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STRUCTURE EQUATIONS OF GENERALIZED CONNECTIONS

IvaN KoLAR and ViLADIMIR LESovskY, Brno

(Received November 20, 1980)

Starting from some recent results by the first author, [2], [3], we deduce the struc-
ture equation of an arbitrary (generalized) connection on a fibered manifold with
fiber parallelism. For a so-called homogeneous connection we obtain an interesting
generalization of the classical structure equation of a principal connection. We also
clarify that the homogeneity of the connection is an essential tool to deduce a kind
of generalized Bianchi identity. — Our consideration is in the category C*.

1. For any vector bundle E — X, a linear base-preserving morphism ¢ : A*¥ TX —
— E will be called an E-valued k-form. Given a linear connection C on E, Koszul,
[4], has defined the exterior differential dcg : A¥*! TX -> E. In some local co-
ordinates x’ on X and some additional linear coordinates z? on E, if @P are the com-
ponents of ¢ and I'}; are Christoffel’s symbols of C, then the components of d¢c¢ are

1) de? — I'% dx* A 2.
For k = 1, Koszul’s formula reads

) (dew) (& 1) = Ve o(n) — ¥y @(8) — (& 1])

for any vector fields ¢ and 7 on X, provided (V, has the usual meaning of the absolute
derivative.

Given a fibered manifold p:Y — X, a linear base-preserving morphism
¢ : N TY - E will be called an E-valued k-form on Y. Any linear connection C
on E induces a linear connection p*C on the induced vector bundle p*E — Y, [1].
We define dco := d,.cp, where ¢ on the right-hand side is interpreted as a map
N TY - p*E. Obviously, dce can be regarded as an E-valued (k + 1)-form on Y.
Formula (2) has now the form

(3) (dc(P) (5» '7) = pecVe ‘P(’i) = pcVy ‘P(f) - ‘P([é» ’I])

for any vector fields ¢ and  on Y. An E-valued k-form ¢ on Y will be called horizontal
if p(Ay, ..., 4;) = 0 whenever at least one of the vectors A4y, ..., 4, is vertical.
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2. A fiber parallelism on a fibered manifold p : Y— X is a triple (Y, E, Q), where
7 : E —» X is a vector bundle over the same base X and Q : Y@ E — VYis a morphism
over Y of the fiber product Y @ E into the vertical tangent bundle F'Y of Y such that
Q(y) : Eyy = V,Y is a linear isomorphism for every ye Y. Any vector 4€E,
determines a vector field QA on the fiber Y, and every section ¢ : X — E induces
a vertical vector field Qo on Y. The structure function of Qisamap Sy : Y@ A% E -»
— E defined by

(4) So(v, 4, B) = Q(y)™" ([Q4, ¢B],).

A (generalized) connection on Y means any section I': Y- J'Y, where J'Y
denotes the first jet prolongation of Y, [5]. For every y € Y, I'(y) is identified with
a horizontal subspace in T,Y and any vector A € T,Y is decomposed into A = hA +
+ vA with h4 e I'(y) and vA4 € V,Y. The connection form of I' is an E-valued 1-form
o on Y determined by

) o(d) = 0(y)™* (v4) -

The curvature form of I' is a map Q : Y@ A? TX — E defined by Q(y, &, n,) =
= —o([T¢ I'n],), x = py, for any vector fields ¢ and 5 on X, provided I'é means
the I-lift of &. Obviously, Q can be regarded as a horizontal E-valued 2-form on Y.
On the other hand, d.w is also an E-valued 2-form on Y.

3. We have to recall the concept of the deviation form é(I, C, Q), [3]. Con-
nections I" and C determine the product connection I' @ C on Y @ E, which is trans-
formed by Q into a connection Q(T @ C) on VY. On the other hand, I is canonically
prolonged into a connection VI" on VY, [2]. Under standard identifications, the dif-
ference Q(I' @ C) — VI can be interpreted as a map §(I, C, Q) : YO E® TX - E
linear in both E and TX. Dualizing with respect to E, we can regard 6(I', C, Q) as
a horizontal E ® E*-valued 1-form on Y.

