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Časopis pro pěstování matematiky, roč. 108 (1983), Praha 

ON SOLVABILITY OF EQUATIONS OF THE 4 t h ORDER WITH 

JUMPING NONLINEARITIES 

PAVEL KREJCI, Praha 

(Received October 23, 1981) 

INTRODUCTION 

In the study of generalized 27r-periodic solutions of the nonlinear beam equation 
with jumping nonlinearities 

(1) fiut + utt + uxxxx = [//(u) + h , 

where p is a positive constant, ^ is a continuous function with lim (̂w)/w = /x if 
u -> + oo and lim \l/(u)ju = v if u -> — co for some positive constants \i, v and 
h ~ L2(]0, 2n~2) one can proceed by the methods of [1], [2], which have been 
developed for the nonlinear telegiaph equation 

(2) Put + utt - uxx = ij/(u) + h , 

with analogous assumptions for /?, \j/ and h. 

It can be shown that there exists a subset ALj of ]0, + o o [ 2 such that for each 
(JLI, v)$A_t the equation (1) is solvable for any right-hand side h. The set A_t is 
defined as the set of all pairs (fi, v), for which there exists a nonconstant 27r-periodic 
function u e C^R1) solving the ordinary differential equation of the fourth order 

(3) MIV = fiU+ — vu~ , 

where u+(x) = max (u(x), 0) and u~(x) = max ( — u(x), 0) are the positive and 
negative parts of u. 

The aim of this paper is to describe the set A^t for the periodic problem. In 3 
we will pursue a qualitative study of the boundary-value problem for the equation 
(3). Let us remark that the boundary-value problem for the equation (2) is solved 
in [3]. 

The cases \i g 0 or v ^ 0 are trivial. If \i = 0 or v = 0 then the only periodic 
solution of (3) is the constant one, if \iv < 0, then there ts no nonzero periodic solu­
tion (one can see it after integrating the equation (3) over the period). In the case 
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jx < 0, v < 0 it suffices to multiply the equation (3) by u and to integrate again over 
the period. We obtain again u = 0. 

In all the paper we denote by ~]x, y[ ([x, y]) the open (closed) interval with bounds 
x < y, by R1 tfce set of all real numbers and by IV the set of all natural numbers. 

1. PRELIMINARIES 

For further investigation it is useful to put \i = a4, v = &4, (a, ft)e]0, +oo[2 . 
The equation (3) will be written in the form 

R(a,b): uiv = a*u+ - b*u~ . 

It is well known that the equation R(a, b) for every a, b satisfies the assumptions of 
the theorems of existence, unicity and continuous dependence of its solutions on 
initial conditions and parameters. Moreover, each of its solutions is defined on R1. 
The solution u = 0 will be called trivial. 

(1.1) Lemma. Let ij/ -.R1 -+R1 be a continuous increasing function satisfying 
locally the Lipschitz condition in R1 and let u,ve C^R1) be two solutions of the 
equation of the n-th order 

u(n) = \j/(u), 

where n is a given natural number. Let us assume that there exists j e {0, 1, . . . 
..., n - 1} such that uU)(0) > vU)(0) and u(i)(0) ^ v(i)(0)for all i e {0,1,..., n - 1}. 

Then the functions u(i)(x) — v(i)(x) for i e {0, 1, . . . , n — 1} are increasing and 
positive in ]0, +oo[. 

Proof. Let us denote M = max {s > 0, Vx e [0, s[, u(j)(x) > vU)(x)}. Obviously, 
M > 0. For all x e ]0, M[ we have u(i)(x) > v(i)(x) for i ^ j ; in particular u(x) > 
> v(x) for x e ]0, M[. Using the fact that xj/ is increasing, we have \l/(u(x)) > *l/(v(x)) 
and thus u(n)(x) > v(n)(x) for x e ] 0 , M [ . Similarly, uu+1)(x) > vu+1){x) for every 
x e ]0, M[. If M < +oo, then uU)(M) > vU)(M), which is a contradiction. Therefore, 
M = + oo, and the functions u(i) — v(i) are positive, and hence increasing in ]0, + oo[ 
for i g n. m 

2. PERIODIC SOLUTIONS 

The notion of a periodic solution of the equation R(a, b) is considered in the sense 
mentioned in the introduction. Let us give now some simple results. 

