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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

J O I N S O F C O N G R U E N C E S IN rQ-GROUPS 

FRANTISEK SIK, Brno 

(Received June 15, 1979) 

The symmetric and transitive relations in a set G (also called partitions in G) 
form a complete lattice with respect to the set theoretic inclusion; it is denoted 
by P(G). If G is a universal algebra, the congruences in G, i.e. stable partitions in G, 
also form a complete lattice with respect to the same ordering. This lattice is denoted 
by Jf(G) and is a closed A -subsemilattice of P(G). The joins v P and v # in these 
lattices do not coincide in general — in contrast to the joins in the lattice n(G) of all 
partitions on G (i.e. reflexive partitions in G) and in the lattice ^(G) of congruences 
on G (stable partitions on G), it is namely v p = v . = v^. Naturally, the P-join 
of any two partitions B and C in an algebra G does not depend on any algebraic 
structure defined on the set G, so even the ^-join of congruences on the algebra G 
does not depend on it. In more detail, what is understood by the notion of indepen­
dence of the join of congruences on an algebraic structure defined on G: Let B and C 
be congruences on an algebra G with a system of operations Fx and ^x the lattice 
of all congruences on (G, Fj. If F2 is another system of operations on the set G, ^ 2 

the lattice of all congruences on the algebra (G, F2) and B, C e # 2 , then B v ^ C = 
= B v^ 2C. 

We shall be interested in a less restricted problem, namely for Fx = 0, i.e. in 
searching those pairs B and C of congruences in an ;Q-group G, Jf-join of which 
does not depend on the given algebraic structure defined on the set G. Thus we 
shall investigate properties characterizing pairs B and C of congruences in an .Q-group 
G with the property BvPC = BvylrC, and some related problems. We leave 
the problem of the stronger independence of joins mentioned above open. 

We review some of the notation and theory that is needed. A more detailed in­
formation may be found in [1—4], especially as to congruences in algebras, see [1] I. 

Given a binary relation A in a set G and x e G we define A(x) = {y e G : yAx} 
and \JA = (J{A(x) : x e G} ([1] 3.5). If A is a symmetric and transitive relation in G 
(i.e. a partition in G) and A(x) 4= 0, then the set A(x) is said to be the block of the 
partition A and the set (JA the domain of the partition A. 

Let G be an algebra. Then X(G) is a complete lattice with respect to the ordering 
by inclusion. For {Aa} c tf(G) we have A* ^ a

 = D^ a- If G is an O-group then the 
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set of all nonempty congruences in G is a closed sublattice of the lattice Jf(G), [ l ] 
1.1. Let A be a (nonempty) congruence in G. Then {J A is an £2-subgroup of G, A(0) 
an ideal of U ^ and A =- U^M(0), [ l ] 1.4. If {A.} s X(G) then \JtyxA.) = 

= <U(U^«)> and ( V A ) ( 0 ) = «UA(0)»at, where 91 = <U(UX)> is the fl-sub-
a a a a 

group generated by the set \J([)Aa)
 ai1d <U-4«(0)>« is the ideal generated in 21 

by the set \JAa(0), [1] 1.6. 
a 

The results of the present paper are based on Lemma 1.6, in which a description 
of blocks of the partition B v P C is given, where B and C are congruences in G and G 
is an O-group. Further, criteria are given for the validity of the following identities: 

(B vPC) H (UB n JC) = (B v ^ C) U (UB n UC) (Theorem 2.3), 
.57,0 = 5 7 ^ 0 (Theorems 2.5 and 2.7), 
(B v ^ C) H (UB u UC) = B Vp C (Theorem 2.9), 
(B v*. C) VI (U-5 u \JC) = B vPC (Theorems 2.11 and 2.12), 

where the partition A Z} 21 (or 21 d A), called the closure of the subset 2l(^G) 
in the partition A(A e P(G)), is the set of all blocks of A that are incident with 21 
and A VI 2T (= 21 VI A) = (A1 n 21 : A1 e A, A1 n 21 * 0} (called the intersection 
of the partition A and the subset 21) — see [4] 2.3. 

In what follows G will denote an O-group and B and C (nonempty) congruences 
in G, unless otherwise indicated. 

