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Casopis pro pEstovini matematiky, ro¥. 107 (1982), Praha

ON A MAXIMUM PRINCIPLE IN POTENTIAL THEORY

DAGMAR KRIVANKOVA, Praha
(Received March 31, 1981)

A very interesting theorem in potential theory due to Ugaheri asserts:

For every R™ there exists a positive constant M such that for every nonnegative
nonincreasing function L defined on the interval {0, ) and for every Radon
measure p in R™ the following estimate holds:

supj L(]x — y|) dp(y) < M sup f L(jx - y|)dp(y) .
xeR™ | pm xesptp_ Rm

In this paper we extend this result to more general kernels K(x, y) = 0 on R™ x R"
satisfying the following conditions: K(x, ) is Borel measurable for every x € R™
and there is a seminorm g on R™ and a constant ¢ > 0 such that

g(x — y) 2 q9(z — y)=>K(x,y) < cK(z, y).

We prove that for such K there is a constant M > 0 (depending on m only) such that

supJ~ K(x, y)dp(y) < cM sup I K(x, y)dp(y)

xeR™ | pm xesptp J pm

for every Radon measure p; at the same time we present estimates (which are the
best possible in certain cases) for the corresponding M.

We use the following notation in the whole text: | | — Euclidean norm; «,, —
volume of the unitary ball (with respect to the Euclidean norm) in R™; g,, —surface
of the unitary spher (with respect to the Euclidean norm) in R™; 1, — Lebesgue
measure on R™; U(x; r) — open ball with the centre x and the radius r with respect
to a certain metric; spt p — support of the measure p.

Definition 1. Let K(x, y) be a nonnegative function on R™ x R™ and let K(x, .)
be Borel-measurable for each x € R™. Then for every Radon measure p on R™
we define
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K p(x) = J. mK(x, y)dp(y)

for each x € R™.

Definition 2. Let g be a seminorm on R™. A positive constant M is called admissible
for q, if every nonmnegative function K(x,y) on R™ x R™, such that K(x, .) is
Borel-measurable and there is a positive constant ¢ such that

a(x — ) 2 q(z — y) = K(x,y) £ cK(z, y),
satisfies
sup K p(x) < cM sup K p(x)

xeR™ xesptp

Jfor every nonzero Radon measure p on R™.

Theorem 1. The constant 5™ — 3™ is admissible for every seminorm on R™.

Proof. 1) First we prove that the smallest number of elements of a 4-net on the
unitary sphere is smaller than or equal to 5™ — 3™ for every norm | || on R™.

Let x!, ..., x* be points on the unitary sphere such that the distance of every two
different points is greater than 4 and there is no point on the unitary sphere which
has a distance greater than 1 from each of these points. Such points exist. The
points x1, ..., x* form a {-net on the unitary sphere. It suffices to prove that k <
< 5" —3m :

The balls with centres x!, ..., x* and radius } are disjoint subsets of the set
U(0; ) — U(0; 3). The sum of their Euclidean volumes is smaller than or equal to
the volume of the set U(0; ) — U(0; 3):

KA v=@rv-@rv,
where Vis the volume of the unitary ball. Therefore
k<5 — 3",

2) Let g be a seminorm on R™ and let ¢ be a positive number. Let K(x, ) be a non-
negative function on R™ x R™ such that K(x, .) is Borel-measurable for each x € R™
and .

a(x — y) 2 4(z — y) = K(x, y) £ cK(z, y).

Further, let p be a nonzero Radon measure with a compact support in R™.
If ¢ = 0 then arbitrary x, y € R™, z e spt p fulfil K(x, y) £ ¢ K(z, y) and therefore

K p(x) £ ¢K p(z) < sup cK p(y) < (5" — 3'") sup K p(y) .
yesptp yesptp

Let there be y € R™ such that g(¥) * 0.
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Y = {y e R™; g(y) = 0} is a linear space. Let Z be the direct complement of Y
in R™. The dimension of Z is n; g is a norm on Z. According to 1) there are points
x!, ..., x*, which form a i-net on the unitary sphere in Z, where

(1) ; k<5 —3<s5m—3m,

Put L= Y + spt p. Then L is a closed set (in the Euclidean metric). Let x € R™ be
an arbitrary fixed point.

