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Casopis pro p&stovini matematiky, rot. 108 (1983), Praha

ON SEMISIMPLE CLASSES OF ABELIAN LINEARLY
ORDERED GROUPS

GABRIELA PRINGEROVA, Prefov
(Received November 5, 1981)

Radical classes and semisimple classes of linearly ordered groups were defined and
investigated by Chehata and Wiegandt [2]. Jakubik [4] studied radical classes of
abelian linearly ordered groups; cf. also [6].

In this paper the notion of semisimple class of linearly ordered groups will be
modified in order to obtain the possibility of working with the abelian case only.
Some questions concerning the lattice &, of all semisimple classes of abelian
linearly ordered groups will be dealt with; analogous questions for radical classes of
abelian linearly ordered groups were studied in [4].

Let S, and G, be the least and the greatest element of &, (i.e., S, = {{0}} and G,
is the class of all abelian linearly ordered groups). We denote by &, the collection
of all principal semisimple classes of abelian linearly ordered groups. For X € &,
let a(X) and a’(X) be the collection of all elements of &, which cover X or which are
covered by X, respectively. Sample results:

Let G, and G, be non-zero non-isomorphic archimedean linearly ordered groups
and let X be the semisimple class generated by {G;, G,}. Then the interval [S,, X]
of &, fails to be modular. Let Ge G,, G + {0} and let Y be the semisimple class
generated by G. Then there exists C < [Sy, Y] n &, such that (i) C is a proper
collection and (ii) C is linearly ordered. A collection C, = &, is constructed such
hat C, is a proper collection and an antichain (i.e., any two distinct elements of C
are incomparable). For X € &, a sufficient condition is found under which a’(X) = 0
(there are infinitely many such semisimple classes X). A proper collection 4, S &,
is constructed such that a(X) = @ for each X € A;. A proper collection 4, = G,
is described having the property that if X is a principal semisimple class generated
by some G € A4,, then a'(X) is a one-element collection; as a corollary we obtain that
the collection of all pi'ime intervals [ Y, Z] of the lattice &, such that Z is principal,
is a proper collection. .



1. BASIC PROPERTIES OF THE LATTICE OF SEMISIMPLE CLASSES

In this paper we shall deal with objects belonging to some type of the following
hierarchy:

sets and their elements; classes of linearly ordered groups; collections of classes
of linearly ordered groups.

A collection C will be called proper if there exists an injective mapping of the
class of all cardinals into C. Greek letters will denote ordinals (unless they are explici-
tely defined to have a different meaning).

By considering a subclass X of G, we always assume that X is closed under iso-
morphisms and that {0} € X.

For the terminology concerning lattice and hnearly ordered groups cf. G. Birkhoff
[1] and L. Fuchs [3]. The group operation in a linearly ordered group will by written
additively.

All linearly ordered groups dealt with in this paper are assumed to be abelian;
the words ‘linearly ordered group’ will always mean ‘abelian linearly ordered group’.

Let S be a nonempty class of linearly ordered groups. S is said to be c-hereditary,
if for each G € S and each convex subgroup H of G we have H € S.

Let Hy, H,, ..., H,, ... (x < &) be linearly ordered groups. Let G be a linearly
ordered group and let

(*) G=G;2G6,2...2G,2...(a <)

be a descending chain of convex subgroups of G such that

(n7<ﬂ Gv)/ Gﬂ

is isomorphic to H, for each 1 < f < . Assume that ,<; G, = {0}. Then the
linearly ordered group G/Na<5 G, is called a transfinite co-extension of linearly
ordered groups H, (¢ < 6).

Let G, be the class of all linearly ordered groups.

1.1. Definition. A nonempty class S of linearly ordered groups is said to be a semi-
simple class if

(a*) S is c-hereditary, and

(b*) S is closed under transfinite co-extensions.

(The analogous notion concerning the case when we do not suppose the com-
mutativity of the linearly ordered groups under consideration was studied in [2];
cf. Definition 4 and Theorem 2 of [2].)