(2.1) If u is an a>-periodic solution of R(a, b) with co > 0, then for all A 4= 0, 
X + 0, 9 eR1 the function u defined by the relation 

u(x) = A u(Xx + 9) , xeR1 

is an o/JAJ-periodic solution of R(\t\ a, \A\ b) if A > 0 and R(\t\ b, \t\ a) if A < 0. 
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(2.2) For every nontrivial solution u of R(a, b) the set w_1(0) has no limit point 
except maybe +00 or — 00. Moreover, if wis an co-periodic solution of R(a, b) and 
w(x0) = 0 at a point x0 e R1, then w'(x0) . u'"(x0) < 0. 

The proof of the last assertion is based on Lemma (1.1) with w(x — x0)orw(x0 — x) 
and v(x) = 0. 

Consequently, each periodic solution w of R(a, b) is composed of semi-waves, 
where a semi-wave is the portion of the graph of w between two successive zeros of w. 
The simplest periodic solution possible is the one composed of one positive and one 
negative semi-wave. 

Let us assume that there exists such a simple co-periodic solution w of R(a, b), 
w(0) = w(x0) = U(OJ) = 0, 0 < x0 < co. Then the function 

ux(x) = w(x) + w(x0 — x) 

is also an co-periodic solution of R(a, b), which is moreover symmetrical in the fol­
lowing sense: 

Mi(°) = Mi(*o) = " i M = 0 > 

wV>(0) = (-l)fw(
1

/)(xo) = w (
1 >) for i = l f 2 , 3 . 

The results of this section consists in the proof of existence of symmetrical and 
nonexistence of nonsymmetrical periodic solutions. 

(2.3) Lemma. Let cp e ](3/4) n, n[ be the smallest positive root of the equation 

tan (x) + th (x) = 0 , 

and assume that there exists a positive semi-wave of a solution u of R(a, b) on 
[xl9 x 2]. Then x2 — xx rg 2(pja. 

Proof. We have w(xx) = w(x2) = 0, w > 0 on ]x1? x2[. Thus w is a solution of 
the linear equation wIV = a4w in [xu x 2], and can be written in the form 

w(x) = A sin (ax) + B cos (ax) + C sh (ax) + D ch (ax) , 

where A, B, C, D are real constants and x e [x l 5 x 2]. Put x0 = (xx + x2)/2, r = 
= (x2 — xx)/2. Then the function 

w(x) = w(x0 + x) + w(x0 - x) 

is a symmetrical positive semi-wave of a solution of JR(a, b) on [—r, r]. Hence w(x) 
is of the form 

ů(x) = A l cos (ax) ^—' ch (ax) ) , 

where A is a positive constant. The conditions w(x) > 0 on ] — r, r[ and u\—r) ^ 0 
give us the inequality ar :g cp which completes the pfoof. u 
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(2.4) Theorem. The set 5X of all pairs (a9 b ) e ] 0 , +oo[ 2 such that there exists 
a nontrivial In-periodic solution of R(a9 b)9 which is composed of two semiwaves, 
is a curve (a9 b(a))9 where b(a) is a decreasing C^-function defined in ]<p/7i, + oo[ 
(see (2.3)) with lim b(a) = <pjn if a -> +oo. The curve St is symmetrical with 
respect to the straight line b = a and fulfils Sx cz Gl9 where G1 is the set of all 
pairs (a9 b)e"\(p\n9 +oo[ 2 such that 

^'•^-'H-ih^-'H1-^)-
or 

•-••©'-(-("^'•^-(-O-s)) 
and g(z) is the function defined for z e ]0, cp[ by the formula 

, .. _ ch (z) sin (z) — sh (z) cos (z) 

ch (z) sin (z) + sh (z) cos (z) 

Proof. Let us consider the positive and negative semi-waves, ul9 u2, 

Wi(x) = A I cos (ax) -̂—-• ch (ax) | , r > 0 , _4 > 0 , x e f - r , r] , 
W V ch (ar) V 7 

u2(x) = - B f c o s ( b x ) - -^---M: ch (fcx) ) , s > 0 , B > 0 , x e [ - s , s ] , 
\ ch (bs) J 

r + s = n . 

The necessary and sufficient condition for ul9 u2 to be the semiwaves of a solution 
of R(a9 b) is that of continuity: 

(2.5) wi°(r) = w(2°(-s), i = l , 2 , 3 . 

