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Casopis pro p&stovini matematiky, roé. 107 (1982), Praha

NOTE ON THE OSCILLATION OF DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENT

RupoLF OLAH, Zilina

(Received June 2, 1981)

In this paper we are concerned with the oscillatory behavior of solutions of the
nonlinear differential equation with deviating argument

M) YO + p(6) f(6(9(0) =0, nz2,
and of the linear differential equation with delayed argument
) yoAt) + p()) y(9(1)) =0, nz3.

A solution y(r) of the equation (1) or (2) is called oscillatory if it has arbitrarily
large zeros, and it is called nonoscillatory otherwise.

Lemma 1 (Kiguradze). Let y(t) be a solution of equation (1) or (2) satisfying the

condition
) >0 for te[ty, ),

and let
yP() <0 for tety, ).

Then there exist t, € [ty, ©) and an integer 1€{0, 1,...,n} such that | + n is
odd and ’

3) yt) >0 for teft;, o) (i=0,...,1-1),
(=) y9()>0 for telty, o) (i=1...,n—1).

An analogous statement can be made if y(f) < 0 and y™(r) Z 0 for t € [t,, ®).

EQUATION (1)

We consider equation (1) where

a) p(t) is continuous and nonnegative on [#,, ©);
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b) g(t)is a continuous and nondecreasing function on [¢,, o) such that lim g(t) = 0;

t— 00

c) f(u) is a continuous function on R = (—cc, o) such that u f(u) > 0 for u + 0.

We restrict our consideration to those solutions y(t) of (1) which exist on some
interval [T,, o) and satisfy

sup {|y(t)] :to St <0} >0 forany t,e[T,, ).
We introduce the notation:

go(t) = min {g(t), t},

M, = max {hm sup =, lim sup ‘—}
y~oo f(.)") y>- f(y)

The next lemma characterizes the oscillatory behavior of bounded solutions.

Lemma 2. Suppose that the conditions a)—c) are satisfied and in addition,
) j "1 p(r)de =

Then every bounded of equation (1) is oscillatory, if n is even, and every bounded
solution of equation (1) is oscillatory or lim y(t) =0, i = 0,1,...,n — 1, if n
is odd. o

Proof. Let y(t) be a bounded and positive solution of equation (1) on [t,, c0) and
let y(g(r)) > O for t = t; = t,. From the equality

y(t) = Z( 1) ,(S( )) Y(s) + = (- 1) - 1)jj(u — 1P du

s 2 t 2 t,, with regard to equation (1) we get

) ) =% (-1 ,(s( 3) Y(s) +
J‘ (u — =771 p(u) £(¥(g(w))) du .

( 1)1: j+1
(n—j—1)

Let n be even. Because y(t) is positive and bounded solution of equation (1) in view
of Lemma 1 we have I = 1 and for j = 1, (5) implies

+

Y02 o [ 07 ) S0 av.
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Integrating the last inequality from T'to t, t > T = t,, we obtain

j (u = Ty~ p(u) (3(g(w)) du .

W >
T
Since y(t) is nondecreasing and bounded we have ¢ < y(g(f)) < cfort = t, 2 T,
where ¢ is a suitable positive constant. Hence there exist positive constants ¢y, c,
such that ¢; < f(¥(g(t)) < ca, t 2 t,, since the interval [4c, ¢) is bounded. As
t - oo we have

— Ty p(u)du,
vl KO0
which contradicts (4).
Let n be odd. In view of the fact that y(¢) is bounded, I = 0 and from the equality
(5) for j = 0 we get

i) =0 2 s [ = I B SOE) an, 12 Tz

1

- 1)
Since () is a nonincreasing solution of (1) we have y(f) > L> 0 or y(t) - 0 as
t— oo. Let y(f)—> L> 0, then L < y(t) < 2L for t 2 t, 2 T. Then there exist
positive constants L,, L, such that L; < f(3(g(1))) < L,, t 2 t,. As t - 0 we get

¥(t) > ¥(T) -

L, ® n—1
— 1)!J12 (u — Ty ! p(u)du,

which contradicts (4), so lim y(r) = 0. The proof of Lemma 2 is complete.
t—= o0 i