Let &, be the collection of all semisimple classes of lmearly ordered groups.
&, is partially ordered by inclusion. Under this partial order, G, is the greatest ele-
ment of &,, and the class S, = {{0}} is the least element of &,. If S, is a nonempty
subcollection of &, then the intersection S of all semisimple classes belonging to S,
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fulfils the condition (a*) and (b*), thus S is the meet (in the sense of the given partial
order) of S, in &,; this yields

1.2. Theorem. &, is a complete lattice.

For each subclass X + @ of G, we denote by

T.X — the intersection of all semisimple classes S with X < S;

Sub X — the class of all convex subgroups of linearly ordered groups belonging
to X; '

co-Ext X — the class of all transfinite co-extensions of linearly ordered groups
belonging to X.

It is obvious that T,.X is the smallest semisimple class containing X as a subclass;
T.X is said to be the semisimple class generated by X. If Ge G, and S = {G}, then
we also write T,.X = T,(G) and T,(G) is said to be a principal semisimple class. We
denote by &, the collection of all principal semisimple classes.

1.3. Theorem. Let X be a subclass of G,. Then T.X = co-Ext Sub X.

Proof. Denote Y = co-Ext Sub X. Because T.X is a semisimple class with X <
< T.X, we obtain from 1.1 that Y = T.X is valid. Further, the relation co-Ext Y = Y
obviously holds. Therefore we have only to verify that Sub Y = Y.

Let G € Y. There exists a descending chain {G,} (¢ < 6) of convex subgroups of G
with G; = G such that

Na<s Go = {0},
and for each § < J, the linearly ordered group
Gy = (Ny<s GGy
belongs to Sub X. Let H be a convex subgroup of G, H % {0}. There exists a least
B < é with G, = H. Consider the descending chain
H>5G32Gp,,2...26G,2...(2a<)

of convex subgroups of H. We have clearly

Hn (nﬁéa<a Ga) = {0} .

The linearly ordered group H/Gj is a subgroup of G, hence H|G, belongs to Sub X.
Thus H € Y and therefore Sub Y = Y.

We denote by A and v the lattice operations in the complete lattice &, (IfX, Ye
€%, and X < Y, then we write also X < Y.) In fact, the operation A coincides
with the intersection of classes. The operation v in &, is constructively described
by the following

1.4. Theorem. Let I be a nonempty class and for each i el let X ; be a semisimple
class. Then Vi1 X; = co-Ext Uier X
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Proof. This follows immediately from 1.3 and from the fact that Sub X; = X,.

If X;,X,e%, X; <X,, then [X,, X,] denotes the collection of all X € &,
with X, < X < X,.

We denote by G, o G, the lexicographic product of G, and G, (cf. e. g. [3] for this
notation).

1.5. Lemma. Let G, and G, be non-zero archimedean linearly ordered groups
such that G, is not isomorphic to G,. Then T(G, - G;) A T(G,) = S,.

Proof. By way of contradiction, assume that there is G € T(G, o G;) A T(G,)
with G # {0}. Let us denote by ¢(G) the system of all convex subgroup of G partially
ordered by inclusion; in fact, under this partial order, ¢(G) is linearly ordered.

From G e T(G,) it follows that there is K, € ¢(G) such that G/K, is isomorphic
to G,; let f be an isomorphism of G/K2 onto G,. Assume that H e c(G), K,cHc
< G. Then H[K, is a convex subgroup of G/K, and thus f~'(H|K,) is a convex
subgroup of G,. Since G, is archimedean, we have either f~!(H/K,) = {0} or
f~Y(H|K,) = G,. Hence either H = K, or H = G. This implies that K, is covered
by G in ¢(G). Similarly, from G € T,(G, - G,) we obtain that there is K; & ¢(G) such
that either (i) G/K; is isomorphic to Gy, or (ii) G/K; is isomorphic to G, o G,. If (i)
is valid, then K is covered by G in the chain c(G), whence K3 = Kj; in such a case G,
would be isomorphic to G,, which is a contradiction. Thus (ii) holds and hence the
interval [K3, G] of ¢(G) (being isomorphic to the interval [{0}, G, o G,] of ¢(G, o'G,))
has exactly three elements; hence K is covered by K, in ¢(G); moreover, K,/K,
is isomorphic to G,. We have K, + {0} and K, € T(G,); thus there is K} € ¢(K,)
such that K,[K} is isomorphic to G,. This implies that K, = K and therefore G,
is isomorphic to G, which is a contradiction.