1.1 Lemma. Ifxe[jBn[jC then BC(x) = x + BC(O) = BC(O) + x. 

Proof. For x e \JB n \JC we have 

y e BC(0) + x o y - x e BC(0) o 3a e G , (y - x)BaCO o 

o 3a e G , yB(a + x) Cx o yBCx oye BC(x) . 

Similarly yex + BC(0) oye BC(x). 

1.2 Lemma. If xe \JB n UC then BCB ... (x) = BC(x), where the product on 
the left-hand side contains a finite number (.= 2) of factors. 

Proof by induction on the number n of factors. It suffices to show BCB ... (x) .= 
£ BC(x) for x e \JB n\JC, because the converse inclusion is evident. In fact, if 
x 6 \JB n \JC then yBCx => yBCxBxCx ... x => >l(BCB ...) x. 

The inclusion £ is valid for n = 2. First, we shall prove it for n = 3. If x e \JB n 
n\JC then 

y e BCB(x) o3aeG, yBCaBx o (by 1.1) 3a e G, y e a + BC(0), a e x + B(0) o 

oyex +*B(0) + BC(O) = 

= x + B(0) + B(0) + \JB n C(0) = x + BC(O) 
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(by [1] 3.5.5). By 1.1, the last expression is equal to BC(x). The inductive hypothesis: 
Let n _ 4 and let x e \JB n UC imply BCB . . . (x) _ BC(x), whenever the number p 
of factors on the left-hand side fulfils 2 < p _ n - 1. Now, let xe\JB n\JC, 
yBCB ... x and let the product contain rc _ 4 factors. Then there exists ae\JB n\JC 
such that yBCa(BC ...)x, thus by 1.1 y - ae_5C(0). By assumption aeBCB ... 
.. . (x) _= BC(x), hence j ; = ( j ; - a ) + fl6 J5C(0) + BC(x) _ _9C(x). The last 
inclusion follows from the implication tBCO, zBCx => (t + z) BCx. So we have 
got that xe\jB n\JC satisfies BCB... (x) _ _3C(x), which was to be proved. 

1.3 Lemma. If xe\JB n\JC then 

B v P C(0) = B(0) u BC(0) u C(0) u CB(0) = 

= [_(0) + U ^ n C(0)] u [C(0) + UC n B(0)] , 

B vP C(x) = B(x) u J5C(x) u C(x) u CB(x) = 

= x + B Vp C(0) = B Vp C(0) + x . 

The member in the first square bracket or in the second one is an ideal of the _-group 
B(0) + \JB n UC or C(0) + \JB n\JC, respectively. The order of summands (in 
one or both the square brackets) may be changed. 

Proof. The first assertion is Corollary 3.5.7 [1], Proof of the second one follows 
by a similar agument: Denote Bn = BCB ... and Cn = CBC ..., provided the product 
on the right-hand sides contains n (_1) factors. Now, the assertion follows from 1.2 
and 1.1 because 

00 00 

B Vp C(x) = U Bn(x) u U C„(x) = B(x) u BC(x) u C(x) u CB(x) = 
n=l n = l 

= [x + B(0)] u [x + BC(0)] u [x + C(0)] u [x + CB(O)] = 

= x + [B(0) u C(0) u BC(O) u CB(O)] = x + B v P C(0) . 

Analogously we obtain the identity B v P C(x) = B v P C(0) + x. 

1.4 A generalization of the first assertion of Lemma 1.3 for an arbitrary number 
of congruences will be given in the following 

Theorem. Let Bx (<x e A) be congruences in G. Then 

(V,B.)(0) = U U FF(a., . . . ,«-), 
asA n= 1 ai , . . . , a n 

where W(at) = B.£0), W(alt ..., a.) = W(«u ..., a„_ t) n {jBXn + BjO), n = 
= 2, 3 , . . . and a. a„ is an n-tuple of elements of A. 
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Note. In the definition of W(a1? ..., a,,) it is possible to interchange both the 
summands (because Ban(0) is an ideal of [)Ban). 

Proof. Denote V= Vp, Ba and let W stands for the expression on the right-
aeA 

hand side of the required identity. Let y e V(0). Then 0Baiy1Ba2y2 ... yn-\Ban_iynBany 
for suitable yl9..., y„eG and a l5..., an e A. 

