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ON SOLVABILITY OF EQUATIONS OF THE 4" ORDER WITH
JUMPING NONLINEARITIES

PaveL KRresc¢f, Praha

(Received October 23, 1981)

INTRODUCTION

In the study of generalized 2n-periodic solutions of the nonlinear beam equation
with jumping nonlinearities

(1) Bu, + upy + Uy = '/’(“) + h,

where B is a positive constant, ¥ is a continuous function with lim y(u)/u = p if
u - +oo and limy(u)fu = v if u > —oo for some positive constants u, v and
h e L,(]0, 2n[2) one can proceed by the methods of [1], [2], which have been
developed for the nonlinear telegtaph equation

(2) ﬂut + Uy — Uyx = l//(u) + h »

with analogous assumptions for g,y and h.

It can be shown that there exists a subset A_, of ]0, +oo[? such that for each
(u, v) ¢ A_, the equation (1) is solvable for any right-hand side h. The set A_, is
defined as the set of all pairs (u, v), for which there exists a nonconstant 2z-periodic
function u € C*(R") solving the ordinary differential equation of the fourth order

(3 uV = put — v,

where u*(x) = max (u(x),0) and u~(x) = max (—u(x),0) are the positive and
negative parts of u.

The aim of this paper is to describe the set A_, for the periodic problem. In 3
we will pursue a qualitative study of the boundary-value problem for the equation
(3). Let us remark that the boundary-value problem for the equation (2) is solved
in [3]. : . ~

The cases ¢ < 0 or v £ 0 are trivial. If 4 = 0 or v = 0 then the only periodic
solution of (3) is the constant one, if uv < 0, then there ts no nonzero periodic solu-
tion (one can see it after integrating the equation (3) over the period). In the case
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u < 0, v < 0it suffices to multiply the equation (3) by u and to integrate again over
the period.. We obtain again u = 0.

In all the paper we denote by ]x, y[ ([x, ¥]) the open (closed) interval with bounds
x < y, by R! the set of all real numbers and by N the set of all natural numbers.

1. PRELIMINARIES

For further investigation it is useful to put pu = a* v = b* (a, b)€]0, +oo[%
The equation (3) will be written in the form

R(a,b): u" = a*u* — b*u".

It is well known that the equation R(a, b) for every a, b satisfies the assumptions of
the theorems of existence, unicity and continuous dependence of its solutions on
initial conditions and parameters. Moreover, each of its solutions is defined on R'.
The solution u = 0 will be called trivial.

(1.1) Lemma. Let y : R' - R! be a continuous increasing function satisfying
locally the Lipschitz condition in R' and let u,ve C*(R') be two solutions of the
equation of the n-th order '

= 4(e),
where n is a given natural number. Let us assume that there exists j € {O, 1,...
coss 1 = 1} such that u(0) > v(0) and u®(0) = v¥(0) for all i€ {0, 1, ..., n — 1}.

Then the functions u(x) — v')(x) for i€ {0,1,...,n — 1} are increasing and

positive in ]0, + oo.

Proof. Let us denote M = max {s > 0, Vx € [0, s[, u’(x) > v/(x)}. Obviously,
M > 0. For all x € ]0, M[ we have u®)(x) > v“(x) for i < j; in particular u(x) >
> v(x) for x € ]0, M[. Using the fact that y is increasing, we have y(u(x)) > ¥(v(x))
and thus u®™(x) > v™(x) for x € ]0, M[. Similarly, u¥*"(x) > vY*1)(x) for every
x€]0, M[.IfM < + o, then uY (M) > v¥(M), which is a contradiction. Therefore,
M = + oo, and the functions u®® — v'? are positive, and hence increasing in 0, + oof
fori<n m

2. PERIODIC SOLUTIONS

The notion of a periodic solution of the equation R(a, b) is considered in the sense
mentioned in the introduction. Let us give now some simple results.