1.6. Lemma. Let G; and G, be as in 1.5. Then T(G,) A T|(G;) = So.

Proof. By way of contradiction, assume that there exists {0} + G e Ty(Gy) A
A T(G,). From G e T(G,) it follows that there are K, e ¢(G) such that G/K; is
isomorphic to G, (i = 1, 2). Both K, and K, are covered by G in ¢(G), hence K; = K,
and thus G, is isomorphic to G,, which is a contradiction.

1.7. Theorem. Let G, G, be non-zero archimedean linearly ordered groups.
Assume that G is not isomorphic to G,. Then the interval [S,, T{(G,) v T,(G,)]
fails to be modular.

Proof. Put ‘
S, = Ts(Gl), S; = Ts(Gz)’ S; = Ts(Gl ° Gz) .

Clearly S, < S; (i = 1, 2, 3). Because G, and G, are archimedean, we have
sub {G,} = {{0}, G} (i = 1,2),
Sub {Gl o Gz} = {{O}, Gl’ Gl ° GZ} .
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Hence according to 1.3,
(1) S; = co-Ext{{0},G} (i=1,2),
: (2) S5 = co-Ext {{0}, G;, G, - G,}.
From (1) and (2) we conclude that S; < S;. According to 1.5 and 1.6,
(3) SiAS;,=8S3A8,=5,

is valid. Moreover, in view of 1.3 we have S3 £ S; v S, (because of G, .G, €
€ co-Ext {G,, G,}), thus

(4) 51VS2=S3V52-
From (3) and (4) it follows that the lattice [So, S; Vv S,] is not modular.

1.8. Corollary. The lattice &%, is not modular.

2. ON THE INTERVALS [S, X]

Let « be an infinite cardinal. We denote by w(«) the least ordinal having the
property that the power set of all ordinals less then w(a) is «. Let J(«) be the linearly
ordered set dual to w(c).

For each G € G, we put

G: = rje.l(a) G_,' s

where each G; is isomorphic to G. (The symbol T denotes the operation of the
lexicographic product, cf. e. g. [6].) Further, let G; be the linearly ordered group
consisting of all fe G, such that the set {j e J(«):f(j) + 0} is finite. If G % {0}
and o > card G, then card G; = a. Moreover, for each non-zero convex subgroup G’
of G2 we also have card G’ = a. Because G’ is a transfinite co-extension of G, we
infer -

2.1. Lemma. For each G e G, and for each infinite cardinal «, G> belongs to
T(G).

2.2. Lemma. Let GeG,, G + {0} and let a be a cardinal with o > card G.
Then G does not belong to T,(G?).

Proof. By way of contradiction, assume that G belongs to T,(G2). Hence G e
€ co-Ext Sub {GZ}. Thus there exists a convex subgroup H of G with H % G such that
G[H is isomorphic to a convex subgroup H, of G2. Then H, #+ {0} and according
to the construction of Gf_ we have card H, = a. Therefore card G = card G/H = a,
which is impossible. )
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2.3. Corollary. The lattice &, does not contain any atom.

Proof. Let X € S,, X #+ S,. Hence there exists G € X with G % {0}. Thus T(G) <
< X. Let a be a cardinal with « > card G. In view of 2.1 we have T,(GZ) < T;(G).
From 2.2 we obtain T,(G?) + T,(G), hence T,(G2) < T,(G). Because of G2 + {0}
we have T(G?) + S,. Therefore S, < T,(G2) < X and thus X fails to be an atom
in &, -

Corollary 2.3 can be sharpened by using the following consideration.

2.4. Lemma. Let {0} + G€G,. Let «, B be infinite cardinals with card G < & <
< B. Then S, * T(G;) < T,(G2). ‘

Proof. Since G; # {0}, we have S, # T,(G}). From the construction of the
linearly ordered groups G2, G; and from a < f it follows that G} is an infinite co-
extension of G2, hence G} € T,(G?). Hence T,(G}) < T,(G2). Now it suffices to verify
that G? does not belong to T(Gj). By way of contradiction, assume that G, e
€ T(G3) = co-Ext Sub {G;}. Thus there exists a convex subgroup H of G? with
H # G? such that G2[H is isomorphic to some H, € Sub {G}}. Thus H, + {0} and
hence card H, = f implying card G:/H = f, which is a contradiction.