Hence 

yi e _?,.(0) = FF(a_) , y2 e y, + B_2(0) s B_.(0) n UB_2 + B_2(0) = 

= W(a_) n UB_2 + B_2(0) = W(a_, a2),..., yt = yt_t + Ba,(0) S 

S »y(a1,...,a._1)nUB_ l + B.,(0) = W(«lt ..., «,), ..., y e y„ + BXn(0) s 

S W(«u ..., a„_ _) n UBa„ + BJO) = W(«lt..., a„). 

Therefore V(0) s W. Now let a_,..., a„ be an arbitrary n-tuple of elements of A. 
Then W(at,..., «„) s V(0). In fact, if n = 1 then Wt(ax) = S_,(0) s V(0). We use 
induction on n. By the inductive hypothesis W(«y,..., a„_i) s V(0) we have 

W(au..., a.) = W(«u..., «„.,) n \JBXn + BXn(0) s 

SV(0)nUB_„ + Ba„(0)sV(0). 

We obtain the last inclusion as follows. For v e V(0) n \JBXn the block v + B__(0) 
of the partition BXn meets V(0), SOD + BXn(0) s V(0) for all ve V(0) n \JBXn and 
thus 

V(0) n UB_n + B_„(0) s V(0) , W(«u ..., a„) s V(0) and W s V(0) . 

Finally V(0) s W s V(0), hence V(0) = TV. 
We can obtain the first assertion of Lemma 1.3 as a special case of Theorem 1.4 

in the following way. Denote B = B_ and C = B2. Evidently W(\) = B^O) s 
S B2(0) n UB_ + B_(0) = 1V(2, 1); analogously JV(2) £ Wt(l, 2). Further 
W(l, 2, 1) = [B_(0) n UB2 + B2(0)] n UBt + B,(0) = [B_(0) n UB2 + B2(0) + 
+ B_(0)] n UB_ = [B2(0) + B,(0)] n UBt = B2(0) n [)Bt + Bt(0) = W(2, 1). 

Similarly W(2, 1,2)= W(l, 2), 1V(1, 1) = Wt(l) and W(2, 2) = W(2). Iterating 
00 

this procedure we obtain V(0) = U U W(au ..., a„) = 1V(1, 2) u W(2, 1) which 

is the required assertion. . 

1.5 In the next theorem, another construction of the set (Vp, Ba) (0) is given. 
aeA 

Theorem. Let Ba (a e A) be congruences in G. Then 

( VPBX) (0) = U {UB_ n [ U B,(0)]| + B_(0)} . 
aeA aeA fieA 
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Note. It is possible to interchange the summands on the right-hand side (because 
Ba(0) is an ideal of (JBa). Again, on the right-hand side, U can be put in place 

peA,fi*a 

of U • The symbol [91] denotes the subgroup of G generated by the subset 91 of G. 
aeA 

Proof. Denote V= Vp, Ba. We have 
aeA 

[]{\JBxnl[jBfi(0)} + BjO)} = 
aeA peA 

oo 

= U{UB*n(J U (BjO) + ... + BjO)) + BjO)} = 
aeA n= 1 ai,. . . ,a„ 

oo 

= U U U {[)B.n{BjO) BJ0)} + BJ0)}, 
aeA n=l at ,...,an 

where al9..., a„ runs through all n-tuples of elements of A. We shall show that 

UBa n K ( 0 ) , ..., Bai(0)] + Ba(0) s V(0) , 

and so the inclusion .2 in the assertion of Theorem will be proved. 
Thus, let bl9...9bk be arbitrary elements of the set Bai(0) u ... u Bak(0) with 

bk + ... + b1 e (jBa and let b e Ba(0). If k = 1 then b1 + b e V(0), since the block 
bi + Ba(0) of the partition Ba meets V(0) and Ba _ V. We use induction on k. 
Suppose that bl9 ...9bk+1e Bai(0) u ... u Bak+1(0)9 bk+1 + ... + bte (JBa9 b e 
eBa(0) and bk + ... + b1 + b e V(0). Then bk+1 + ... + b1 + be(Bak+1(0) + 
+ bk + ... + b1 + b) e Bafc+i(0) + V(0) for some afc+1. Since for an arbitrary 
ve V(0) the block Bafc + 1(0) + v of the partition Bak + 1 meets V(0) then Bak+l(0) + 
+ v £ V(0), whence Bak+1(0) + V(0) £ V(0). Finally bk+1 + ... + bx + b G V(0) 
which completes the proof by induction. 