(2.1) If u is an w-periodic solution of R(a, b) with @ > 0, then for all 4 % 0,
A % 0, 3eR! the function # defined by the relation

i(x) = Au(lx + 9), xeR'
is an wf|4|-periodic solution of R(|4] a, 4| B) if 4 > 0 and R(|4| b, |4] a) if 4 < 0.
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(2.2) For every nontrivial solution # of R(a, b) the set u~*(0) has no limit point
except maybe + oo or —oco. Moreover, if # is an w-periodic solution of R(a, b) and
u(xo) = 0 at a point x, € R?, then u'(xo) . #”(%,) < 0.

The proof of the last assertion is based on Lemma (1.1) with u(x — x,) or u(x, — x)
and v(x) = 0.

Consequently, each periodic solution u of R(a, b) is composed of semi-waves,
where a semi-wave is the portion of the graph of u between two successive zeros of u.
The simplest periodic solution possible is the one composed of one positive and one
negative semi-wave. .

Let us assume that there exists such a simple w-periodic solution u of R(a, b),
u(0) = u(x,) = u(w) = 0, 0 < xo < w. Then the function

uy(x) = u(x) + u(xo — x) -

is also an w-periodic solution of R(a, b), which is moreover symmetrical in the fol-
lowing sense:

u,(0) = uy(xo) = uy(w) =0,
uP(0) = (= 1) uP(xo) = u’(@) for i=1,2,3.
The results of this section consists in the proof of existence of symmetrical and
nonexistence of nonsymmetrical periodic solutions.
(2.3) Lemma. Let ¢ € |(3/4) n, n be the smallest positive root of the equation
tan (x) + th(x) =0,
and assume that there exists a positive semi-wave of a solution u of R(a, b) on

[xy, x2]. Then x, — x, < 2¢/a.

Proof. We have u(x;) = u(x;) = 0, u > 0 on ]x,, x,[. Thus u is a solution of
the linear equation u" = a*u in [x4, x,], and can be written in the form

u(x) = A sin (ax) + B cos (ax) + Csh (ax) + D ch (ax),

where 4, B, C, D are real constants and x € [x,, X,]. Put x4 = (x; + x,)[2, r =
= (x, — x,)/2. Then the function

ii(x) = u(xo + x)_+ u(xo — x)

is a symmetrical positive semi-wave of a solution of R(a, b) on [ —r, r]. Hence ii(x)
is of the form

a(x) = 4 (cos (ax) — CC‘I’IS—((a"r’)_) ch (ax)) ,

where A is a positive constant. The conditions #(x) > 0 on ]—r, r[ and #'(—r) 2 0
give us the inequality ar < ¢ which completes the pfoof. g
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(2.4) Theorem. The set S, of all pairs (a, b)€ 10, +co[? such that there exists
a nontrivial 2r-periodic solution of R(d, b), which is composed of two semiwaves,
is a curve (a, b(a)), where b(a) is a decreasing C*-function defined in Jo|n, + o[
(see (2.3)) with lim b(a) = ¢[n if a » +co. The curve Sy is symmetrical with
respect to the straight line b = a and fulfils S; = Gy, where G, is the set of all
pairs (a, b) € Jo[n, + o[ such that ‘

e (- )20 o (o -2)
oo (oo -2 o= -o(e(t-3)

and g(z) is the function defined for z € 0, ¢[ by the formula

N ch (z) sin (z) — sh (z) cos (2) )
9(2) ch (z) sin (z) + sh (z) cos (2)

or

Proof. Let us consider the positive and negative semi-waves, u,, u,,

ux(x)=A(cos(ax)—%g:ch(ax)), r>0, A4>0, xe[-rr],

= — COS X—MC X S X€E|—S§,S
uslx) = B( (6) = S h(b)), >0, B>0, xe[-ss],

r+s=m.

The necessary and sufficient condition for u,, u, to be the semiwaves of a solution
of R(a, b) is that of continuity:

(2.5) ud(r) = uf(-s), i=12,3.

