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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

A NOTE ON THE LOCAL STRUCTURE OF LEVELS OF A PLANE 
VECTOR FIELD 

ILJA CERNY, Praha 

(Received April 2, 1979) 

Let f = (/i,/2) be a vector field of the class Cx defined on a plane region Q and 
satisfying the identities 

(!) r o t f = ^ _ ^ s 0 , d i v f _ - _ + _ _ _ 0 i n _ , . 
dx dy dx dy 

Given any circle U(z0, rj) = {z; ||z - z 0 | | < rj} c_ Q, there exist two real-valued 
functions w, v defined on U(z0, rj) with 

(2) grad w = f, grad v = f * = (-/ 2 , / i ) ; 

we call them the potential and the stream function (of the field f on U(z0, *?)), 
respectively, and may choose them so that w(z0) = v(z0) = 0. If the first-order total 
differentials dw and dv at the point z 0 = (x0, y0) e Q are not zero, then for each suf­
ficiently small 5 > 0 each of the sets 

(3) (z; ||z — z 0 | | 2g S, w(z) = 0} (the zero "potential-level"), 

(4) {z; || z — z 0 | | ^ (5, v(z) = 0} (the zero "stream-lever) 

is an analytic arc; the end-points of these arcs lie on the circumference ||z — z0 | | = S 
and the arcs are perpendicular at their only intersection point z 0. 

More generally, if dw = d2w ==. . . -= d^^w = 0 4= dpw, dv = d2v = ... 
... _= dp~ *v = 0 4= dpv at z0, the sets (3) and (4) equal respectively the union of p arcs 
Ll9..., Lp = L0 and Mx,..., M_ = M0 with end-points on the circumference 
||z — z 0 | | = S and the only intersection point z 0. If p > 1 and if the arcs are numbered 
properly, then the angles between Lj^l9Lj and between Mj-UM] (j = 1,..., p) 
are equal to n\p, while the angles between LJ_1,Mj„1 and M j _ 1 ? Lx equal 7t/2p. 

A field f (of the class Ct) satisfies conditions (1), iff the function F = fx — z/2 is 
holomorphic on __. (We do not distinguish between the point z = (x, >>) of the 
cartesian plane and the point z = x + iy of the Gaussian plane; the region Q is part 
of both the planes simultaneously.) The field f has a potential and a stream function 
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on a region Qt c Q, iff the function F admits a primitive function on Qu If <P' = F 
on fiu then u = Re $, t; = Im 0 are the potential and the stream function, respec­
tively. 

If no potential or no stream function on Q exists, then instead of a primitive 
function <P (which does not exist then), we may investigate a primitive analytic func­
tion 3F, i.e. an analytic function £F on Q whose derivative !F' on Q equals F; it is 
called the complex potential of the field f. Complex potentials exist for every field f 
with (1); their single-valued branches on subregions Qx of Q are primitive functions 
of F. (Speaking of analytic functions, we use the terminology and notation from [1] 
and [2]. An analytic element is any pair of the form (a, #), where a is a complex 
number and <P a function holomorphic at the point a. If $ = (a, <P) is an element, 
we write s(S) = a and h(S) = $(a); its derivative is the element £' = (a, #'). The 
derivative of an analytic function 3F on Q containing the element £ is the analytic 
function 3F' on Q containing the element <$".) 

If 3F is a complex potential of the field f containing an element of the form S0 = 
= (z0, <P) where #(z0) = 0, we may investigate the local structure of the sets 

(3') X = {s(£); S e &, Re h(S) = 0} (the zero "potential-lever) , 

(4') Y = {s(S); Se&r, Im h(S) = 0} (the zero "stream-lever) 

containing the point z0, which are generalizations of the sets (3) and (4). 
Let 0 be holomorphic on the circle U(z0, r\) = {z; \z — z0\ < tj} c Q; then 

0' = F on l/(z0, ?/) and <2> is a single-valued branch of 3F on U(z0, rj). According 
to the Monodromy Theorem, on U(z0, tj) there are only single-valued branches of !F, 
since !F is arbitrarily continuable on Q (the notion of an arbitrarily continuable 
analytic function see in [1], p. 256); each of the branches is of the form # + const, 
(for J^' = F on Q). 