1.6 In the next lemma the description of blocks of the partition B v P C is given. 
This is the crucial lemma for our study. 

Lemma. The following implications hold: 

(1) x e (JB n UC => B vP C(x) = x + B vP C(0) = B vP C(0) + x, 

(2) xe(JB\ [fl(0) + ((JB n (JC)] => B vP C(x) = x + B(0) = B(6) + x = B(x), 

(3) xeUC\[C(0) + ((JBn(JC)]=>B vP C(x) = x + C(0) = C(0) + x = C(x). 

The blocks (1) are exactly the blocks of the partition (B v P C)Z2(JB n(JC9 the 
domain of which is (B(0) u C(0)) + ((JB n UC); the blocks (2) and (3) are the re­
maining blocks of the partition B v PC. The blocks (2) cover the set (JB\ [B(0) + 
+ ((JB n UC)], and the blocks (3) cover the set (JC \ [C(0) + ((JB n (JC)]. 
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Proof. (1) follows from 1.3. Thus the system of sets {B v P C(0) + x :xs \JB n 
n Uc} is equal to the set of the blocks of the partition (B vP C) 3 ({JB n UC)-
The domain * of this partition is X = B vPC(0) + ({JB n UC) = {[#(0) + 
+ {JB n C(0)] u [C(0) + {JCn B(0)]} + (US n UC) = (B(0) u C(0)) + 
+ (UBnUC). 

If x e {JB \ 3D, then B v P C(x) = B(x) and if x e (JC \ X, then B vP C(x) = C(x). 
Finally let us recall that (JB\X = U^\[B(0) + ({JB n UC)], as [C(0) + 
+ (\JB n UC)] n{jB = (JBn {JC. Analogously (JC\X = UC \ [C(0) + 
+ (UBnUC)]-

2.1 Definition. {[JB, UC> is the D-subgroup generated in G by the set 
UB u UC and «B(0), C(0)»9l is the ideal generated in 31 = <UB, UC> by the set 
B(0) u C(0). 

2.2 Lemma. Let 31, 33, (£ be subgroups of a group G. If 31 u 33 = (£, then the sets 31 
and 33 are comparable by inclusion. 

Proof. If the sets 31 and S3 are incomparable by inclusion, then there exists ele­
ments x e 31 \ 33 and y e 33 \ 31 and it holds C9x + yG3lu33 = (£, a contradiction. 

2.3 Theorem. The identity 

(1) (BvPC)3 (l)B n UC) = (B vx C) Z\ (\}B n UC) 

holds if and only if B(0) c UC or C(0) c UB, and simultaneously B(0) + C(0) 
is an ideal of <\)B,\JCy 

Proof. The condition (1) is equivalent to the following one: 

B vPC(x) = B v#C(x) for each xe\jBn\JC. 

By 1.3, if xe[JBn UC then 

B vPC(x) = x + B vP C(0) = 

= x + {[B(0) + U^ n C(0)] u [UC n B(0) + C(0)]} 

and further 

B v j rC(x) = x + «B(0),C(0)»9l, where 31 = <UB, U O ([1] 1.6) . 

Then the identity B v P C(x) = B v x C(x) is true for each x e U - ^ n U C if and 
only if the following identity (2) is valid: 

(2) [B(0) + \JB n C(0)] u [UC n B(0) + C(0)] = «B(0), C(0)»^ . 
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Let (2) hold. The left-hand side of (2) is the union of two O-subgroups. Denote them 
by 91 and 23. The right-hand side is an O-subgroup. By 2.2 the sets 21 and 23 are 
comparable. Thus we have e.g. 

(3) B(0) + [)Bn C(0) <= UC n B(0) + C(0) . 

The right-hand side is a subset of UC, hence B(0) ^ [)C. Now, (2), has the form 

(4) B(0) + C(0) = «£(0), C(0)>, . 

It follows that B(0) + C(0) is an ideal of <[)B, {JC}. 
If we start from the converse inclusion in (3) we obtain C(0) c [)B and (4). 
To prove the converse implication it suffices to verify that (2) is true whenever the 

conditions of Theorem are fulfilled. The left-hand side of (2) is equal to B(0) + C(0), 
and by supposition, this is an ideal of <\)B, \JC}, hence B(0) + C(0) = 
= «B(0), C(0)»2p This completes the proof. 