If x € L, there are ze spt p and y e Y such that x = z + y. Then each u espt p
fulfils g(x — u) = g(z — u + y) = q(z — u). Therefore K(x,u) < cK(z,u) for
each u € spt p. Therefore

K p(x) £ ¢K p(z) £ ¢ sup K p(u) < (5" — 3™) sup K p(u) .

uesptp uespt p

Assume.now that x ¢ L. Put

M,-={yeZ+x—{x}; q(u—xi)gl}, Li=M;+Yfori=1,..,k.
q(y — x) 2

Since x1, ..., x* is a 1-net on the unitary sphere in Z, we have

'LfJM,-=Z+x—{x}.

Hence

C=

Lo L.

i=1

Clearly,
K p(x) = f K(x, y) dp(y) éi; K(x, y) dp(y) -

With respect to (1) it suffices to prove that

J K(x,y)dp(y) S csupK p(y) for i=1,...,k.
LinL - yesptp
If L, n L = @ then the inequality is evidently valid. Let L, n L % 0.

M=Ln (Z + x) is a closed subset of Z + x. Further, L= M + Y. Hence
LNAL =(MnM,)+ Y, where M n M, is a closed subset of Z + x. There is u €
€ M n M, such that g(u — x) < g(z — x) for every ze M n M,. Since ue M and
M + Y= L=Y + spt p, there is y' € Y such that u + y' e spt p. Let us denote
v = u + y'. For every z'e L n L; we have

@) oo - ) S alz - %).
If ze L~ L, then there are z' e M n M, and ye Y such that z! 4+ y = z. Then
g(v — x) = q(u — x) < q(z' — x) = g(z — x). Since
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-x) 52, g -¥) =1,
q(q(u—x) ) 2 q(q(zl—x) ).2
we have

3) q(q(u_x)—q(zl_x)>§1.
Further,
@) gz —v)=4q(z' —u)=¢q(z' —x—(u—-x)) =

Sl -9 - Be=D e ) g (=D x - o- ) -

=(1_M)q(zl_x)+q(u-x)q( rE zl"")g

g(z! - x) gu — x) q(z' — x)
< q(z' — x) — g(u — x) + q(u — x) = g(z* — x) = g(z — x)
according to (2), (3). Thus

K(x,z) < cK(v, z) .
Hence

J. K(x, y)dp(y) < J ¢ K(v, y)dp(y) < cK p(v) < csup K p(y), |

nL; yespt I4
because v € spt p.

3) Let g be a seminorm on R™. Let K be a function on R™ x R™ with the same
properties as in 2). Let p be a Radon measure on R™ which has not a compact support.

For every integer n we define a measure p, on R™ by p,(4) = p(4 n U(0; n))
for each Borel set A. Then p, has a compact support and

K p,(x) < (5™ — 3") sup K p(y) < (5" — 3") sup K py) <

yespt pn yesptpn
< ¢(5™ — 3™) sup K p(y)
yesptp
for each x e R™.
K p(x) = hm K p(x) S (5™ — 3™) sup K p(y) .
yesptp
Theorem 2. The smallest constant admissible for the maximum norm on R™
is 2™,

Proof. 1) First we prove that 2" is an admissible constant for the maximum norm
I on R"

Let ¢ be a positive constant. Let K(x, y) be a nonnegative function on R™ x R™,
let K(x, .) be Borel-measurable for each x € R™ and suppose that ||x — y| <
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< |z = y| = K(z, ») £ ¢K(x, y). Let p be a non-zero Radon measure on R™
Let x € R™ be an arbitrary fixed point. If x € spt p then