Lemma 1. Given A€ E, and Be T.X, x€ X, let ¢ be a section of E with j,o =
= C(A) and & a vector field on X with ¢, = B. Then

©) (T’ C, 0) (3, 4, B) = o([T%, 0oT,).
Proof consists in direct evaluation in local coordinates.

4. As usual, the symbol A will denote the tensor contraction combined with
alternation. Hence w & (I, C, Q) is an E-valued 2-form on Y. Analogously, the
composition Sy(w, w) of the structure function of Q and the connection form of I
can be regarded as an E-valued 2-form on Y.

Theorem 1. (Structure equation.) We have

M dew = —Sp(w, w) + 0 X §(I, C, Q) + Q.
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Proof. By bilinearity, it is sufficient to discuss the value (dcw) (4, B) in the fol-
lowing three cases.

(i) Both A and B are vertical, so that the second and third terms on the right-hand
side of (7) vanish. Let 4 = (Qo),, B = (Qg), for some sections ¢ and g of E. Then
a simple calculation shows that the both absolute derivatives in (3) vanish. Hence
(dcw) (4, B) = ~-([Qa, Q¢],), which is the required value of Sy(w, ).

(ii) Both A and B are horizontal, so that the first and second terms on the right-
hand side of (7) vanish. Let A = (I'¢), and B = (I'y), for some vector fields £ and 7
on X. Then w(I'¢) = w(I'n) =0 and (3) implies (dcw) (4, B) = (4, B) by the
definition of Q.

(iii) A is vertical and B is horizontal, so that the first and third terms on the right-
hand side of (7) vanish. Let A = (Qo), for a section ¢ of E satisfying jio = C(A)
and B = (I'¢),. In this case, one finds the following coordinate expression for

,,.CVR CO(QO'):
®) e - e,

where ¢?(x) or ¢i(x) is the coordinate expression of ¢ or &, respectively. But (8)
vanishes at x = py by the assumption j,o = C(A). The second absolute derivative
in (3) vanishes trivially, so that we have (dcw) (4, B) = —([Qo, I'¢],) = &(T, C, Q)
(y, 4, B) by Lemma 1, QED.

A connection I' on Y is called homogeneous, [3] if there exists a linear connection C
on E satisfying 6(I', C, Q) = 0. In this case, C is uniquely determined and is said
to be associated with I'. The structure equation of a homogeneous connection is

) dew = —Sp(w, w) + 2,

where C is the associated connection. On every principal fiber bundle P(X, G),
there is a canonical fiber parallelism N given by the classical fundamental vector
fields on P, the corresponding vector bundle is X x g (= the Lie algebra of G).
By Lemma 1, a (generalized) connection I" on P is principal (i.e. right-invariant)
iff 6(F, 0, N) = 0, where O means the zero connection on the product bundle
X x g. The structure function of N coincides with the bracket in g and dyw is the
classical exterior differential of a g-valued form, so that (9)is reduced to the classical
structure equation of a principal connection.

5. Given I' and C as above, the absolute exterior differential of an E-valued k-form
¢ on Yis defined by

DC(p(Ala cees Ak+1) = dc‘P(hAla cons B4y y) -

Lemma 2. For any C, we have

(10) D(dcw) = 0.
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Proof. Using (1), we find the following coordinate expression of d(dco):
(11) _dFZiAdxiAwq'*‘ ngrgjdxiAdxjA(Dr,

which proves our assertion.
Quite similarly one deduces for every C,

(12) Dew = Q.

Theorem 2. (Generalized Bianchi formula.) We have
(13 D= -Q & T, C, Q).

Proof. Applying absolute exterior differentiation to the structure equation and
using (10) and (12), we obtain (13).

If I' is homogeneous, we have D Q = 0. We remark that the first author has
deduced, [2], that for any (generalized) connection I' the absolute exterior differen-
tial of its curvature with respect to the vertical prolongation VI" of I' vanishes. For
homogeneous connections, ¥I' = Q(I' @ C) holds by the definition of §(I', C, Q).
This gives another explanation of the role of the Bianchi identity for homogeneous
connections.
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