If f = 0, then X = Y = Q and there is nothing to investigate. Suppose, therefore, 
that f -£ 0. Then there is a natural number p such that $(z0) = #'(z0) = • • • 
... = ^ " ^ ( Z Q ) = 0 * &p\z0). According to [1], p. 161, (12.1), there exists an 
e0 > 0 with the following properties: 

(5) z e P(z0, e0)') => $(z) 4= 0 * #'(z) ; 

(6) for each s e (0, s0> there is a <5 > 0 such that for each w e P(0, d) there are 
precisely p points zt,«..., zp e U(z0, e) satisfying w = #(zx) = ... = $(zp). 

Let <50 be the number corresponding to e = £0 in (6). Let w e P(0, <50) be arbitrary 
and let z e lf(Z0> ô) be a point with <P(z) = w. By (5), the element $ = (z, $) has an 
inverse element g_u (See [ l j , p. 254.) All elements $_x constructed in the above 
way constitute a p-valued analytic function <& on P(0, <50) with the following properties 

x) We denote P(z0, e0) = {z; 0 < \z - z0| < c0}. 
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(cf. [2], Theorem 232, p. 453): 

(7') <3 is arbitrarily continuable in P(0, <50); 

(7") if the elements Su £2e<& are distinct2), then h(<^i) 4= h(S2\ 

Of course, & is the analytic function inverse to # | (<P~i(P(0, S0))); further, we have 
lim &(w) = z0. (Cf. [2], p. 453.) 

w-»0 

According to [1], Assertion (9.2), p. 262, there is a function ^ holomorphic on 
P(0, <5£/p) such that 

(8) ^(w) = V&w) 

for every w e P(0, d0); defining 

(9) V'° = °. -Ч°)в-o. «(0) = z 0 » 

we easily see that W is holomorphic and one-one (and therefore conformal) on 
£7(0, <5£/p), and the equality (8) holds for all w e 17(0, <50). 

Now, let us choose a <5 e (0, <50) arbitrarily. The function ^/w maps [7(0, <5) onto 
Ll(0, 51/p); the conformal mapping !P maps 17(0, 61/p) onto a Jordan region Zb 

containing the point z0 and with an analytic boundary dZ6. Further, it is obvious 
that the set 

(10) {z G Z5\ Im 0(z) = 0} 

is the &-imeLge of the interval <-<5, <5>. The analytic function %Jw (with ^Jo = 0) 
maps the interval <—<5, <5> onto the union of the segments 

(11) / , = -dUPexp!E, 6 ^ e x p ^ , 
P P 

where j = 0,..., p — 1; the conformal mapping W maps /,- onto the analytic arc 

(12) Lj = V(lj) 

containing the point z0 and having both end-points on dZd. The set (10) is equal to 
the union 

(13) "{JLj. 

As the angle between the segments lj_u lj is equal to njp9 the same angle is between 
their conformal images Lj-U Lj at their (only) intersection point z0. 

2) Cf. [1], p. 239. 
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The situation is, for the time being, analogous to the situation mentioned at the 
beginning of the paper. It is obvious that 

(14) {z e Z5; Im <*>(z) = 0} = \ j Lj c Z5 n Y. 
7 = 0 

We do not know, however, if the equality may be written instead of the inclusion 
(at least, if 6 > 0 is sufficiently small). 

Suppose that z* e Zd n 7. Then there is an element £ = (z*, <P*) e 2F such that 
lm 0*(z*) = 0. <P* is a single-valued branch of & on a neighbourhood U(z*) c 
c U(z0, rj). Therefore, 0 — $* is constant on U(z*), and <P* admits a (holomorphic) 
extension to U(z0, rj). The difference 4> — #* remains constant. If <£ — #* = fc on 
U(z0, >/), then Im <P*(z*) = 0, iff Im *(z*) = Im fc. If |lm fc| = <5 holds, the set 

(15) {w e U(0, 3); Im w = Im fc} 

is non-empty, and its ^-image is part of the set Zd n Y If Im fc = 0, then the set 

(16) ^({w e U(0, 3); Im w = Im fc}) 

is, of course, equal to ^(< — 3, 3}), i.e. to the set (10) and (13). However, if 0 < 
< |lm fc| = 3, then (by (7")) the set (16) is disjoint with the set (10). 

