(H) = H. Let a 
be an infinite cardinal. Then B(Ha) = Ha. 

Proof. By way of contradiction, assume that B(Ha) c Ha. Hence {0} + 
4= Ha\B(Ha) e B. Now we may apply the same procedure as in the proof of 3.5 (with K 
replaced by B(Ha)) and we arrive at a contradiction. 

3.12. Lemma. Let HeGa, H # {0}. Let a, 0 be cardinals with a < p. Then 
(Ha\ = Hp. 

This follows immediately from the definition of Ha and Hfi. 

3.13. Lemma. Let A be as in 3.5 and let B be a semisimple class with B c A. 
Let H e A\B and let a be a cardinal with a > card H. Then Ha does not belong 
toBw TS(H). 

The proof (by way of contradiction) is similar to that of 3.5 and therefore it will 
be omitted. 

From 3.1, 3.11, 3.12 and 3.13 we obtain: 

3.14. Corollary. Let A, B, H and a be as in 3.13. Let /? be a cardinal with /? > a. 
Then B<B v Ts(Ha),< B v Ts(Hp) < A. 

The following theorem is a consequence of 3.14: 

3.5.1. Theorem. Let A, BeSfa, B < A. Assume that for each Ge A and each 
cardinal a we have Ga e A. Then the interval \B, A] of Sfa contains a subcollection C 
such that (i) C is linearly ordered, and (ii) C is a proper collection. 
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3.5.2. Corollary. Let B e Sfa9 B 4= Ga. Then the interval [B9 Gfl] of Sfa is a proper 
collection. 

4. THE CLASS ^ 

In this section we will describe a rather large collection of semisimple classes X 
which have no cover in the lattice Sfa. 

We denote by A1 the class of all linearly ordered groups G which have the following 
property: there exists a convex subgroup G' of G such that G' is non-zero and archi-
medean. 

Let stf1 be the collection of all semisimple classes X = TS(G) with G e Ax. It will 
be proved that stft is a proper collection and that for each X e s/l9 X has no cover 
in the lattice Sfa. 

Let us remark that if Gt is a non-zero archimedean linearly ordered group and G2 

is any linearly ordered group, then Gt o G2 belongs to Ax. 
If we have a lexicographic product P = TieI Gi9 then we denote by T'ieI Gt the 

linearly ordered group consisting of all elements fe P such that the set {iel :f(i) 4= 
4= 0} is finite. 

4.1. Theorem. Let G e Al9 B = TS(G). Then B has no cover in ^a. 

Proof. By way of contradiction, assume that there is A e Sfa such that A covers B. 
According to 3.4, there is HeA\B such that B(H) = H and B v TS(H) = A. 
Let a be a cardinal, a > card H. Consider the semisimple class TS(H

2). Because 
Hi e TS(H)9 we have TS(H

2) g TS{H). First assume that H2 $ B. Then B v FS(H*) = 
= A9 hence HeB v TS(H

2). Thus in view of 1.4, H e co-Ext (B u TS(H
2)). There­

fore there is a convex subgroup K of H with H =t= H such that either (i) H/K e 5 , 
or (ii) H/K is isomorphic to a convex subgroup ofH2. The validity of (i) is impossible 
because B(H) = H; the validity of (ii) is impossible as well since from the definition 
of H2 we obtain card H/K = a > caid H, which cannot hold. Thus H2 eB = 
= co-Ext Sub {G}. 

There exists a convex subgroup K1 #= {0} of G such that K- is isomorphic to 
a homomorphic image K2 of H2. From the structure of H2 it follows that K2 can be 
expressed as 

K2 = P o Q 
so that 

a) either (i) P = {0} or (ii) P + {0}, P is not isomorphic to H and P is a homo­
morphic image of H; 

b) either (i t) Q = {0}, or (iix) there is a linearly ordered set / such that I is dually 
well-ordered and Q is isomorphic to T'ieI Hi9 where each Ht is isomorphic to H. 

If (ii) is valid, then K± e B implies that K2 e B and thus P e B; but in this case we 
should have B(H) a H, which is a contradiction. Thus P = {0} and hence Q # {0}; 
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therefore (ii±) is valid and K2 is isomorphic to Q. Now we distinguish two cases. 
If/ has the least element i0, then Hio is a convex subgroup of K2 and hence Hio belongs 
to B, thus H belongs to B, which is a contradiction. If I has no least element, then no 
non-zero convex subgroup of K2 is o-simple, hence the same holds for Kl9 which is 
a contradiction. 

4.2. Lemma. Let G and G' be non-zero non-isomorphic archimedean linearly 
ordered groups. Let cc, ft be cardinals with max {card G, card G'} < a < ft, Ht = 
= G' o Gl, H2 = G' o G\. Then TS(H^ * TS(H2). 