Theorem 1. Suppose that the conditions a)—c) are satisfied, M; < o and in
addition,

(6) ,ILI: sup [go(t)]"_‘jmp(s) ds > Mg(n — 1)!.

t

Then every solution of equation (1) is oscillatory, if n is even, and every solution
of equation (1) is oscillatory or lim y)(f) = 0, i = 0,1,...,n — 1, if n is odd.
t— o

Proof. Let y(t) be a nonoscillatory solution of equation (1) Without loss of gen-
erality we may suppose that y(r) is eventually positive on [t,, o). Let y(g(t)) > 0
fort =1, = t,. ‘ .

Suppose that n is even and ! = 1. From (5) with regard to Lemma 1 for j = 1 we
obtain

y()z >

Y J Ol (“)f(y(g(u)))du, =
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Integration of the last inequality from Tto t, t > T = t,, yields
™
(1) 2

j ( ~ TY o) f((o() du + =TS f p(w) £(¥(g(w))) du

(n - 1)! (n = 1)!

which implies

Maol)) = 9o =TI j °°( P00

(n —1)!
for t = t, = T, where t, is sufficiently large. From the last inequality we have
N—T n—1 (oo
U OB il RGO TN
— 1) ,

Notice that the condition (6) implies (4). Otherwise if

J‘ "~ p(t)dt < 0,

then

0 < lim sup [go(1)]"~* f
t— oo

t

p(s)ds < lim supJ- "1 p(s)ds =0,
t—= o0

t

which is a contradiction.

If y(t) increases to a finite limit as t — oo, then similarly as in the proof of Lemma 2
we get a contradiction with (4).

Let y(7) increase to infinity as ¢ - ov. From (8) we get

> in f(y(g(u))) [ool) = TP (=
P2 6W) (o) f p(u) du,

z;y(g[(’:))f(z)g (n — 1) f: p(u) du,

(n = 1) limsup — = lun sup [go(r) — T]"! J.wp(u) du,
™ f( ) t
which contradicts the condition (6).

Let n be odd and I = 0. In view of Lemma 1, from (5) for j = 0, t > T = t,,
we have

WT) = 3() 2 f (u = TP plu) f(3(g(w)) du .

— 1)
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Since y'(f) < 0 for t > T, y(t) decreases to a limit L= 0 as t — oc. Let L > 0. Then
similarly as in the proof of Lemma 2 we get a contradiction with (4), so lim y(t) = 0.

t—= o
Let le€{2,...,n — 1}. With regard to Lemma 1, from (5) for j =1,¢t> T = t,,
we have ‘

S j (u = 711 plu) f(o(g(w) du

Integrating the inequality from T'to t, we obtain

y(e) 2 (t( T)I)‘_ J p(u) f(¥(g(u))) du .

Repeating this proceoure we get

vz L= . ); j () £ (+{g(u))) du

which leads to the inequality

02 [ G s an + G0 [ ) ae

which is the inequality (7) The proof now proceeds as above, when y(¢) increases to
infinity. This completes the proof.

Example [5]. For the equation with a delayed argument
y(4)(t)+ y(kt)—O 0<k<l, t>0,
the well-known sufficient condition for oscillation of every solution
a
J. [g®P = p(t)dt = 0 (0<¢),

is not satisfied, but the condition (6) is. So every solution of this equation is oscillatory.

EQUATION (2)

We consider equation (2) where

~ a,) p(r) is continuous and nonnegative on [t,, ©);

b;) g(t) is a continuously differentiable nondecreasing function on [fo, ) such
that g(f) < t and lim g(¢r) = o, g'(f) < 1.
t—*
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Lemma 3. Suppose that the conditions a,), b,) are satisfied and let le{1,...
n — 1}, I + n odd and let a solution y(t) of equation (2) satisfy the condition
(3). Then

jw[g(;)]"‘z p(t)dt < o,
yi- 1;(,) = yu- 1)(, ) + j J‘ ( —sp-1- 'p(u) y(g(u))du ds,

NOE: ( ‘) Y1), telty, ).
This lemma is a consequence of Lemma 1.4 in [3] and Lemma 2 in [2].