2.5. Theorem. Let X € &,, X + S,. There exists a subcollection C of [S,, X]
such that (i) C is linearly ordered, (ii) C is a proper collection, and (iii) C = &),

Proof. There exists GeX with G # {0}. For each cardinal & > card G we
construct X, = T,(GZ); let C be the class of all such X,. Each G? is an infinite co-
extension of G, hence G? € T(G) < X, and hence X, € [S,, X]. From 2.4 it follows
that (i) and (ii) are valid. The assertion (iii) obviously holds.

2.6. Corollary. Let X € &,, X + S,. Then the interval [So, X] is a proper col-
lection.

It remains an open question whether the condition (i) can be replaced by the
condition (i') S is an antichain. The following weaker result is valid:

2.7. Theorem. There exists a subcollection S of &, such that (i) S is an antichain,
and (i) S is a proper collection.

Proof. If I, and I, are disjoint linearly ordered sets, then we denote by I, @ I,
the set I = I, U I, which is linearly ordeted in such a way that for pairs of elements
belonging to the same I; (i = 1, 2) the linear order in I is the same as in I, and for
each pair i, €1y, i €I, we put iy < i,. Let GeG,, G * {0}, « > card G. Let I(x)
be a linearly ordered set dually isomorphic to J(«); we shall assume that I(a) N
N J(a) = 0. Put I*(x) = J(«) @ I(«) and for each i e I*(a) let G; be a linearly ordered
group isomorphic to G. Put

K, = Tic1o@)Gi -
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Let K, be the set of all f € K., such that {i € I*(«) : f(i) # 0} is finite. The construction
of K, implies:

(a) If K, is a non-zero convex subgroup of K,, then card K, = a.

(b) If Hy is a convex subgroup of K, with K, # H, then card K,[H, = «.

Now let B be a cardinal with § > a. From (a) and (b) it follows that neither K, €
€ T(K,) nor K, € T,(K,) can hold. Hence T(K,) is incomparable with Ty(K,). Let S

be the class of all T,(K,), where a runs over the the class of all cardinals larger than
card G. Then S fulfils the conditions (i) and (ii)-

3. SEMISIMPLE CLASSES HAVING NO DUAL COVERS

Let « be an infinite cardinal and let w(wx) be as in § 2. For each G € G, we put
G, = N G;,

where I(«) is a linearly ordered set isomorphic to w(x) and G; is isomorphic to G
for each i € I(a).

3.1. Lemma. Let Ge G,, G #+ {0}, « > card G. Then G, does not belong to T(G).

Proof. By way of contradiction, assume that G, belongs to T,(G). Thus according
to 1.3, G, € co-Ext Sub {G}. Hence there exists a convex subgroup H, of G, and
a convex subgroup {0} + H, of G such that G,/H, is isomorphic to H,. From the
structure of G, it follows that card G,/H 1 = o; because of card H, < a, we arrived
at a contradiction. X

Let X be a semisimple class and let G € G,. Let {H},; be the set of all convex
subgroups of G having the property that G/H ; belongs to X. We denote

X(G) =Nia H;.

3.2. Lemma. G/X(G) belongs to X.

Proof. If we consider the set {H i},-e; as partially ordered by inclusion, then this
set is linearly ordered. Axiom of Choice implies that there exists a well-ordered set
of indices J such that {H,} ; is a subset of {H,},s, N;s H; = X(G), and for each
pait j,, j, € J we have

jl észH-“ 2 sz.
Let jeJ. Then
H,=N.HJ/H; (keJ, k <))

is a convex subgroup of the linearly ordered group G[H , hence H; € X. Thus G/X(G)
is a co-extension of linearly ordered groups belonging to X.
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3.3. Lemma. X(X(G)) = X(G).

Proof. By way of contradiction, assume that H = X(X(G)) is a proper subset
of X(G). Hence X(G)/H belongs to X. Thus G/H is a co-extension of linearly ordered
groups belonging to X and therefore G/H e X. Hence H € {Hi},-e, which implies
H 2 X(G), and so we arrived at a contradiction.

