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ON LINEARLY ORDERED SUBGROUPS OF A LATTICE
ORDERED GROUP

JAN JAakusik, Kosice

(Received September 1, 1980)

In this note the following conditions for a lattice ordered group G will be con-
sidered: '

(a) G is singular.

(b) Each linearly ordered subgroup of G is cyclic.

(c) For each 0 < h € G there exists a group which is the largest linearly ordered
subgroup of G containing h. ‘

The standard terminology and notation for lattices and lattice ordered groups
will be used (cf. [1]).

Conrad and Montgomery [2] proved that if G is archimedean, then (a) implies (b),
and they proposed the question whether (a) is implied by (b) for each archimedean
lattice ordered group G. The author [3] proved the following result showing that the
answer to this question is negative:

Proposition 1. There exists an archzmedean lattice ordered group G such that G
fulfils (b) and G fails to be singular.

Further, we have

Proposition 2. (Cf. [3].) If G is a complete lattice ordered group and if G fulfils
(b), then G is singular.

In Proposition 2 the assumption of completeness cannot be replaced by assuming
the o-completeness (cf. Rotkovi& [4]).

In [4] (Lemma 1) it was asserted that if a lattice ordered group G fulfils the con-
dition (b) then G is archimedean. It will be proved below that this assertion does not
hold. Also it will be shown that each abelian lattice ordered group fulfilling (b)
must be archimedean.

The condition (c) was applied in [4] (proof of Lemma 1). It will be established that
each archimedean lattice ordered group fulfils (c), but (c) need not hold for non-
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archimedean lattice ordered groups. The class & of all lattice ordered groups fulfilling
the condition (b) is closed with respect to direct products (but £ fails to be closed
with respect to homdmorphic images).

We need the following examples of lattice ordered groups.

Example 1. Let N, be the set of all integers, G = Ny x Ny X N,. For g; =
= (x;, i, z;) (i = 1,2) we put g, < g, if either z, < z,, or z; = z, and x; < x,,
v{ £ y,. The operation + in G is defined componentwise. It is obvious that G is
a nonarchimedean abelian lattice ordered group.

Example 2. Let F, be the set of all functions f: N, — N, with finite supports.
For f € Fy we denote by sf the support of f. In F, we define the operation + and the
lattice operations componentwise. If z € N, and f € F,, then f* denotes the function
belonging to F,, such that

f50)) = (i — 2)
is valid for each i€ N,.
Let H = Fy x No. For h; = (f;,z;)e H (i = 1,2) we put hy = h, if either z; <
< z,,0r z; = z, and f; < f,. Further, we set

(f1:z1) + (fza z;) = (fx + 13z + z,).

It is not hard to verify that H is a nonarchimedean lattice ordered group.

Lemma 1. Let fe Fy, f = 0,0 & ze No. Then f and f* are incomparable.

The proof is easy.

Lemma 2. Let hy, he H,0 # hy; = (f;,0), h = (f, z), z # 0. Then the elements h,
and —h + hy + h are incomparable.

Proof. We have —h = (—f7%, —z). Hence

—h+h+h=(—f7%-2)+(f1,0)+ (f,z) =
=(—fTF+ %)+ (fi2)=(—fZ+f"+f%0)=(f7%0).

Now it suffices to apply Lemma 1.

Lemma 3. H fulfils the condition (b).

Proof. Let H, + {0} be a linearly ordered subgroup of H. Let Z be the set of all
integers z' with the property that (f’, z’) € H, for some f’ € F,. We distinguish two
cases. :

a) Z + {0}. Let z be the least positive integer belonging to Z. Lemma 2 implies

that for each h, = (f,,0) e H; we must have f; = 0. There exists f € F, with h =
= (f,z)eH,. Let 0 < b’ = (f’, z')e H,. Hence z’ > 0. Let k, z; e N, with 2’ =
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=kz+ 2z, k=0,0<z, <z Then h' — khe H, and there is f, € F, with h’ —
— kh = (f,, z;). Thus z; = 0, implying f, = 0 and h’ = kh. Therefore H, is cyclic
(generated by h).

b) Z = {0}. Since the positive cone of F, fulfils the descending chain condition,
the same is valid for the positive cone of H;. Hence there exists h; = (f;,0) in H,
such that h,; covers the element 0 in H,. Let 0 < h = (f, 0) € H,. Therefore f; < f.

Let i € sf;. From 0 < f,(i) < f(i) it follows that there are n;, q; € Ny with n; > 0,
0 < g; < n; such that f(i) = n; f(i) + ¢;- Put g, = f — n;f,. We have (g;,0) e H,
and gi(i) = q;. If g; > 0, then 0 < g; and f; £ g;, which is a contradiction; hence
q; = 0.