Lemma 4. Suppose that the conditions a,), b,) are satisfied and let le{1,...
«.on =1}, I + n odd and let a solution y(t) of equation (2) satisfy the condition
(3). Then the integral equation

©) 1) + 20 | "To0) ~ o ple) fote) = 0

has a nonoscillatory solution.

Proof. With regard to Lemma 3 we get

a0 2 LA =BT yo-nig( 2 [0 =IO o),

t =5 2 t,, where t, > t, is a sufficiently large number. The condition b,) implies

g(1) —g(s) St —s,t = s =1, and in view of Lemma 3 we have

.[ J [9(u) = g(s)I"™* p(u) y*~(g(w)) du ds .

Now the method of successive approximations asserts that there is a continuous
function v(t) on [1,, c0) such that

y“‘”(t )So(r) = yU(E), 21y,
¢m=wmm+ jjhu—awzmmmmwm,

which is a solution of equation (9).

=) > 1=1)(¢
y (nzy (22) + —2)!

- 2)

Theorem 2. Suppose that the conditions a,), b,) are satisfied and let

(10) fim sup g(1) .[ Lo\ ps)ds > (n — 1)1
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Then every solution of equation (2) is oscillatory, if n is even, and every solution
of equation (2) is oscillatory or lim y)(t) = 0,i = 0, 1,...,n — 1, if n is odd.
t— o

Proof. Let (1) be a positive solution of equation (2). Choose t, so that y(g(t)) > 0
for ¢t = t,. Then in view of Lemma 1 there is a number t, € [t,, o) and I € {0, 1, ...
...,n — 1} such that I + n is odd and (3) is satisfied.

Let I = 0, then y(¢) is bounded and in view of Lemma 2 (which holds for equation
(2) as well) we have lim y'(1) =0, i =0,1,...,n — L.

t—

Let le{1,...,n — 1}. Then with regard to Lemma 4 equation (9) has a nonoscil-
latory solution v(t) > 0, t 2 ¢, 2 t,. Integrating equation (9) from tto z, z > t 2 1,
we have

v(z) — v'l1) =

f g'(u )f [9(s) — g(u)]*~> p(s) v(g(s)) ds du .

- 3)

Let z — oo, then

() 2

(n - 3)!J g'(u) L [g(s) — g(u)]" 2 p(s) v(g(s)) ds du =

- j FOLCO) f o/ [005) — 9] du ds

(n - 3)!

Since v’(t) is noninscreasing, we get

v((t) 2 j [965) — 9()]"2 p(s) o(a(s)) ds .

—2)!

Multiplying the last inequality by g'(f) and integrating from Tto t, t > T = t,, we
obtain

o(a(0) 2 { f s) ol (s) f o'(u) [0(6) — o)~ du ds +

2)'

+ j p(s) v(g(s))jTg’(u) [9(s) — g(u)]"~2 du ds,

v(g(t)) =

(n ~ 2)v J. p(s) L(g(s))J‘ g'(w) [9(s) — g(u)]""* duds,

(n = 1) = [a(t) - o(T] j “Lo6) - o(TI2 p(s) ds,

and from the last inequality we obtain a contradiction with (10). This completes the
proof.
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Corollary. Suppose that the contitions a,), b,) are satisfied and there exists a non-
decreasing function w € C[[to, ), (0, )] such that

© n—1

(11) J I and [T PO e r, ).
u to(f) wo og(r)

Then every solution of equation (2) is oscillatory, if n is even, and every solution

of equation (2) is oscillatory or lim y(tf) = 0,i = 0,1, ...,n — 1, if n is odd.
t— o0

Proof. We shall prove that if (11) holds, then

(12) 3112 sup g(?) J’ w[g(s‘)]"'2 p(s)ds = o
Suppose that t

o) J [9()]"2 p(s) ds < co for e[y, ).
Then ‘

Lo ps) 4, * [9@)]""* p(u) 4, * [g()]"* p(w) 4,
[ o -o00 | s ate) | T
N R 11 C0) i [ P
SRCI = oo T

er el RS CETED [w(gl(n»]*

tg'6s)
¥ f 10 o) "

which contradicts (11). So the condition (12) holds and we can apply Theorem 2.
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