K p(x) < sup K p(y),
- yesptp

and since either K = 0 or ¢ = 1, we obtain

K p(x) £ sup K p(y) < ¢ sup K p(y) < c2™ sup K p(y).

yesptp yesptp yesptp
Now let x ¢ spt p.
PutM = {—1;1}". M = {x};i =1,...,2"}, where x', i = 1, ..., 2™, are mutually

different points on the unitary sphere determined by the norm | ||. Put

Yy —-x i
- x
Iy =

.mﬂwm{ﬂ

Evidently

s 1} for i=1,...,2".

izglMi = R" — {x}.
We obtain
Kp(x)=| K(x y)dp(y) s Z K(x, y) dp(y) -

sptp =1 Mnsptp

Thus it suffices to show that

) J;; K(x,y)dp(y) < ¢ sup K p(z) for i=1,...,2".

insptp zesptp

If M;nsptp =0 then (5) is evidently valid. Let M; nspt p + 0. Then there is
z € M; n spt p such that for every y e M; nspt p,

(6) Ix =z < = = ] -
For u,veR™, ||u| = o] =1, ”u - x| 21, [[v — x| <1 we prove
o) o —ol <1

Then in the same way as we have proved the inequality (4) from (2), (3) in the proof
of Theorem 1, we may prove from (6), (7) that |x — y| = ||z — y| for every ye
€ M, nspt p. According to the assumption, K(x, y) < cK(z, y). Since z e spt p,
we obtain

j Mwww&j mwmm«m@wmmM)

insptp insptp yesptp
and thus the inequality (5) is true.
We prove the inequality (7).
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Let u,veR™, u| = o] = 1, |u — x| <1, [v — x| < 1. We assume for the
simplicity that x* = {1}™. Since |u| = o] <1, we have u; < 1, v; <1 for j =
=1,...,m. Since |u— x| £1, |[v—x'| =1, we have 0 S u;, 0 < v, for j =
=1,...,m Thus |u — v| = max |u; — v)| < 1. The inequality (7) is valid.

j=1,..,m

2) Now we prove that every admissible constant for the maximum norm is greater
than or equal to 2™,

Let us define

L) =1 for 0st=1,
2—-1t for 1<t<2,
0 for t=2

on the interval <0; o).

Put K(x, y) = L(||x — y|)). Then K(x, y) is a nonnegative continuous function
on R™ x R™. Further,

Ix =l 2 [z = y| = K(x ») £ K(z. 7).

Put A = {—1; 1}". We define p(B) = number of elements of A n B for every set B.
Then p is a Radon measure on R™.
Let M be an admissible constant for the maximum norm on R™. Then

(8) K p(x) £ M sup K p(y)

yesptp
for each x € R™; clearly spt p = A. For every y € 4, K p(y) = 1. Further, K p(0) =
= 2™ If we substitute into (8) then we obtain 2™ < M.

Theorem 3. 3(2 + /(2 + +/3)) (m — 1) (2/(2 + /3))" ™! is admissible for every
Hilbert norm on R™, where m = 3. Every constant which is admissible for a Hilbert
norm on R™, m 2 3, is greater than or equal to 2(2/,/3)" . For every norm on R',
the smallest admissible constant is equal to 2. The constant 6 is admissible for
each Hilbert norm on R?. Every constant which is admissible for a Hilbert norm
on R? is greater than or equal to 5.

Proof. 1) First of all we pass through some auxiliary calculations. Let m = 3.
The volume of the part of the ball with the radius R limited by the (m — 1)-dimen-
sional plane with a distance h from the centre of the ball is

V(h,R) = 1da, =

{[*1eeesXm]lsx12+ ...+ x,,,2SR2,x1 2 h)

R ' R
= J‘ J‘ 1 dj‘m—l dxl = am_lf (R2 - x2)(m—1)/2 dx .
h J {[x2,000Xm]ix22+ .+ Xxm2 S R2—x12} h
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The surface of the (m — 1)-dimensional spherical cap corresponding to this body is
the derivative of the function V with respect to R:

. R
* S(h,R) = t_y(m — DR f (R? — x3)m=302 g
h

For R = 1 we obtain
r

) S(h) = tp_y(m — 1) | (1 = xH)™= 32 gx .