Proof. By way of contradiction, assume that H1 e TS(H2). Hence there is a homo-
morphic image Kx =j= {0} of Hx such that Kx is isomorphic to a convex subgroup K2 

of H2- Since K2 # {0}, it contains a convex subgroup Gx isomorphic to G'; since G' 
is lexicographically indecomposable, it follows from Malcev's theorem on the exis­
tence of isomorphic refinements of two lexicographic decompositions ([5], cf. also 
[3] p. 42, Thm. 9) that Kx also contains a convex subgroup isomorphic to G'. There­
fore K! = Hx and hence K2 + G'; but in this case we have 

card Kx = a < ft = card K2 , 

which is a contradiction. 
Since both Hx and H2 belong to Al9 we obtain immediately from 4.2: 

4.3. Theorem. s/t is a proper collection. 

5. EXISTENCE OF PRIME INTERVALS IN Sfa 

An interval \X, 7] of Sfa is called prime if X < Y and if theie exists no Ze Sfa 

with X < Z < Y. Until now we have established only negative results concerning 
the existence of prime intervals in Sfa (cf. 2.5, 3.5, 3.5.1, 4.1). 

In this section it will be shown that there exist infinitely many prime intervals in 
the lattice Sfa (in fact, the class of all prime intervals of Sfa is a proper class). 

Let A2 be the class of all linearly ordered groups G which have the following 
property: there exists a convex subgroup G' of G such that 

(i) G' is non-zero and archimedean; 
(ii) if K, K' e c(G), {0} 4= K c K', then K'jK is not isomorphic to G'. 

It is easy to verify that if G e A2, then its convex subgroup G' fulfilling (i) is uniquely 
determined. 

5.1. Lemma. Let GeA2 and let BG be the'class of all linearly ordered groups 
H e TS(G) such that no convex subgroup of H is isomorphic to G. Then BG is a semi-
simple class. 
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Proof. It is obvious that BG is c-hereditary; hence it suffices to verify that BG is 
closed with respect to tiansfinite co-extensions. By way of contradiction, assume that 
there exists {0} =t= H' e co-Ext BG such that H' does not belong to BG. Because Hf e 
e TS(G) there exists a convex subgroup Gx of H' such that G1 is isomorphic to G. 
Further, there exist convex subgroups Ha (a < <5) of H' such that 

H' = Hj ID H2 => ... 3 Ha z> ... (a < 5), 

a<,H, = {o}, 
and for each 1 < /? < <5, the linearly ordered group 

(Oy<ffHy)lHf 

belongs to BG. We distinguish two cases: 

a) 5 is a limit ordinal. Then no convex sugroup of H' is o-simple, hence no convex 
subgroup of H' is isomorphic to G', which is a contradiction (in view of the existence 
ofG,)-

b) 5 is non-limit, 6 = x + 1. Hence Hx = {0}. If x is a limit ordinal, then we have 
the same conclusion as in a). Let x be non-limit, x = T + 1. Then Hx = HxjHx+1 

belongs to BG, thus we cannot have G1 .= Hx. Therefore Hx c Gx. 

The linearly ordered group G1JHX is a convex subgroup of H'\HX. If T is a non-
limit ordinal, then H'JHX has a convex subgroup isomorphic to G', hence the same 
holds for G1JHt, which is a contradiction (cf. (ii) above). Hence T is a limit ordinal. 
Thus there are infinitely many pairs Ph Qt of convex subgroups of Gx such that 
Pi <= Qi and <2r/P, is isomorphic to G', which is a contradiction (again, cf. (ii)). 
Thus BG is closed with respect to transfinite extensions. 

5.2. Lemma. Let G and BG be as in 5.1. Let X be a semisimple class with X < 
< TS(G). Then X = BG. 

Proof. Let H eX. If H has a convex subgroup isomorphic to G, then GeX and 
thus TS(G) ^ X, which is a contradiction. Therefore H e J5G, which implies X ^ £G. 

Since G e FS(G) \ £G, we obtain from 5.2 as a corollary: 

5.3. Theorem. Lef G e A2. 77*en [BG, Ts(Gj] is a prime interval of the lattice S?a. 

5.4. Lemma. Let G, G' e A2. Assume that TS(G) < TS(G'). Then BG < BG,. 

Proof. According to 5.3 we have BG < TS(G) g BG>. 
Let G and G' be non-isomorphic non-zero archimedean linearly ordered groups. 

For each cardinal a we put 
K(a) = Go(G') a . 

5.5. Lemma. Let a, ft be cardinals, max {card G, card G'} < a < /?. Then 
rs(K(a)) < rs(*(/?)). 
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Proof. K(a) is isomorphic to a convex subgroup of K(p), hence K(a)e Ts(K(f})) 
and thus Ts(K(a)) :g TS(K(P)). On the other hand, no nontrivial homomorphic image 
of K(0) is isomorphic to a convex subgroup of K(a), thus K(p) does not belong to 
Ts(K(a)). Therefore Ts(K(a)) < Ts(K(j3)). 

From 5.4 and 5.5 we obtain (since K(a) e A2): 

5.6. Lemma. Let G, a, /? be as above. Then [BK(a), K(a)] and [BK{P), K(/?)] are 
distinct prime intervals of the lattice £fa. 

As a corollary, we infer: 

5.7. Theorem. The collection of all prime intervals of the lattice S?a is a proper 
collection. 
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