Remark. For the analogous result concerning semisimple classes of linearly
ordered groups which need not be abelian cf. [2]

3.4. Lemma. Let A, Be &, and suppose that A covers B. Then there is He A\ B
such that B v T(H) = A and B(H) =

Proof. Since B = A there is H; € AN\ B. Put H = B(H,). Since A4 is c-herediatary,
we have H € A. According to 3.3, B(H) = H. If H e B, then H, is a transfinite co-
extension of linearly ordered groups belonging to B, whence H, € B, which is a con-
tradiction; thus H ¢ B. Therefore B < B v T,(H) < A. Since B is covered by A we
infer that B v T,(H) =

3.5. Theorem. Let A€ &,. Assume that for each G € A and each cardinal a we
have G, € A. Then no semisimple class is covered by A.

Proof. By way of contradiction, suppose that there exists a semisimple class B
such that B is covered by A. Let H be as in 3.4 and let o be a cardinal, & > card H.
According to the assumption, H, € A. Thus Ty(H,) < A. Since H € T,(H,), the linearly
ordered group H, does not belong to B.

In view of 3.4 we have H, € B v T,(H). This together with 1.4 implies that there
exists a convex subgroup K of H, with K # H, such that either (i) H,/K belongs
to B, or (ii) H,/K is isomorphic to a convex subgroup of H. Since card H,[K = « >
> card H, the condition (ii) cannot hold; thus (i) is valid.

In view of the structure of H, there are linearly ordered groups P, Q such that
H,/K is isomorphic to P o Q, where Q is isomorphic to H, and either (i,) P = {0}
or (ii;) there is a convex subgroup P, of H with P; + H such that P is isomorphic
to H/P,. Now H,/K € B implies P - Q € B, hence P € B; if (ii;) holds, then H/P, € B,
which implies B(H) < P; + H and this is a contradiction (cf. 3.4). Therefore (i,)
is valid and hence H,/K is isomorphic to H,. This yields H, € B, which is a contra-
diction.

From 3.5 we obtain immediately:

3.6. Corollary. The lattice &, contains no dual atoms.
For H € G, we denote by U,(H) the class of all linearly ordered groups G such that
no convex subgroup of G is isomorphic to H.

3.7. Lemma. Let H + {0} be an archimedean linearly ordered group. Then
U,(H) is a semisimple class.
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Proof. Put U;(H) = X. Then we have SubX = X = co-Ext X. Hence in view
of 1.3, X = TX. -

3.8. Lemma. Let H be as in 3.7 and let Ge U,(H). Then G, € U(H) for each
cardinal . ~

This is an immediate consequence of the definition of U,(H).

From 3.7, 3.8 and 3.5 we conclude:

3.9. Corollary. Let H + {0} be an archimedean linearly ordered group. Then
the semisimple class U,(H) does not cover any linearly ordered group.

If H,, H, are non-zero archimedean linearly ordered groups and if H, is not iso-
morphic to H,, then H, e U,(H,), H, € U,(H,), whence U,(H,) + U,(H,). There-
fore we have:

3.10. Corollary. The class of all semisimple classes X having the property that X
does not cover any semisimple class is infinite.
The above considerations can be sharpened as follows.

3.11. Lemma. Let A,Be &,, B < A. Assume that He ANB, B(H) = H. Let «
be an infinite cardinal. Then B(H,) = H

Proof. By way of contradiction, assume that B(H,) = H,. Hence {0} +
+ H,/B(H,) € B. Now we may apply the same procedure as in the proof of 3.5 (with K
replaced by B(H,)) and we arrive at a contradiction.

3.12. Lemma. Let He G,, H + {0}. Let «, B be cardinals with a < f. Then
(Hn)ﬂ = Hp.
This follows immediately from the definition of H, and Hj.

3.13. Lemma. Let A be as in 3.5 and let B be a semisimple class with B = A.
Let He AN\ B and let a be a cardinal with oo > card H. Then H, does not belong
to B v T(H).

The proof (by way of contradxctlon) is s1m11ar to that of 3.5 and therefore it will
be omitted.