Jh

For h = 0 we obtain
r1
(10) 0, = Zam_l(m — 1) (1 - x2)(m—3)/2 dx .
’ J0

2) Now we prove that the smallest number of elements of a /(2 — ,/3)-net on
the unitary sphere in R™, where m = 3, with respect to the Euclidean norm is smaller
than or equal to 3(2 + /(2 + /3)) (m — 1) (2 /(2 + /3))" .

Let x?, ..., x* be points on the unitary sphere such that the distance of every two
different points is greater than /(2 — /3) (i.e., their radiusvectors enclose an angle
greater than n/6) and there is no point on the unitary sphere which has the distance
greater than \/(2 - \/ 3) from each of these points. Such points exist. The points
x!,...,x* form a /(2 — /3)-net on the unitary sphere. It suffices to prove that

k

IA

L [CVCEaNG

Denote by A;, i = 1, ..., k the set of the points on the unitary sphere such that
their radiusvectors enclose with the radiusvector of the point x’ angles smaller than
or equal to nf12. Since A;, i = 1, ..., k, are disjoint subsets of the unitary sphere,
the sum of the surfaces of A; is smaller than or equal to the surface of the unitary
sphere. A, is a spherical cap such that the plane limiting the part of ball corresponding
to this spherical cap has a distance from the point 0 equal to h = cos n/12 =
=}./(2 + /3). Thus k S(h) < o, According to (9),

(4

k n .
1

i o(m — 1) J (1 — x?)m=372 gy
h

IIA

According to (10), -
1
On = 2y (m — 1) J' (L - x)"D2dx < 25 (m — 1),
0
We obtain
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2 | 2
Jq(l _x)mW2gy (14 hymoO2 '[ 1(1 — x)m=302 g
h h

A
]

k=

_(m=1) (1+h)2

2 (JO-m)t

If we substitute # then we obtain

k

IIA

e C CNCRNE

3) In this part of the proof we prove that the greatest number of points on the
unitary sphere in R™, m 2 3, with respect to the Euclidean norm, such that the
distance of every two different points is greater than 1, is greater than or equal to
2(2[{/3)""1. Let x!,..., x* be points on the unitary sphere such that the distance
of every two different points is greater than 1 and there is no point on the unitary
sphere which has a distance greater than 1 from each of these points. Such points
exist. It suffices to prove that k < 2(2/{/3)""*.

The points x!, x?, ..., x* form a 1-net on the unitary sphere. The sum of the surfaces
of the intersections of the unitary sphere with the U(x%; 1), i = 1, ..., k, is greater
than or equal to the surface of the unitary sphere. Since the plane limiting the body
corresponding to this spherical cap (the intersection of the unitary sphere with
U(x'; 1)) has the distance from the point O equal to %, we obtain k S() 2 o,,.
According to (9),

Om

k .
1

R (R I)J‘ (1 — xZ)m=3/2 dx
1/2

v

Accerding to (10),

1
Op = 20, _4(m — l)f (1 = x?)m=32gx >
0

1
2 2, _4(m — l)f (1 = x)m=32dx = 4, _, .
0

Thus -

) 4 4

1 - n/3
(m - I)J (1= x?)m=32dx  (m - I)J (sin?x)™=3)/2 sin x dx
. 1/2 0o

1\

v

= 2 = 2 22\
/3 . 2 v3/2 -2 \/3
(m - I)J‘ sin”" ?xcosxdx (m — I)J‘ y"2dy
0 ()
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4) Now we prove the first part of the theorem. We may identify every norm on R*
with the maximum norm. Therefore 2 is the smallest admissible constant for every
norm on R!. Since we may identify every Hilbert norm with the Euclidean norm
we shall consider the Euclidean norm only. According to the second part of the proof
there are poinfs x*, ..., x* which form a /(2 — ,/3)-net on the unitary sphere in R™,
where m = 3, such that k < $(2 + /(2 + /3)) (m — 1) (2/(2 + {/3))""*. Further,
there are points x’, ..., x* which form a /(2 — /3)-net on the unitary sphere in R?
such that k = 6.