We have u}(r) # 0, u3(—s) & 0 (see (2.2)). Thus we can divide the last two equations
of (2.5) by the first one. Let the function g(z) be defined as above and put

- ch (z) cos (z)
_ f( ) ch (z) sin (z) + sh (z) Ccos (z) )

ze 0, o[ .

Then the condition (2:5) together with the assumption r 4+ s = = is equivalent to
the system : '

a f(ar)= —b f(bs),
a’ g(ar) = b*g(bs).

r+s = .
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Let us define the mapping h : R* - R® with components h' : R* - R,
h'(a,b,r,s) =a f(ar) + b f(bs),
h*(a, b, r, s) = a* g(ar) — b* g(bs),
h*a,b,r,s)=r+s—-m,

where the domain of definition of 4 is the set

D(h) = {(a,b,r,5)eR*|a>0,b>0,0<r<m 0<s<m ar <o, bs<o}.

Let J,,,,,s(a, b, r, s) denote the determinant of the Jacobi matrix of h at a point
(@, b, 7, s) € h~*(0) with respect to the variables b, r, s (and analogously J,, (a, b,
r, s)). Knowing that f'(z) = —g(z) — 2 f*(z) for every z € ]0, ¢[, and consequently
a® f'(ar) = b* f'(bs) for every (a,b,r,s)eh™*(0), one finds J,,(a,b,r,5)=
= (f(bs) + bs f'(bs)) (a® g'(ar) + b* g'(bs)).

Analogously,

Jors(a, b, r, s) = (f(ar) + ar f'(ar)) (a® g'(ar) + b g'(bs)) .

For every z € |0, ¢[ we have f(z) + z f'(z) <0, g'(z) > 0. Hence, by the implicit
function theorem, in a neighbourhood of an arbitrary point of h~!(0) there exist
C*-functions r(a), s(a), b(a), b'(a) < 0, such that (a, b(a), r(a), s(a)) € h~*(0). -

Put A = {ae]0, +oof | (b, r, s) e R®, h(a, b, r, s) = 0}. From the above argu-
ment it follows that A is open. Let us investigate the closedness of A4.

If {a,,ne N} c A, then we find the corresponding b,, r,, s, such that h(a,, b,,

s,) = 0 for every ne N. Let a, > a, 0 < a < +co. If the sequence (a,, by, 7,5,)
has a limit point in D(h), then a € A4, because h™'(0) is closed in D(h). If this is not the
case, then the sequence (ay, b,, I, 5,) has a limit point at the boundary oD(h). It
is easy to see that there are only two symmetrical cases possible:

l' rn -, sn - O! a,ry, = ‘P,' bnsn' - 0’ bn - +CX), an - (P/”;
2. r,>0, s,>m ar,—0, bs,> o, b, o[, a,> +o.

Therefore, A is closed in the set ]0, ¢/n[ U Jo/n, +o[. On the other hand, 1€ 4
(because h(1, 1, n[2, nf2) = 0), hence Jo[n, + o[ = A. If 4]0, ¢/a[ + 0, then
there would exist a decreasing function b(a) in ]O, ¢/x[ such that lim b(a) = + o
if a » @/r, which is a contradiction.

Thus, we have established the existence of function b(a) r(a), s(a) defined for
ae A = ]o/n, + o and such that b(a) is decreasing in 4 and h(a, b(a), r(a), s(a)) =
=0 for every aeA. Morcover, h™!(0) = {(a, b(a), r(a), s(a)), ae A}, because
(1,1, n, $m) is the only element of h~*(0) with @ = b. Thus S, is the curve (a, b(a)),
a € A. The symmetry of 'S; follows e.g. from (2.1).
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Now, let (a,b,r,s)eh™(0), b2 a. Then bs £ in < ar and g(ar) =
= (b/a)? g(bs) = (b[a)? g(3n) = (b]a)?, and analogously g(bs) = (a/b)*. Therefore

2 2
T<rslg AR Lo((4))ss s &,
2a a a b b 2b

It suffices to add these two inequalities (notice that r + s = ). The case b < a
is quite similar. Thus we obtain the inclusion S; = G, which completes the proof. g

IIA

(2.6) Lemma. Let (a, b) € ]0, + o2 Then the symmetrical solution is the only
periodic solution of R(a, b).