2.4 Corollary. If B and C are congruences on G then BvPC = Bv#C 
(=Bs/«C). 

2.5 If we investigate conditions which guarantee the validity of the identity 
jBvpC = £ v ^ C f o r congruences B and C in G, we may restrict ourselves to 
incomparable congruences, because comparable congruences fulfil it evidently. 

.Theorem. If B and C are incomparable congruences in G then 

(5) B vPC = B VtfC 

if and only if 

(6) B(0) + [)C = [)B or [)B + C(0) = UC 

or equivalently if 

(7) [)(B v P C) = [)(BC) or = [)(CB) 

or equivalently if 

(8) [)(BvJt-C) = [)(BC) or = J(CB). 

Note. Due to the symmetry between B and C in (5) the summands in (6) can be 
interchanged. 

Proof. 5 => 6. Because [)Bv[)C = <[)B, [)C}9 2.2 implies that either [)B 2 UC 
or [)B c UC, say [)B 2 UC. Then we have B(0) + UC £ U#. If * then there 
exists x e [)B \ [B(0) + [)C] nad by 1.6, this x satisfies B v P C(x) = B(x) = x + 
+ B(0). Since B v x C(x) = x + «£(0), C^))), B, (5) implies B(0) = «£>(0), C^))), B, 
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thus B(0) 2 C(0) and finally B = C, a contradiction. Analogously, if JC ^JB, 
then U# + C(0) = JC. 

6 => 5. Let Bjfi) + UC = U# be true. We shall prove that B(0) + C(0) is an 
ideal of JB = (.JB, f]C}. The proof is based on the elementary procedures to 
follow. Denote by b or B (with indices if necessary) elements of U B or B(0), respective­
ly. Similarly for \JC and C(0). The set B(0) + C(0) is an Q-subgroup (since C(0) s 
£ JB). We shall show it is normal in \JB. Arbitrary elements b, B, c and suitable 
elements B', B", B"', c, c" satisfy b + B + c-b = B' + c + B + c-c-B' = 
= 5' + 5" + c + c - c - B' = B' + 5" + 5'" + c' e B(0) + C(0). 

If co is an n-ary operation in G we shall shortly write atco instead of gx ... gnco. 
For arbitrary elements bh ch Bt and suitable elements B, B', B", B"(, ch c' we have 
biCO -= (Bt + ct) co = CfCO + 5, (fcf + c, + 5f) co = (bf + Cf) co + B' = (Bt + cf + 
+ di) co + B' = (ci + Ci) co + B" + 5' = Cfco + c' + B" + 5'. 

Hence 

-biCO + (bt + Cf + Bt) co = 

= -B - Cico + Ci(o + c' + B" + 5' = 5"' + c' e B(0) + C(0). 

So we have shown that B(0) + C(0) is an ideal of JB. 
By 2.3, (B vPC)Z}JC = (B v„C)3 JC is true. By 1.6, (B vP C) H JC = 

= BvPC holds and the identity B(0) + JC = JB (= J(B v# C)) yields 
(B vx>C)Z}\JC = B vXC. This completes the proof of 6 => 5. The remaining 
part of the assertion follows from [1] 3.7.5. 

2.6 Corollary. ([1] 3.11) If JB = JC then BvPC = BvjrC. 

Proof follows from 2.5 since B(0) c | J B = UC implies B(0) + JC = JB. 
The converse implication is true for commuting congruences. 

2.7 Corollary. If B and C commute and B || C then 

BvPC = Bv#C if and only if JB = JC . 

Proof. =>: If B and C commute then [1] 3.9 yields B(0) u C(0) ^JBnJC 
and by 2.5 the condition (6) is fulfilled. This condition gives JB = JC. 

The converse follows from 2.6. 

2.8 Proposition. Let G be an Q-group. Then the following conditions are equi­
valent: 

(a) The lattice Jf(G) is a sublattice of the lattice P(G). 
(b) tf(G) is a chain. 
(c) X(G) has three elements only, G\G, G/{0} and {0}/{0}. 
(e) G has no proper Q-subgroups. 
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Note. If G is a group then the condition (e) reads: G is a cyclic group of prime 
order. 