It suffices to prove that k is an admissible constant for the Euclidean norm. Let ¢
be a positive number. Let K(x, y) be a nonnegative function on R™ x R™ such that
K(x, .) is Borel-measurable for each x € R" and

Ix =y 2|z =y = K(x,») < cK(z,y).
Further, let p be a nonzero Radon measure in R™ Let x € R™ If x e spt p then

K p(x) < ck sup K p(y) evidently. Let x ¢ spt p.

yesptp

Put
L = {zeR’" — {x}; li - x| x| = J2 - ¢3)} for i=1,...k.
Then ’
K p(x) = LmK(x, y)dp(y) éé ) nwK(x, y)dp(y)-

1t suffices to prove that

j K(x, y) dp(y) < ¢ sup K p(y):
Linsptp

yesptp

If L; ~ spt p = 0 then the inequality evidently holds. :

Let L, nsptp + 0. Then there is ze L; nspt p such that Iz - xl =< |y - xl
for each y € L; N spt p. For every y e L; n spt p we have |(y — x)/|y — x| — x| <
< J(2 — /3), ie., the radiusvector of (y — x)| l y — x[ encloses with the radius-
vector of the point x* an angle smaller than or equal to 7/6. Therefore the radiusvector
of the point (y — x)/|y — x| encloses with the radiusvector of the point (z — x):
:|z = x| an angle smaller than or equal to =3, ie., |(z — x)/|z — x| = (y — x):
:[y — x|| = 1. In the same way as we have proved the inequality (4) from (2), (3)
in the proof of Theorem 1, we may prove the analogous inequality. The proof pro-
ceeds as that of Theorem 1. )

5) Now we prove the second part of the theorem. Since we may identify the
Hilbert norm with the Euclidean norm, we shall consider the Euclidean norm only.

According to the third part of the proof there are points x’, ..., x* on the unitary
sphere in R™, where m = 3, such that the distance of every two different points is
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greater than 1 and k 2 2(2/,/3)" . Further, there are points x, ..., x* on the unitary
sphere in R? such that the distance of every two different points is greater than 1 and
k = 5. It suffices to prove that every admissible constant for the Euclidean norm is
greater than or equal to k.

For every set A in R™ we define

p4)=31.

xled

Then pis a Radon measure in R™, spt p = {x', ..., x}. Further ¢; = min [x — x/| >

>1,c= min ¢; > 1. Put i*i
i=1,..., k
L(t) =1 for te0;1),
¢ v
+ for te(l;¢),
1—¢c c¢-1 (15 ¢)
0 for te{c; ).

Lis a nonnegative continuous nonincreasing function defined on the interval <0; o).
Put K(x, y) = L(jx — y|) for each x, y € R™. Then K p(x’) = 1, K p(0) = k. If M
is an admissible constant for the Euclidean norm, then M = k.

Remark 1. We can find a smaller constant than in Theorem 1 which is admissible
for the Euclidean norm. For example, 26 is admissible for the Euclidean norm
on R3. We can find a better lower estimate of the admissible constant for the
Euclidean norm. For example, every admissible constant for the Euclidean norm
in R™, where m = 3, is greater than or equal to 4m, which is a better lower estimate
of the admissible constant for m = 3,...,29.