Proof. The existence of the symmetrical solution follows from Theorem (2.4)
and from (2.1), where 4 is such that (la, 1b) € S,. Now let u : [0, r,] — R" be a posi-
tive semi-wave of a solution of R(a, b). There exist real constants A4, B, C, D such
that for x € [0, ro] we have

u(x) = A cos (ax) + Bsin (ax) + Cch (ax) + D sh(ax).

For re [0, ro] put

A(r) = A cos (ar) + B sin (ar),

B(r) = B cos (ar) — A sin (ar),

C(r) = Cch(ar) + Dsh(ar),

D(r) = Dch(ar) + Csh(ar).
Then v

u(x) = A(r) cos (a(x — r)) + B(r)sin (a(x — r)) + C(r) ch (a(x — 7)) +
+ D(r)sh(a(x — r)), re[0,ro], x€[0,ro].
Since u'(0) = a(B(0) + D(0)) > 0, it follows from (2.2) that 4”(0) < 0, and therefore
B(0) > 0. Similarly we can show that B(r,) < 0. Consequently, there exists an
ry € ]0, ro[ such that B(r,) = 0. Obviously A(r,) > 0, because A(r;) < 0, u(r,) = 0
imply C(ry) 2 |A(r,)| and the condition u’(0) > 0 implies D(r,) = 0, hence u is
increasing, which is a contradiction. Now put u,(x) = (4(r,)) ' u(x + r,), x€
€[~ry, ro = r1]. Then u,(x) = cos (ax) + y ch (ax) + J sh (ax), where
y=C(r) (A(r))™", 6= D(ry) (A(ry))™" .
Let u, :[—e, @] = R be the positive semi-wave of the symmetrical solution of
R(a, b),
uo(x) = cos (ax) — pch(ax), where B = cos (ae) .
- ch (ag)
Put ¢ = min {r;, 7o — 7y, ¢}. For x € [ —¢, ¢] we have
uy(x) = uo(x) + (B + v) ch (ax) + & sh (ax).
The proof now follows from Lemma (1.1) for u,(x), uo(x) if sign (b + ¥) = sign (6)
and for u;(—x), uo(—x) in the other case.
Let us collect the results of this section in the following theorem.
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(2.7) Theorem. The set A_, of all (a, b)€]0, +oo[?, for which there exists
a nontrivial periodic solution of R(a, b) of period 2m, is the system {S,, k € N}
of C%®-curves, where S, is described in Theorem (2.4), S, = {(a, b)€ ]0, + oo[2,
(afk, bjk)e S}, and S, = G,, where G, = {(a, b)€ 10, + o2, (a/k, blk)e G,}.

In particular, A_; = U G,. For (a, b) € S, the corresponding 2n-periodic solution
k=1

has exactly 2k semi-waves in an interval of length 2n. This solution is unique if
translations and positive multiples are not considered.

6p/mt

59/t

49/m|
3F

3p/m

2¢9/m

p/mr

11 1 1 I 11 1 1 1 1 o

1 2 3 < 6p/m 5
O 0T petn Pt et Sem OF

)
Q

Fig. 1.

3. BOUNDARY-VALUE PROBLEM

The reasons for which the boundary value problem for the equation R(a, b) is
more difficult than the periodic one consist in the fact that its solutions with
different numbers of semi-waves are essentially different. Nevertheless, we shall
arrive at some existence results which will be summarized in Theorems (3.7), (3.8).
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(3.1) Lemma. Let (a, b) € ]0, + oo[?, and let u : [0, +oo[ - R be a nontrivial
solution of R(a, b), u(0) = 0. Then the following four conditions are equivalent:

(i) u is unbounded;
(ii) the set u=%0) is bounded;
(iii) lim u(x) = + 00 or —o0 if x > +c0;
- (iv) there exists xq € [0, + o[ such that u®)(x,) have the same sign for all i =
=0,1,2,3.