Proof, a => d. Let 91 be a proper O-subgroup of G , B = G/{0} and C an arbitrary 
congruence in G with UC = 21. If C(0) 4= {0} then B and C are incomparable, thus 
91 = G by 2.5, a contradiction. Hence C(0) = {0}. In particular, for C = 91/91 we 
have C(0) = 91 = {0}, a contradiction. Therefore G has no proper (2-subgroups. 

d => c => b => a is evident. 

2.9 Theorem. The identity 

(9) (B v x C) U (U-B u UC) = B vP C 

holds if and only if 

(10) 5(0) = C(0) is an ideal of <U-B, U O or B vxC = B vPC. 

Note. The condition (9) reads that the set of all blocks of the partition B vPC 
is a subset of the set of all blocks of the partition B vXC. These blocks of the 
partition B v x C cover the domain \JB u UC of the partition B v PC. 

Proof. Denote $ = (B vx C) (0) and suppose (9). By 1.3, D = (B v x C) (0) = 
= ( B v P C ) ( 0 ) = [B(0) + JBn C(0)] u [C(0) + UC n £(0)] £ 5(0) + C(0) £ X>, 
thus D = B(0) + C(0) = [B(0) + JB n C(0)] u [C(0) + UC n 5(0)]. The left-
hand side is a subgroup, the right-hand side is the union of two subgroups. By 2.2 
we have e.g. 

(11) B(0) + U-B n C(0) £ C(0) + UC n B(0) . 

The right-hand side is contained in UC, hence B(0) £ UC. Denote G0 = \JB n UC. 
Then etiher \JB \ (D + G0) + 0, hence 5(0) = ( . 9 v ^ C ) (0) 2 C(0) by 1.6 and (9), 
hence B(0) 3 C(0), or JB £ D + G0, thus U-B = C(0) + B(0) + U-3 n UC = 
= C(0) + U-B n UC £ UC by (11). Hence \JB £ UC. 

Simultaneously either UC\ ( I> + G0) 4= 0, then C(0) = (B vxC)(0) 2 B(0) 
by 1.6 and (9), thus C(0) 2 5(0), or UC £ £ + G0, thus UC £ C(0) + B(Q) + 
+ U-B n UC = C(0) + U ^ n UC = UC by (11), hence UC = C(0) + \JB n U C 
Finally, we have 

1)5(0) 2 C(0)or2)U-B £ UC 
and simultaneously 
a) C(0) 2 5(0) or b) UC = C(0) + JB n UC. 

Hence we have one of the following four possibilities: 
1 A a = 5(0) = C(0). From the above we obtain 5(0) = C(0) = D, hence 5(0) = 

= C(0) is an ideal of <U5, U O => (10). 
1 A b => 5(0) 2 C(0), UC = C(0) + U-B n UC £ 5(0) + JB n UC £ \JB => 

=> UC £ U^, C(0) £ 5(0) => C = 5 => (10). 
2 A a => U-B -= UC, 5(0) £ C(0) => 5 = C => (10). 
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2 A b => UC = C(0) + [)B=> (10) provided B \\ C; if not we have (10) again. 
If we started in (11) from the converse inclusion we should attain the same result 
(interchanging B and C). 

The converse implication. The first part of the condition (10) yields (9) (by 1.6, 
because both sides of (9) are equal to ([)B u UC)/B(0)); from the second part (9) 
follows trivially. 

2.10 Corollary. The condition 

(B vxC)3([)Bu[)C) = B vPC * B vxC 

implies the commutativity of the congruences B and C. 

Proof follows from 2.9, because B(0) = C(0) implies B(0) u C(0) c [)B n [)C 
which is a criterion of commutativity [ l ] 3.9. 

2.11 Theorem. Put 

33 = [)B\ [B(0) + (U.B n UC)] , G = UC \ [C(0) + ([)B n [)C)] , 

D = B v x C(0) . 
Then 

(12) BvPC = (B v ^ C ) n ( U ^ ^ U C ) , 

if and only if (13), (14) and (15) hold, where 

(13) I n ( U U u U C ) = B VpC(O), 

(14) ( « + D ) n U C = 0 , 

(15) ( £ + D ) n U - 3 = 0 . 

Proof. Let (12) hold. Then (13) holds, too. We shall show (14). If 93 4- 0 then 
by 1.6, x e 93 satisfies B vP C(x) = x + B(0) = B vx C(x) n (\JB u UC) = 
= l(x + ©) n U-B] u [(x + » ) n UC] = [(x + D) n UB] u [(x + D) n UC]. 