Proof. 1) Now we prove the first part of the remark. According to the fourth
part of the proof of Theorem 3 it suffices to prove that the smallest number of ele-
ments of a \/(2 — ./3)-net on the unitary sphere in R? is smaller than or equal to 26.
We denote by S the unitary sphere. Put

A={1,-1,0,1/y2, —=1//2,1//3, =1[/3}* n 5.
Number of elements of A is 2% + 22.3 4+ 2.3 = 26. We prove that A4 is

a /(2 — /3)-net on S. Suppose that A is not a /(2 — ,/3)-net on S. Then there is

x € S such that |x — y| > /(2 — \/3) for every y e A. We assume for simplicity
that

(11) 0Sx xS x3.
|x = [0,0,1]| > /(2 — 4/3)- Therefore
(12) X3 < -\—/éé .
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|x - [0,1 Nz, 1/y2]| > /(2 = /3). Therefore -

(13) x4+ x5 <A /(3).
|x = [1/v/3,1/</3, 1/y/3]| > /(2 — +/3). Therefore
(14) Xy + X, +x3<%.

We have x, = /(1 — x} — x3). If we substitute into (13), we obtain x; +
(= — =) < 03)
Therefore
2x3 — \J6x3 + x7 + 1> 0.

Thus, just one of the following three possibilities occurs:

a) 2 —'8x% < 0,

b)2-8x} =0 x3<‘/6"‘/(2“8x§)
— ’ 4 ’

¢) 2—8x2 20, x; > YO+ V@ = 8x1)
— ’ 4

ada) x; > 3. According to (11), x, > %, x3 > 3. Thus x, + x, + x; > 3,
which contradicts (14).

adb) Since 0 < x; S x; S xzand x} + x} +x3 =1, we have JA =32 £
< x50

Since
o, < Y23 = - )
4
we have '
2/ =)+ J(1 - 4x) < /3.
We obtain :

401 - *}) (1 — 4x})) < 83 — 2,

which contradicts the supposition b).
ad ¢) According to (10), x5 < 4 /3. Therefore

Jo+ 28D _y3
4 2

Thus o
(15) | \/(?’—‘/—Zz:i) <x5%.
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According to (11) and according to the supposition c) we obtain

)
(16) Xy + Xy + X3 > 2x, + V6 + \/§2 8x1)'

We define the function F(x) = 2x + (/6 + /(2 — 8x?)) on the interval
{J(3(3 /2 = 4)); 3. The function F is increasing on the interval \/((3 \/2 — 4));
J(3)) and decreasing on the interval (/(3); ). Thus F(x) = min (F(/(3(3 V2—4)),
F(3)) > 3. According to (15) and according to (16) we obtain x; + x, + x3 > 3,
which contradicts (14).

2) Now we prove the second part of the remark. According to the fifth part of the
proof of Theorem 3 it suffices to prove that there are 4m points on the unitary sphere
in R™, m = 3, such that the distance of every two different points is greater than 1.
Such points are [1//3, (3), 0], [—1/y/3 v(),0], [1/y/3, —(3), 0], [~1/y3,
—J(3),0). [V, 0. 131, [-(3,0. 1/y3], [V@).0, ~1/y3]. [-V().0,
—13] [0, 113, V1 10, =13 V@ [0 13 V@) [0. <13, =)
in R°.

Let x!, ..., x*™ be points on the unitary sphere in R™ such that the distance of
every two different points is greater than 1. We may suppose that [x,',,[ < 1 for
i=1,...,4m. Then

a= max |x)|<1.
i=1,..., 4m

Then there is b such that $ < b < 1/\/2 and ab < }. Put

yi=x'x{0} for i=1,...,4m,
y4m+1 = {0}"!—1 X [b’ \/(1 — bl)] s
ym*2 = {o}m=1 x [b, _\/(1 _ bz)] ,
Y = {0 x [=b, (1 - D],

4 = {0}t x [=b, (1 ~ B].

The points y’, i = 1,...,4m + 4, are elements of unitary sphere in R™*!, Now we
prove that |y' — /| > 1foreachi % j.1fi <j < 4mthen |y’ — y/| = |x' — x/| >
>1. If 4m <i<j then |y' = p/| 2 2min(b, /(1 — b?))> 1. If i <d4m <
then |y' — /| 2 2 — 2|bx}| 2 2 — 2ab > 1.