From 3.1, 3.11, 3.12 and 3.13 we obtain:

3.14. Corollary. Let A, B, H and o be as in 3.13. Let B be a cardinal with f > «.
Then B < B v T(H,).< B v T(H,) < A.
The following theorem is a consequence of 3.14:

3.5.1. Theorem. Let A,Be &,, B < A. Assume that for each Ge A and each
cardinal a we have G, € A. Then the interval [ B, A] of &, contains a subcollection C
such that (i) C is linearly ordered, and (ii) C is a proper collection.
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3.5.2. Corollary. Let Be &,, B + G,. Then the interval [B, G.) of &, is a proper
collection.

4. THE CLASS #,

In this section we will describe a rather large collection of semisimple classes X
which have no cover in the lattice &,.

We denote by A, the class of all linearly ordered groups G which have the following
property: there exists a convex subgroup G’ of G such that G’ is non-zero and archi-
medean.

Let o/, be the collection of all semisimple classes X = T,(G) with G € 4,. It will
be proved that 7, is a proper collection and that for each X € &7, X has no cover
in the lattice &,.

Let us remark that if G, is a non-zero archimedean linearly ordered group and G,
is any linearly ordered group, then G, - G, belongs to 4;.

If we have a lexicographic product P = I';; G;, then we denote by I';; G; the
linearly ordered group consisting of all elements f € P such that the set {i eI : f(i) +

+ 0} is finite.

4.1. Theorem. Let G € A;, B = T(G). Then B has no cover in &,.

Proof. By way of contradiction, assume that there is 4 € &, such that A covers B.
According to 3.4, there is He A\B such that B(H) = H and B v T(H) = A.
Let a be a cardinal, « > card H. Consider the semisimple class T,(HZ). Because
H? e T(H), we have T,(H?) < T,(H). First assume that H? ¢ B. Then B v T,(H?) =
= A, hence H e B v T,(H?). Thus in view of 1.4, H € co-Ext (B U T,(H?)). There-
fore there is a convex subgroup K of H with H % H such that either (i) H/K € B,
or (ii) H/K is isomorphic to a convex subgroup of H?. The validity of (i) is impossible
because B(H) = H; the validity of (ii) is impossible as well since trom the definition
of H? we obtain card HK = « > card H, which cannot hold. Thus H;eB =
= co-Ext Sub {G}.

There exists a convex subgroup K; # {0} of G such that K, is isomorphic to
a homomorphic image K, of HZ. From the structure of HZ it follows that K, can be
expressed as '

: K, =P.Q
so that

a) either (i) P = {0} or (ii) P % {0}, P is not isomorphic to H and P is a homo-
morphic image of H; :

b) either (i,) @ = {0}, or (ii,) there is a linearly ordered set I such that I is dually
well-ordered and Q is isomorphic to I';.; H;, where each H; is isomorphic to H.

If (ii) is valid, then K € B implies that K, € B and thus P € B; but in this case we
should have B(H) = H, which is a contradiction. Thus P = {0} and hence Q =+ {0};
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therefore (ii,) is valid and K, is isomorphic to Q. Now we distinguish two cases.
If I has the least element iy, then H;, is a convex subgroup of K, and hence H;, belongs
to B, thus H belongs to B, which is a contradiction. If I has no least element, then no
non-zero convex subgroup of K, is o-simple, hence the same holds for K, which is
a contradiction.

4.2. Lemma. Let G and G' be non-zero non-isomorphic archimedean linearly
ordered groups. Let a, B be cardinals with max {card G, card G’} <a<fp, H =
= G'o G, Hy = G' - Gj. Then T(H,) + T(H,).

Proof. By way of contradiction, assume that H; € T,(H,). Hence there is a homo-
morphic image K; # {0} of H, such that K, is isomorphic to a convex subgroup K,
of H,. Since K, # {0}, it contains a convex subgroup G, isomorphic to G’; since G’
is lexicographically indecomposable, it follows from Malcev’s theorem on the exis-
tence of isomorphic refinements of two lexicographic decompositions ([5], cf. also
[3] p. 42, Thm. 9) that K, also contains a convex subgroup isomorphic to G’. There-
fore K, = H, and hence K, #+ G'; but in this case we have

cardK; = a < f =card K,,

which is a contradiction.
Since both H, and H, belong to A, we obtain immediately from 4.2:

4.3. Theorem. <, is a proper collection.

5. EXISTENCE OF PRIME INTERVALS IN £,

An interval [X, Y] of &, is called prime if X < Y and if thete exists no Ze &,
with X < Z < Y. Until now we have established only negative results concerning
the existence of prime intervals in &, (cf. 2.5,3.5,35.1, 4.1).