We have u\(r) + 0, w2(—s) + 0 (see (2.2)). Thus we can divide the last two equations 
of (2.5) by the first one. Let the function g(z) be defined as above and put 

st \ ch(z)cos(z) -,_ r 

ch (z) sm (z) + sh (z) cos (z) 

Then the condition (2:5) together with the assumption r + s = n is equivalent to 
the system 

a f(ar)= -b f(bs)9 

a2g(ar)= b2 g(bs) , 

r + s = 7i. 
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Let us define the mapping h : i?4 -» R3 with components A' :R4 -> R > 

h\a, b, r,s) = a f(ar) + b f(bs), 

h2(a, b,r, s) = a2 g(ar) - b2 g(bs) , 

h3(a, b, r, s) = r + s — n, 

where the domain of definition of h is the set 

D(h) = {(a, b, r, s) eR* | a > 0, b > 0, 0 < r < n, 0 < s < n, ar < <p, bs < <p} . 

Let Jb,r,s(a, b, r, s) denote the determinant of the Jacobi matrix of h at a point 
(a, b, r, s) e h_1(0) with respect to the variables b, r, s (and analogously J0tftS(a, b, 
r, s)). Knowing that/'(z) = — g(z) — 2/ 2(z) for every z e ] 0 , <p[, and consequently 
a2 f'(ar) = b2 f'(bs) for every (a, b, r, s)e h-1(0), one finds Jb,rfS(a, b, r, s) = 
= (f(bs) + bsf'(bs)) (a3 g'(ar) + b3 g'(bs)). 

Analogously, 

Ja,rtS(a, b, r, s) = (f(ar) + arf'(ar)) (a3 g'(ar) + b3 g'(bs)) . 

For every z e ]0, <p\_ we have f(z) + zf'(z) < 0, g'(z) > 0. Hence, by the implicit 
function theorem, in a neighbourhood of an arbitrary point of h_1(0) there exist 
C°°-functions r(a), s(a), b(a), b'(a) < 0, such that (a, b(a), r(a), s(a)) e h~x(0). 

Put A = {a e ] 0, + oo[ | 3(b, r, s)eR3, h(a, b, r, s) = 0}. From the above argu­
ment it follows that A is open. Let us investigate the closedness of A. 

If {an, n e N} a A, then we find the corresponding bn, rn, sn such that h(ani bn, 
rn, sn) = 0 for every n e N. Let an -> a, 0 < a < + oo. If the sequence (an, bn, rn,sn) 
has a limit point in D(h), then ae A, because h-1(0) is closed in D(h). If this is not the 
case, then the sequence (an, bn, rn, sn) has a limit point at the boundary dD(h). It 
is easy to see that there are only two symmetrical cases possible: 

1. rn - • n, sn -> 0 , anrn -> <p, bnsn -> 0 , bn -> + oo , an - • <pjn; 

2. rn -> 0 , sn -+ n, anrn -> 0 , bnsn -> <p, bn - • <pjn, an-+ + oo. 

Therefore, A is closed in the set ]0, <P/TT[ U ]<p\n, +oo[. On the other hand, 1 e A 
(because h(l, 1,7i/2,7i/2) = 0), hence ]<P/TT, +OO[ C A. If A n ]0, <p\n[ 4= 0, then 
there would exist a decreasing function b(a) in ]0, <pjn[ such that lim b(a) = + oo 
if a -> <p/7r, which is a contradiction. 

Thus, we have established the existence of function b(a), r(a), s(a), defined for 
a e A = ~\<pjn, + oo[ and such that b(a) is decreasing in A and h(a, b(a), r(a), s(a)) = 
= 0 for every aeA. Moreover, A_1(0) = {(a, b(a), r(a), s(a)), aeA}, because 
(1,1, in, in) is the only element of h-1(0) with a = b. Thus Sx is the curve (a, b(a)), 
aeA. The symmetry of St follows e.g. from (2.1). 
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Now, let (a, b, r, s) e ft_1(0), b ^ a. Then bs <I 7̂r <i ar and g(ar) = 
= (bja)2 g(bs) = (bja)2 gQn) = (bja)2, and analogously g(bs) = (a/b)2. Therefore 

.2\ 

=--И©> ИG)) ~ ~ 2b 

It suffices to add these two inequalities (notice that r + s = TT). The case b = a 
is quite similar. Thus we obtain the inclusion St c Gx which completes the proof. m 

(2.6) Lemma. Let (a, b ) e ] 0 , + o o [ 2 . Then the symmetrical solution is the only 
periodic solution of R(a, b). 