Proof. The implications (ii) = (iii) = (iv) = (i) are obvious. Thus let us suppose
non (ii): let x; > + oo be a sequence such that u(x;) = 0 for each i € N. Denote by
&i€]xi, X4 4[ the point where [u(&,)| = max {Ju(x)| | x € ]x,, X;44[}- Then /(&) =
= 0. Notice that the mapping

u— —2u'u m + (un)z + a4(u+)2 + b4(u—)2

is the first integral of R(a, b). Consequently, the values of Iu(f,-)lz are bounded by
a multiple of the value of the first integtal, i.e. non (i).

(3.2) Lemma. Let a, B be real numbers. For t € R* denote by u, the solution of
R(a, b) with the initial conditions

u(0)=0, u(0)=«, uj(0)=p8, u/(0)=1¢.
Then there exists t; € R' such that u,, is bounded on [0, + ool.
Proof. Denote:
* = {teR'|limu(x) = +o0 if x> +0o0},
"= {teR‘lllim u(x) = —oo if x> +00}.
By virtue of (3.1), (1.1) and the theorem of continuous dependence on initial con-
ditions, U*, U~ arz open disjoint intervals, U* = Jt,, + o[, U™ = ]—o0,t_[,

t_ < t,. The proof now follows from (3.1).
Consider now a solution u : [0, + o[ = R! of R(a, b) and denote by

(3-3) £, < £, <X3<...

the sequence (finite or infinite) of all its zeros. Notice that u'(x;) + 0 for i = 1,2, ...
(if u'(x;) = O, then (see (2.2)) x; is the first or the last element of the sequence (3.3),
and it will not be considered).

Put z; = u"(x))[u'(x), yi = w"(x;))[u'(x), i = 1,2,....

3.4) Lemma. Let x,, X;+1 be two successive points of the sequence (3.3). Then
~i

(i) Z;+1> Yi+1 are continuous functions of z;, y;,
(ii) zi41> Yis1 as functions of z,,y, are decreasmg in both variables in their
domains of definition. : '
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Proof. Part (i) is a consequence of the existence, unicity and continuous depen-
dence of the solution on initial conditions. For proving part (ii) it is necessary to
consider a semi-wave u :[x;, x;4,] = R' of a solution of R(a, b), and suppose
u'(x;) > O (the negative case is analogous). For the sake of simplicity put x; = 0,
Xip1 =T ;= @722, vy = a"%z;4y, Wy =a"ly, Wiy = a” 'y, Obviously,
r can be considered a continuous function of v;, w;. For x € [0, r] we have

u(x) = 1 '(0) [(sh (ax) + sin (ax)) + wi(ch (ax) — cos (ax)) +

2a
+ vsh (ax) — sin (ax))]

and

u(x) =—21—a w'(r) [—(sh (a(r — x)) + sin (a(r — x))) + wis4(ch (a(r — x) —

— cos (a(r — x))) — v;44(sh (a(r — x)) — sin (a(r — x)))] .
From the relations
u0) =0, u(r)=0, v,y =u"(r))a®u'(r), wiq =u"(r)av'(r)
we deduce the following system of three equations:
() wi = —PO)u - 00,
(B) wirs = P(r)vies + (1),

© - }Q)”(r) _ UiDigq — 1 ’
() Ui + Uiy

where
sh (ar) — sin (ar) () = sh (ar) + sin (ar)

ch (ar) — cos (ar) ’ _ ch (ar) — cos (ar) '

P(r) =

Now (4) yields

o ____ P
ov; P(r)v; + Q(r)
But P'(r) v; + Q'(r) < O for every v;, w;, because if P'(r)v; + Q'(r) 2 0, then (note
that P'(r) > 0)
_ Q’(") _ Uilivs — 1
P(r) v+ v,y

v

v; , and v; <0, v;,, <0,

hence v? £ —1, which is a contradiction.