Therefore x + B(0) 2 ( x + B ) n | J C . Hence we obtain (x + T))n[)C ^ 
£ [* + 5 ( ° ) ] n U C i = { U B \ [5(0) + (UB n UC)]} n U C c ( U B \ UC) n UC = 
= 0, thus (x + D) n UC = 0 which is (14). 

Analogously, from the supposition £ 4 = 0 we obtain (15). Thus, the conditions 
(13), (14) and (15) are necessary. 

Sufficiency. By 1.6 and 1.3 we obtain from (13) the following results: 

I. x 6 UB n UC => B vxC(x) n ([)B u UC) = (x + » ) n (UB KJ [)C) = x + 
+ [D n (UB u UC)] = x + B v P C(0) = B v P C(x). 

The middle equality may be obtained as follows. Evidently 2 holds. Conversely, 
if x + d e U B u U C for some d e D , then de ( - x + UB) u ( - x + UC) = 
= UB u UC, thus de D n (UB u UC). 
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II. If xe93 then by (14), B V j r C(x) n (UB u UC) = (x + ©) n (U^ ^ UC) = 
= [(x + D) n UB] u [(x + D) n UC] = (x + D) n UB = x + (S n Ufi) = x + 
+ [D n (UB u UC)] = x + B v P C(0) = B v P C(x) c B v * C(x) n (U* U UC). 
Hence B v ̂  C(x) n (UB u UC) = B v P C(x). 

III. If x e £ then we obtain the same result B v#• C(x) n (J0 u UC) = 
= B v P C(x) analogously to the above. 

2.12 Corollary. Lef B V j r C(0) = B(0) + C(0). Then 

BvPC = (B v^C)n(UBuUC) . 

Note. The condition B v x C(0) = B(0) + C(0) is fulfilled e.g. on Abelian and 
Hamiltonian groups. For those groups Corollary 2.12, i.e. the identity (12), may be 
easily proved directly. Denote B = G/B(0), C = G/C(0). Then B v P C = ( B v C ) n 
n (UB u uc) = G/(B(O) + c(o)) n (UB U uc) = <UB, UC>/(B(O) + c(o)) n 
n (UB u UC) = (B v* C) n (UB u UC). Only the first identity is not evident. 
It suffices to prove = . Let x[(B v C) VI (UB u UC)] y. Then - x + y e 
e [B(0) + C(0)] n (UB u UC) = {[B(0) + C(0)] n UB} u {[B(0) + C(0)] n UC} = 
= [B(0) + UB n C(0)] u [UC n B(0) + C(0)] = B vP C(0). In the proof of Co­
rollary 2.12 we have proved 93 = 0 = (L By 1.6, we have x(B v P C) y. 

Proof of 2.12. Using the notation from the above Theorem we shall show 93 = 
= 0 = Cv; then the conditions (14) and (15) of Theorem are fulfilled. Indeed, x e B, 
y e (x + £>) n UC => y = x + b0 + c0 = c for suitable elements bQ e B(0), c0 e 
e C(0) and c eJC =* JBB x + b0 = c - c0e{)C => x + b0e[JB n\JC => x € 
e (UB n UC) - b0 c B(0) + (UB n UC), a contradiction. 

Analogously, we obtain a contradiction starting from the condition (x + £>) n 
n UC 4= 0 for some x e C 

Finally, the condition (13) is fulfilled, too, because X) n (UB u |JC) = {[B(0) + 
+ C(0)] n UB} u {[B(0) + C(0)] n UC} = [B(0) + UB n C(0)] u [UC n B(0) + 
+ C(0)] = B vP C(0) ([1] 3.5.7). 

2.13 Note. Let (12) be true. Then 

Proof. For xe 93 we have B vPC(x) = x + B(0) = B v ^ c(x) n (Ufi u Uc) = 
= [(* + T>) n UB] u [(* + £) n Uc ] = [x + (X> n UB)] u [(x + J>) n Uc]-
The last square bracket represents the empty set (by (14)), thus B(0) *= T> n{JB. 
Analogously £ * 0 => C(0) = D n Uc-

Let D n UB = B(0) and D n Uc = c(0). Then B(0) n UC = » n Ufi n U c = 
= c(0) n UB. 
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