Consequently: The equality 

(17) [zeZdn Y; Im £>(z) = 0} = Zd n Y 

holds, iff there is no single-valued branch ^* of 3F on U(z0, r\) such that 

(18) 0 < |lm *(z0) - Im #*(z0)| = 5 • 

Suppose we have such a branch $*. If 0 < |lm fc| < O*, then (15) is a chord of the 
circle U(0, 6). The function ^/w maps it onto a union of P disjoint analytic arcs with 
end-points on the circumference <3U(0, 81/p); these arcs are disjoint with the arcs lj. 
If |lm fc| = S, then the set (15) contains only one point which the function ^/w maps 
on a p-point set contained in dU(0, S1/p). The conformal mapping W maps the union 
of the arcs (resp. the p-point-set) onto the union of p disjoint analytic arcs (resp. 
a p-point-set) disjoint with the set (10). (Cf. Figure 1 where p = 2.) 

If Im £ 4= Im fc, then (by (7")) the set (16) is disjoint with the analogous set con­
structed for £. 

According to the Poincare-Volterra Theorem (see [1], p. 258) the analytic function 
@? has in U(z0, rj) only countably many single-valued branches. As a consequence, 

(19) for each branch 3>* of £F in U(z0, r\) with # - <P* = fc, 0 < |lm fc| g S, the 
components of the set (16) are, at the same time, components of the set Z6 n Y. 

Thus, we have proved the following 
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Theorem 1. Let f = (/1-/2) 4= 0 be a plane vector field of the class Cx on a region 
Q satisfying conditions (1). Let z0e Q and let <P be primitive to the function F = 
= / i - if2 on the circle U(z0, rj) c Q; let &(z0) = *'(z0) = ... = ^ " ^ ( Z Q ) = 
= 04= # (p)(z0). Let 3F be the complex potential of the field f containing <P as 
a single-valued branch. 

Then there is a 80 > 0 such that for each 8 e (0, S0) the set Zb = <P_x(U(0, 8)) is 
a Jordan region containing z0 and with an analytic boundary. One of the com­
ponents of the intersection Zbc\Y is the set (10), which is the union of p analytic 
arcs Ln ..., Lp = L0 with end-points on dZd. The angle between the arcs Lj_u L} 

at their (only) intersection point z0 is equal to jtjp. 
The set Zs n Y has other components, iff the complex potential 3F has single-

valued branches $* in U(z0, rj) with <P — 4>* = k, 0 < |lm fc| = 5. To each of these 
branches, there correspond p distinct components of the set Zd n Y. According to 
whether 0 < |lm k\ < 8 or |lm fc| = 8, these components are analytic arcs with 
end-points on dZ6 or one-point sets in dZd. There are only countably many such 
branches <P*. 

Let us show an example of a field f having the property that for each 3 > 0 there 
are single-valued branches 4>* in U(z0, rj) such that 0 < jlm 3> — Im #*| < 8. 

Example 1. Let f = (fuf2) be a vector field for which the function F = f1 — if2 

is defined by the equality 

(20) F{Z) --If; l 

2n n=i n(n + z) 

on the region Q which equals the plane without all negative integers. It is obvious 
that the series in (20) is locally uniformly convergent in Q so that F is holomorphic 
on Q. Further, 

(21) res„qF = for every integer q > 0. 
2nq 

Let ^ be primitive to F on 1/(0,1), #(0) = 0. As 

*'(0) = F(0) = 1 £ 1 > 0 , 
2n n=i n 

we have p = 1 in Theorem 1. 
If r = p\q, where p, q are integers, q > 0, then, obviously, there exists a curve 

cp : <0, 1> -* Q with a finite length with <p(0) = (p(l) = 0 and ind< p(-g) = p, 
ind^ (—n) = 0, if n 4= q. The continuation (0, 0*) of the element (0, 0) along the 
curve (p has the property that 

<f>*(0) = **(0) - #(0) = f F = 2*i r e s - € > i n d , (-q) = — = ir. 