~<

Remark 2. The smallest number of elements of a /(2 — /3)-net on the unitary
sphere with respect to the Euclidean norm is an admissible constant for the Euclidean
norm. We can find estimates of the smallest number of elements of a \/(2 — /3)-net
on the unitary sphere in [3], [4]. '

Remark 3. Suppose that K(x, y) 2 0 on R™ x R™ and K(x, .) is Borel measurable
on R™ for each x € R™. The existence of a seminorm q in R™ and a ¢ > 0 satisfying
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the implication
a(x — y) Z a(z — y) = K(x, y) £ cK(z, y)

is not necessary for the existence of a constant M > 0 quaranteeing the validity
of the estimate

sup K p(x) £ M sup K p(x)

xeR™ xesptp

for all Radon measures p in R™.
Proof. Let x, € R™ — {0}. It suffices to put

K(x,y) =0 for [x,y]eR™ x R™ — {[0,0], [x0, 0]},
1 for [x,y]e{[0,0], [xo, 0]} .
Example 1. On R' x R' we define
K(x,y) = sin (x — y) + 2
x =l

+ o0 for x=1y.

for x £y,

K is a nonnegative Borel-measurable function. If x = y then K(x,y) = K(z, y)
for each ze R If x + y, |x — y| £ |z — y|, then z % y as well and
K(Z,y)=sm(z-—y)+2§ 3 < 3 §3sm(x—y)+2=3K(x’y)'
|z = ] 2=y~ Ix -l [x =l
Theorem 2 implies

K p(x) < 6 sup K p(y)

yesptp

for each nonzero Radon measure p and for each x € R'.

Example 2. Let r, s > 0. We define on R™ x R™

m
K(x,y) = (i};l[xi - yi(')" for x+y,
+ o0 for x=y.

K is a nonnegative Borel-measurable function. If r = 1, we define the norm in R™ by

m
=] = (Ellxt - i)
If x = y then K(x, y) 2 K(z, y) for each ze R™. If x % y and ||x — y|| £ |z — y|
then ||x — y||™ < ||z — y||"* and thus K(x, y) = K(z, y). Theorem 1 yields
sup K p(x) < (5™ — 3™) sup K p(x)
xeR™ xesptp
for each nonzero Radon measure p on R™.
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If0 < r < 1, we define by |[x|| = max |x | anormin R™ If x = y then K(x, y) 2
i=1,.

2 K(z, y) for each z. If x % y and “x - y” |z — | then z % y and

K(s3) = (Z e =y 2 (nls = 1) 2 m~(lz = 5) 2

2 m (X le = vf)7* = m K ).
Thus |x — y| £ ||z = y| = K(z, y) £ m* K(x, y). Theorem 2 yields

sup K p(x) < m* 2" sup K p(x)

xeR™ xespt p

for each nonzero Radon measure p in R™.
This inequality is true for r = 1 as well.

References

[11 S. Kametani, T. Ugaheri: On a theorem of Evans in the theory of generalized potential.

Sugaku I (1947), 30—31.

[2] K. Kunugui: Etude sur la théorie du potential généralisé. Osaka Math. J., vol. 2 (1950), No. 1,

63—103.

[3] I'. A. Kabamancxkuii, B. H. JIesenumeiin: O rpaHMIIaxX A7 yIaKOBOK Ha cdepe 1 B npocrpancnae

TIpo6iemsr nepenaun uapopmarmm 14 (1978), Ho. 1, 3—25.

[4] B. M. Cudesnuxos: HoBbie OLEHKH IUIOTHEHINEH YMakOBKH IIapoB B n—MepHOM 3BKJIMIOBOM

npocrpadcTee. Matematuueckuit cOopumk (1974), 95 148—158.

Author’s address: 115 67 Praha 1, Zitna 25 (Matematicky ustav CSAV).

359



		webmaster@dml.cz
	2012-05-12T12:00:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