Proof. The existence of the symmetrical solution follows from Theorem (2.4) 
and from (2.1), where X is such that (Xa, Xb) e St. Now let u : [0, r 0 ] -> R1 be a posi­
tive semi-wave of a solution of R(a, b). There exist real constants A, B, C, D such 
that for x e [0, r 0 ] we have 

w(x) = A cos (ax) + B sin (ax) + C ch (ax) + D sh (ax) . 

For r e [0, r 0 ] put 

A(r) = A cos (ar) + B sin (ar) , 

B(r) = 5 cos (ar) — A sin (ar) , 

C(r) = C ch (ar) + D sh (ar) , 

D(r) = D ch (ar) + C sh (ar) . 

Then 

tt(x) = A(r) cos (a(x - r)) + B(r) sin (a(x - r)) + C(r) ch (a(x - r)) + 

+ D(r) sh (a(x - r )) , r e [0, r 0 ] , x e [0, r 0 ] . 

Since u'(0) = a(B(0) + D(0)) > 0, it follows from (2.2) that u^O) < 0, and therefore 
B(0) > 0. Similarly we can show that B(r0) < 0. Consequently, there exists an 
?i e ]0, r 0 [ such that B(rt) = 0. Obviously A(rt) > 0, because A(rt) = 0, u(rx) = 0 
imply C(rx) ^ |->-(''i)| and the condition u'(0) > 0 implies D(rx) ^ 0, hence u is 
increasing, which is a contradiction. Now put w^x) = ( A ^ ) ) " 1 w(x + r^, xe 
6 [ — rl9 r0 — r j . Then MX(X) = COS (ax) + y ch (ax) + <5 sh (ax), where 

y - C M M r . ) ) - 1 , S = D(ri)(A(ri))-K 

Let «0 : [—£,(?] -* R1 be the positive semi-wave of the symmetrical solution of 

R(a' ^ cos tad\ 
u0(x) = cos (ax) - /? ch (ax) , where /? = -<—'- . 

ch (ao) 

Put e = min {rl9 r0 — rl9 Q}. For x e [—e, e] we have 
u\(x) = M0(X) + (p + y) ch (ax) + S sh (ax) . 

The proof now follows from Lemma (1.1) for ux(x)9 u0(x) if sign (b + y) = sign (<5) 
and for w1(-~x), w0(—x) in the other case. m 

Let us collect the results of this section in the following theorem. 
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(2.7) Theorem. The set A_x of all (a, b)e]0, +oo[2, for which there exists 
a nontrivial periodic solution of R(a, b) of period 2n, is the system {Sk, keN} 
of C°°-curves, where St is described in Theorem (2.4), Sk = {(a, b)e]0, -foo[2, 
(a/fc-fc/fcJeS-.}, and Sk cz Gk, where Gk = {(a, b)e]0, +oo[2, (ajk, b\k)e Gx}. 

00 

In particular, A_t c (J Gk. For (a, b)eSk the corresponding 2n-periodic solution 
fc=l 

has exactly 2k semi-waves in an interval of length 2n. This solution is unique if 
translations and positive multiples are not considered. 

ь 

6 

5 

бf/тт 

4 
5ę/тi 

4f/тi 
3 

Зf/тт 

2 

2f/тi 

1 

y/тi 

f/тт 1 2 
2f /гr Зў f-n 4ęh 5f/тi 

FІg. 1. 

бa 

3. BOUNDARY-VALUE P R O B L E M 

The reasons for which the boundary value problem for the equation R(a, b) is 
more difficult than the periodic one consist in the fact that its solutions with 
different numbers of semi-waves are essentially different. Nevertheless, we shall 
arrive at some existence results which will be summarized in Theorems (3.7), (3.8). 
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(3.1) Lemma. Let (a, b)e~0, +oo[2 , and let u : [0, +oo[ -+ R1 be a nontrivial 
solution of R(a, b), u(0) = 0. Then the following four conditions are equivalent: 

(i) M is unbounded; 
(ii) the set M~*(0) 15 bounded; 

(in) lim u(x) = +oo or — oo if x -* +oo; 
(iv) there exists x0 e [0, +oo[ such that u(i)(x0) have the same sign for all i = 

= 0 ,1 ,2 ,3 . 