Let j e sf;, j & i. Assume that n; < n;. Hence

9di) = 1) = ni () > F() — n; f1(j) = 0,

implying g; > 0. Because of g,(i) = 0 we infer that f, £ g,, which is a contradiction.
Thus there is a positive integer n such that n; = n for each i € sf;.

Now let k € sf. Assume that k does not belong to sf,. Put g = f — nf;. Then
g€ H, and g(k) = f(k) > 0, hence g > 0. For each i € sf; we have g(i) = 0, thus
f1 £ g, a contradiction. Hence sf = sf; and g = 0, f = nf;.

Corollary 1. There exists a nonarchimedean lattice ordered group fulfilling the
condition (b).

Proposition 3. Let G be an abelian lattice ordered group. Assuine that G fulfils
the condition (b). Then G is archimedean.

Proof. Assume that G fails to be archimedean. Thus there are elements g, he G
such that 0 < ng < h is valid for each 0 < ne N,. Let

Hl = {nlg + nzj . nl, nzeNo} .

Then H, is a linearly ordered subgroup of G and H, is not cyclic; this is a contra-
diction.

Let G, be an archimedean lattice ordered group, 0 < fe G,0 < g€ G. Let 0 < «
be a real number. Suppose that, whenever n,, m,, n,, m, are positive integers with

1

nmi' <o < nym;t,

then n,f < m;g and n,f > m,g. Under these assumptions we write af = g.

Lemma 4. (Cf. [4].) Let H be a linearly ordered subgroup of an archimedean
lattice ordered group G,. Let 0 < fe H, 0 < ge H. Then there is a real o > 0
with af = g. .
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For 0 < fe G, we denote by I(f) the set of all elements g € G, with the property
that there exists a real a(g) > 0 with a(g) f = g. The set I(f) is a linearly ordered
subsemigroup of G, containing f. Hence I(f) — I(f) is a linearly ordered subgroup
of G, containing f. From this and from Lemma 4 we obtain:

Corollary 2. Let 0 < fe G,. Then I(f) — I(f) is the largest linearly ordered
subgroup of G, containing f.

Coroliary 3. Each archimedean lattice ordered group fulfils the condition (c.)

A lattice ordered group G fulfilling the condition (c) need not satisfy (b) (e.g.,
let G be a noncyclic linearly ordered group).

Now let G be as in Example 1. Let f = (0, 0, 1) and
Hy ={(x,0,z) : xe Ny, yeNo},
H, ={(0,y,2z): ye Ny, zeNy} .

Then both H, and H, are linearly ordered subgroups of G and fe H, n H,. Also,
h, =(1,0,0)e H,, h, = (0,1,0)e H, and the elements h,, h, are incomparable.
Hence there exists no linearly ordered subgroup H of G with H, < H, H, < H.
Thus G does not fulfil the condition (c).

‘Let & be the class of all lattice ordered groups fulfilling the condition (b). If G € #
and if H is an l-subgroup of G, then obviously H belongs to & as well.

Proposition 4. The class & is closed with respect to direct products.

Proof. Let {G;: iel} be a system of lattice ordered groups belonging to # and
let G = I1;;G;. Let {0} + R be a linearly ordered subgroup of G. ForieIand Y < G
we denote by Y, the projection of R into G, i.e., Y; is the set of all x € G; such that
x = )(i) for some y e Y. Without loss of generality we can assume that card I > 1
and R, # {0} for each iel.

Let j eI be fixed. Assume that there exist distinct elements r,, r, € R with r,(j) =
=r,(j) Putr =|ry —r,|. Then 0 < re R and r(j) = 0. Let R, = {ge R : g(j) =
= 0}. Hence R, is a convex l-subgroup of R and R, # {0}, R, + R.

From R, # {0} it follows that there exists k € K with Ry, + {0}. Clearly R, is
a convex [-subgroup of R,. Because R, is a linearly ordered subgroup of G, R,
must be cyclic and thus R;; = R,. In view of R, % R thereis 0 < g with g e R\R,.
Hence g > r, for each r, € R,. There exists x € R, such that g(k) = x(k). We have
2x € R, and 2 x(k) > g(k) > 0, thus g % 2x, which is a contradiction. Therefore
ry(j) # r2(j). This implies that the mapping.¢;: R - R; defined by o¢,(r) = r(j)
for each r € R is an isomorphism of R onto R;. Because R ; is cyclic, so'is R. This
completes the proof. :
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Proposition 5. The class # fails to be closed with respect to homomorphic images.

Proof. Let I be an infinite set and for each i eI let G; = N,, G = IT;,;G;. Since
each G; fulfils (b), according to Proposition 4, G satisfies (b) as well. There exists
an l-ideal H of G such that G/H is not archimedean. Hence in view of Proposition 3,
G/[H does not fulfil the condition (b).
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