Consequently, we have dr[dv; > 0, and analogously ar]aw, > 0. From (C) we
obtain

004 <0 avi+1<0
ov, T ow, ’
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from (B)
Wiy <0 Wiy

<0,
v, ow;

and the proof follows immediately. ‘
Let us now consider the boundary-value problem for R(a, b) on [0, T] with bound-
ary conditions

(3.5) u(0) = u(T) =0,
Au'(0) + xu"(0) =0,
cuw'(T)+ tu'(T)=0,
IA| + | >0, |o| + ]| >0, xz0, z20, T>0.
Let u, be the solution of R(a, b) on [0, + o[ with the initial conditions
(3.6) u(0) = 0, u(0)=xk, ul(0)= —ak, u’(0)=t,
k+0, teR" (see(3.2)).

It is possible to define the sequence (3.3) of all zeros of u, and to put y(t) =
= u)(x;)[ui(x;) and z(r) = u}(x;)/u;(x,) as in (3.4). From (3.4) it follows easily
that y,, z; are strictly monotone continuous functions of ¢. By virtue of (1.1) and
(3.2) their domain of definition D; is a bounded open non-void interval for every
ieN.

Let t — to, t€ D;. If lim y,(¢) is finite, then obviously lim z,(t) is finite, and the

t—=to t—to
continuous dependence on initial conditions implies that ¢, € D;.

Hence, y; is a one-to-one continuous mapping from D; onto R'. In particular, the
equation

yit) = -2 for t40
T
has a unique solution ¢,. For t = 0, t, is the suitable extreme point of D;.

In fact, we have constructed two nontrivial solutions of the boundary-value
problem (3.5) for R(a, b) with T = x(t,), the first one corresponding to the case
k > 0, the second one to the case k < 0.

The next theorem summarizes the results of this section.

(3.7) Theorem. Let (a, b) € 0, + o[ 2. Then for each i € N there exist two positive
numbers T;', T; and two nontrivial solutions (together with their positive multiples)
Uy, u, of the boundary-value problem (3.5) for the equation R(a, b) with T = T
for uy and T = T; for u,, and both u; and u, have in [0, T] exactly i + 1 zeros.

In a special case it is possible to prove the following theorem analogous to (2.7).
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(3-8) Theorem. Let T > 0 be fixed. Then the set of all (a‘, b) € ]0, + oo such
that there exists a nontrivial solution u of the boundary-value problem (3.5) for
R(a, b) with 2 = 0,0 =0, i..

(3.9) u(0) = u(T) = u"(0) = u"(T) = 0,
is a system of continuous curves {S;, S;, i€ N} such that

(i) for (a, b)e S (ST) the solution u is of the type (3.6) with k >0 (k <0,
respectively). This solution is uniquely determined by the choice of the constant k
and it has in [0, T] exactly i + 1 zeros,

(i) S is symmetrical to S with respect to the straight line a = b. If i is even,
then S} = S7.

(iii) for each i€ N we have (S{ U S7) N (S{4+; U Si,) =0.

Proof. Fix i e N. On each straight line b = pa, p > 0 there is a unique point
(ar, br) such that the solution u of the boundary-value problem (3.9) for R(ar, by)
of the type (3.6) with k > 0, the existence of which is proved in (3.7), fulfils T;” = T
(the argument is analogous to (2.1)), and the same is valid for k < 0. Heace, part (i)
is a consequence of the continuous dependence of the solutions of R(a, b) on the
parameters a, b. Part (ii) is obvious. For proving part (iii), let us assume that there
exists (a, b) € (S; U S7) n (Si%1 U Si;1) and two corresponding solutions u;, u;. ;-
It is possible to choose the constants k in such a way that these solutions differ.only
in the value of the third derivative either at 0, or at T, which leads to a contradiction,
and the proof is complete. g
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