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Casopis pro p&stovani matematiky, ro&. 107 (1982), Praha

A NOTE ON TOLERANCE LATTICES OF PRODUCTS OF LATTICES

Joser NIEDERLE, Brno

(Received August 15, 1979)

It is shown that the tolerance lattice of the product of a finite number of lattices
is isomorphic to the product of their tolerance lattices.

Lemma 1. Let L,L,, L, be lattices, L= L, X L,. Then for any compatible
tolerance T on L the following conditions are equivalent for each pair a,be L,:
(i) there exist u,ve L, such that [a, u] T[b, v];
(ii) there exists x € L, such that [a, x] T[b, x];
(i) [a, y] T[b, y] for each y e L,.

Proof. The proof will be omitted.

Lemma 2. Let L, L,, L, be lattices, L= L, x L,. If T is a compatible tolerance
on the lattice L, then f,(T) defined by

afy(T) b <> [a,x]. T[b, x] - for each xeL,
and f,(T) defined by

cfo(T)d i« [y, c] T[y,d] foreach yelL,
are compatible tolerances on L, and L,, respectively. The maps fy: TL(L) —
— TI(L,) and f, : TL(L) - TL(L,) are lattice homomorphisms.

Proof. The proof will be done for fy. fi (T) is obviously a tolerance relation.
Let a, f,(T) b, and a, f,(T) b,. Then [ay, x] T[b,, x] and [a,, x] T[b,, x] for each
x € L,. It follows that [a; A a3, ’x] T[b; A by, x]-and [a, v a,, x] T[b, v b,, x],
hence (a; A a;)fy(T)(by A by) and (a1 Vv a,)f(T) (b, v b,). Thus £,(T) is
a compatible tolerance on L;. Now, let S, Te TL(L). Obviously fi(S A T) =
= f1(S) A fi(T). afy(Sv T)b<[a,x](S v T)[b,x] for each xe L, < there
exists y e L, such that [a,y](S v T)[b, y] < there exist y e L,, a lattice poly-
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nomial p and ordered pairs [ay, uy], ..., [a,, u,], [by, v,], ..., [, v,] € L such that
[a:; u] S[bi,v;] ot [a;,u;] T[b;v;] and [a,y] = p([a;, 4], .., [@n u,]) and
[b,y] = p([by, v1] -+ [bm v,]) <> there exist ye L,, a lattice polynomial p and
Ay, ..oy @y byy .oy by€ Ly, yy, ..., v€ Ly such that [a;, y;] S[b, y;] or [a;, yi].
.T[b;s y;] and [a,y] = p([ay. ¥, .-+ [an ¥.]) and [b, y] = p([bys, y1], ---
woos [bws yn] <> there exists a lattice polynominal p and ay, ..., a,, by, ... b,eL,
such that a;f,(S) b; or a,f,(T)b; and a = p(ay, ..., a,) and b = p(by, ..., b,) <=
< a(f,(S) v f(T)) b. Q.E.D.

Proposition. For lattices L,L,,L,, L= L, x L, implies TL(L) = TL(L,) x
x TL(L,).

Proof. Define a map f: TL(L) > TL(L,) x TL(L,) by the rule f(T) =
= [fu(T), fo(T)]- The map f is obviously a lattice homomorphism. Let
[T, T,] be an arbitrary element of TL(L,) x T L(L,). Construct a relation T on L
by [a, b] T[c, d] <> aT,c and bT,d. Clearly, T is a compatible tolerance on L.
We have f(T) = [T,, T;], and so f is onto. Now, let f(S) = f(T). Then [a, b] S[c, d]
implies [a, x] T[c, x] for each xe L, and [y, b] T[y, d] for each ye L;. Hence
[a,b A d]T[c,b A d] and [a A ¢,b] T[a A ¢,d] and so [a, b] T[c,d]. Thus
S £ T. Analogously T < S, hence S = T. The lattice homomorphism f is onto and
injective and so a lattice isomorphism. Q.E.D.

Corollary. Let L, L, ...,L, be lattices, ne N, L= L, x ... x L,. Then TL(L) =
=~ TL(L,) x ... x TL(L,).

Remark. The finiteness of number of direct factors is substantial. If their number
is infinite f is not injective.
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