In this section it will be shown that there exist infinitely many prime intervals in
the lattice &, (in fact, the class of all prime intervals of &, is a proper class).

Let A, be the class of all linearly ordered groups G which have the following
property: there exists a convex subgroup G’ of G such that

(i) G’ is non-zero and archimedean;

(i) if K, K’ € ¢(G), {0} + K < K’, then K'[K is not isomorphic to G'.

It is easy to verify that if G € A4,, then its convex subgroup G’ fulfilling (i) is uniquely
determined.

5.1. Lemma. Let Ge A, and let B; be the class of all linearly ordered groups
He T,(G) such that no convex subgroup of H is isomorphic to G. Then By is a semi-
simple class. .
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Proof. It is obvious that B is c-hereditary; hence it suffices to verify that Bg is
closed with respect to transfinite co-extensions. By way of contradiction, assume that
there exists {0} # H'e co-Ext B such that H' does not belong to Bg. Because H' €
€ T,(G) there exists a convex subgroup G; of H’ such that G, is isomorphic to G.
Further, there exist convex subgroups H, (« < ¢) of H' such that

H=H >H;,>..oH,>..(a<9),

na<6 Hz = {0} ’
and for each 1 < f < §, the linearly ordered group

(n7<ﬁ H v)/ Hﬂ
belongs to B;. We distinguish two cases:
a) d is a limit ordinal. Then no convex sugroup of H' is o-simple, hence no convex

subgroup of H’ is isomorphic to G’, which is a contradiction (in view of the existence
of G,). '

b) & is non-limit, § = x + 1. Hence H, = {0}. If x is a limit ordinal, then we have
the same conclusion as in a). Let % be non-limit, x = = + 1. Then H, = H [H,,,
belongs to Bg, thus we cannot have G, < H,. Therefore H, = G;,.

The linearly ordered group G,[H, is a convex subgroup of H'[H,. If  is a non-
limit ordinal, then H'[H, has a convex subgroup isomorphic to G’, hence the same
holds for G,[H,, which is a contradiction (cf. (ii) above). Hence 7 is 4 limit ordinal.
Thus there are infinitely many pairs P;, Q; of convex subgroups of G; such that
P, < Q; and Q,/P; is isomorphic to G’, which is a contradiction (again, cf. (ii)).
Thus By is closed with respect to transfinite extensions.

5.2. Lemma. Let G and Bg be as in 5.1. Let X be a semisimple class with X <
< T(G). Then X < Bg.

Proof. Let H € X. If H has a convex subgroup isomorphic to G, then G € X and
thus T(G) < X, which is a contradiction. Therefore H € Bg, which implies X < Bg.
Since G € T,(G) \ B;, we obtain from 5.2 as a corollary:

5.3. Theorem. Let G € A,. Then [Bg, T(G)] is a prime interval of the lattice &,

5.4. Lemma. Let G, G' € A,. Assume that T(G) < T(G'). Then B; < Bg..

Proof. According to 5.3 we have B; < Ty(G) < Bg-
Let G and G’ be non-isomorphic non-zero archimedean linearly ordered groups.
For each cardinal « we put

K(@) = G+ (G'),.

5.5. Lemma. Let o, f be cardinals, max {card G, card G’} < a < B. Then
T(K(W) < T(K(5))
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Proof. K() is isomorphic to a convex subgroup of K(B), hence K(«) € T,(K(B))
and thus T(K(«)) £ T,(K(B)). On the other hand, no nontrivial homomorphic image
of K(p) is isomorphic to a convex subgroup of K(a); thus K(B) does not belong to
T,(K(«)). Therefore Ty(K(x)) < T.(K(B))-

From 5.4 and 5.5 we obtain (since K(«) € 4,):

5.6. Lemma. Let G, o, B be as above. Then [Byg,, K(2)] and [Byy, K(B)] are
distinct prime intervals of the lattice &,
As a corollary, we infer:

5.7. Theorem. The collection of all prime intervals of the lattice &, is a proper
collection.
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