Proof. The implications (ii) => (iii) => (iv) => (i) are obvious. Thus let us suppose 
non (ii): let xt -> + oo be a sequence such that M(X,) = 0 for each i e IV. Denote by 
Zt e~xt, xi+1[ the point where \u(£t)\ = max {\u(x)\ | x e]x, , X / + 1 [ } . Then M'(^) = 
= 0. Notice that the mapping 

M h» -2M'MW + (M")2 + a4(M+)2 + b\u~)2 

is the first integral of R(a, b). Consequently, the values of |M(^)|2 are bounded by 
a multiple of the value of the first integial, i.e. non (i). 

(3.2) Lemma. Let a, P be real numbers. For teR1 denote by ut the solution of 
R(a, b) with the initial conditions 

Mr(o) = o , M;(O) = <X, M';(O) = / ? , M;-(O) = * . 

Then there exists tt ER1 such that utl is bounded on [0, +oo[. 

Proof. Denote: 

U+ = {teR1 |limMr(x) = +oo if x -+ +oo} , 

U~ = {t e R1 | lim ut(x) = — oo if x -> + oo} . 

By virtue of (3A), (1.1) and the theorem of continuous dependence on initial con­
ditions, U+,U~ are open disjoint intervals, U+ = ~t+, +oo[, U~ = ] - o o , r_[, 
r_ g f + . The pi oof now follows from (3.1). • 

Considei now a solution u : [0, + oo[ -> R1 of R(a, b) and denote by 

(3.3) xt < x2 < x3 < ... 

the sequence (finite or infinite) of all its zeros. Notice that u'(x^) =# 0 for i = 1, 2 , . . . 
(if u'(Xi) = 0, then (see (2.2)) xt is the first or the last element of the sequence (3.3), 
and it will not be considered). 

Put z, = u'"(x$u'(x^, yt = u-(xt)lu'(xt), i = 1,2 

(3.4) Lemma. Let xi9 xi+l be two successive points of the sequence (3.3). Then 

(0 zi+i>J\-+i are continuous functions of Zi,yh 

(ii) zi+1,yi+1 as functions of Zi,yt are decreasing in both variables in their 
domains of definition. 
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Proof. Part (i) is a consequence of the existence, unicjty and continuous depen­
dence of the solution on initial conditions. For proving part (ii) it is necessary to 
consider a semi-wave u :[xi9xi+i] -+ R1 of a solution of R(a, b)9 and suppose 
u'(xt) > 0 (the negative case is analogous). For the sake of simplicity put xt = 0, 
Xi+i = r, vt = a~2zi9 vi+l = a~2zi+l9 wf = a~xyi9 w i+1 = a~~yi+v Obviously, 
r can be considered a continuous function of vi9 w£. For x e [0, r] we have 

u(x) = — u'(0) [(sh (ax) + sin (ax)) + wf(ch (ax) — cos (ax)) + 
2A 

+ vi(sh (ax) — sin (ax))~ 
and 

u(x) = — u'(r) [ — (sh (fl(r — x)) + sin (a(r — x))) + wi+1(ch (a(r — x) — 
2fl 

— cos (fl(r — x))) — i^i+1(sh (fl(r — x)) — sin (fl(r — x)))~\ . 

From the relations 

u(0) = 0 , w(r) = 0 , vi+1 = u"'(r)ja2 u'(r) , w l+1 = u"(r)\a u'(r) 

we deduce the following system of three equations: 

(A) wf = -P(r)vt -Q(r), 

(B) w i+1 = P(r)i;f+1 + 6(r), 

(C) - e ' ( r ) = p 'p '+i ~ 1 

P'C) »i + »(+i ' 

where 

p / r ) _ sh (ar) - sin (ar) ^ Q,. _ sh (ar) + sin (ar) 
ch (ar) — cos (ar) ch (ar) — cos (ar) 

Now (A) yields 
5r_ P(r) 
8vt ~ P'(r) v, + Q'(r) ' 

But P'(r) t>j + Q'(r) < 0 for every vt, wt, because if P'(r) vt + Q'(r) >. 0, then (note 
that P'(r) > 0) 

^-m-E&lLZl, and vi<0, , i + 1<0, 
P(r) v( + vi+l 

hence v2 — —1, which is a contradiction. 

Consequently, we have drjdvt > 0, and analogously dr\dwt > 0. From (C) we 
obtain 

_ _ l i < 0 , ^ i ± i < 0 , 
3f( 8wt 
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from (B) 

^ ± i < 0 , - * - Ш < 0 , 
ÔVІ ÕWІ 

and the proof follows immediately. u 

Let us now consider the boundary-value problem for R(a, b) on [0, T] with bound­
ary conditions 

(3.5) ii(0) = u(T) = 0, 

X ti'(0) + x u"(0) = 0 , 

a uf(T) + T w"(T) = 0 , 

\X\ + |x| > 0 , \a\ + |T | > 0 , x ^ 0 , T ^ 0 , T > 0 . 

Let ut be the solution of R(a, b) on [0, + oo[ with the initial conditions 

(3.6) 11,(0) = 0 , u;(0) = xk , u'/(0) = -Xk , < ( 0 ) = t, 

k#0, teR1 (see (3.2)). 

It is possible to define the sequence (3.3) of all zeros of ut and to put yt(t) = 
= u"(xi)iut(xi) a n d z/(0 = u7(xi)lu't(xi) a s i n (3-4). From (3.4) it follows easily 
that yi9 zt are strictly monotone continuous functions of t. By virtue of (1.1) and 
(3.2) their domain of definition Dt is a bounded open non-void interval for every 
ieN. 

Let t -> t0, t e Dt. If lim yt(t) is finite, then obviously lim zt(t) is finite, and the 
t^t0 t-+t0 

continuous dependence on initial conditions implies that t0 e D{. 
Hence, yt is a one-to-one continuous mapping from Dt onto R1. In particular, the 

equation 

yt(t) = - - for T * 0 
T 

has a unique solution tk. For x = 0, tk is the suitable extreme point of Dt. 
In fact, we have constructed two nontrivial solutions of the boundary-value 

problem (3.5) for R(a, b) with T = Xi(tk), the first one corresponding to the case 
k > 0, the second one to the case k < 0. 

The next theorem summarizes the results of this section. 

(3.7) Theorem. Let (a, b) € ]0, + oo[2. Then for each i e N there exist two positive 
numbers T + , TJ and two nontrivial solutions (together with their positive multiples) 
uu u2 of the boundary-value problem (3.5) for the equation R(a, b) with T = T + 

for ut and T = Tf for u2, and both ut and u2 have in [0, T] exactly i + 1 zeros. 

In a special case it is possible to prove the following theorem analogous to (2.7). 
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(3.8) Theorem. Let T> 0 be fixed. Then the set of all (a, b)e]0, +oo[2 such 
that there exists a nontrivial solution u of the boundary-value problem (3.5) for 
R(a, b) with k = 0, a — 0, i.e. 

(3.9) w(0) = u(T) = u"(0) = u"(T) = 0 , 

is a system of continuous curves {S+ , Sf, ieN} such that 

(i) for (a, b)eS+ (Sf) the solution u is of the type (3.6) with k > 0 (k < 0, 
respectively). This solution is uniquely determined by the choice of the constant k 
and it has in [0, T] exactly i + 1 zeros, 

(ii) S+ is symmetrical to Sf w'fft respect to the straight line a = b. If i is even, 
then S+ = Sf. 

(iii) for each ieN we have (S+ u Sf) n (S +
+ i u Sf+1) = 0. 

Proof. Fix i e IV. On each straight line b = pa, p > 0 there is a unique point 
(a r , bT) such that the solution u of the boundary-value problem (3.9) for R(aT, bT) 
of the type (3.6) with k > 0, the existence of which is proved in (3.7), fulfils T + = T 
(the argument is analogous to (2.1)), and the same is valid for k < 0. Hence, part (i) 
is a consequence of the continuous dependence of the solutions of R(a, b) on the 
parameters a, b. Part (ii) is obvious. For proving part (iii), let us assume that there 
exists (a, b) e (S+ u St~) n (S+

+ 1 u Sf+l) and two corresponding solutions u{, ui+1. 
It is possible to choose the constants k in such a way that these solutions differ only 
in the value of the third derivative either at 0, or at T, which leads to a contradiction, 
and the proof is complete. H 
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