If 8 > 0 is arbitrarily chosen and if 0 < \r\ < 8 (where r = p\q as above), then 
0 < |lm ^*(0) - Im *(0)| = |r| < 8. 
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The set Z5 n Y has, for each 5 > 0, infinitely many components. The analytic 
function 3F, the branch of which in 17(0, 1) is $, has the following property: The set 
of all values of & at each point ze Q has no isolated points. Each component of the 
set Zdn Yis part of the closure of the union of the remaining components of Zd n Y. 
The local structure of the set Y at any point z e Q is analogous to its local structure 
at the point 0. 

For any positive integer p, the field f with F(z) = zp F(z) has analogous properties; 
for the primitive function $ we have $(0) = $'(0) = ... = $iP~ ^(Zo) = 0 4= 
4= &(p)(z0) now. 

Remark 1. Obviously, an analogous theorem holds for the set X. The component 
of the set Zb n X containing z0 is the union of p analytic arcs Mu ..., Mp = 
= M0 , where 

(22) Mj = T(mj) 

and mj are segments with end-points 

(23) i a - z - c x p ^ ^ . 
2p 

The angle between MJ-UMJ is n\p, the angle between Lj.uMj.i and M^uLj 
is 7r/2P (at the only intersection point z0). 

If there are branches #* with 0 < |Re #* — Re # | ^ (5, then there are other 
components of the set Zb n X as well. 

It is certainly not necessary to go into further details. 

Now let us show that in two important cases the local structure of the set Y (and, 
analogously, of the set X) is simpler. 

Theorem 2. Let all assumptions of Theorem 1 hold; let us use the same notation. 
Then the following assertion holds: 

If either a stream function of the field f exists (in Q), or the region Q is double 
connected3), then for each sufficiently small 5 > 0 the set (10) is the only component 
of the set Zb n Y. 

Proof. We have to prove there are no branches <P* of 3F in U(z0, rj) with (18); 
let us use the above notation. 

1. If a stream function of the field f exists, then there is a real-valued function v 
such that for each element (z, G) of 2F the equality Im G = v holds on a neigh­
bourhood U(z). This implies that any two single-valued branches of & in U(z0, rj) 
have equal imaginary parts; the condition (18) does not hold for any branch #* 
of & in U(z0, rj). 

3) This means the set S — Q, where S is the Riemannian sphere, has exactly 2 components. 

285 



2. Let A be the bounded component of the set S — Q. As is well known, there 
exists a positively oriented Jordan curve co in Q with a finite length such that A c 
e Int co. If 

(24) f F - r f 4 ) 
J CD 

and if Co G -4 1s an arbitrary point, then 

(25) ! F = d ind„ Co 
J <P 

for any closed curve cp in Q with a finite length. Evidently, there is a positive number A 
such that' |lm (nd)\ 2> A for all integers n with Im (nd) -f= 0. 

For each single-valued branch 3>* of ^ in U(z0, r\), we have Im <£* — Im <£ = 
= Im (nd) for an integer n; if Im (nd) + 0, then |lm (nd)| = A. As a consequence, 
if S e (0, A), then (18) does not hold for any branch $* of 2F in U(z0, rj). 

Remark 2. In fluid mechanics there often occur plane regions Q such that S — Q 
has only count ably many components, one of them being the one-point set {oo}, 
and the other ones satisfying the following condition: 

(26) If Al9 A2, ... is an infinite sequence of mutually distinct bounded components 
of S - Q, then Ls An) = {oo}. 

Let us suppose that the region Q is of this type; then, as may be shown, for each 
bounded component A of S — Q there is a Jordan curve coA in Q with a finite length 
such that 

(27) (S - Q) n Int coA = A . 

Let f, F, 3F9 etc. be as above and define 

(28) dA = f 
J eo 

ғ 

for each bounded component A of S — Q. 
As we easily see, each closed curve q> in Q is homologous (in Q) to a cycle6) F 

4 ) In the terminology of fluid mechanics this integral is called the circulation of the field 
round A; by the Cauchy Theorem the number d is independent of the choice of co with the above 
properties. 

5 ) The topological limes superior."of the sequence {A„} (defined as the set of all z e S each neigh­
bourhood U(z) of which intersects an infinite number of sets An). The condition (26) (true, of 
course, if S — Q has only a finite number of components) means that each bounded component A 
of S — Q is "isolated", having a neighbourhood disjoint with the set S — (Q u A). 

) I.e., a finite sequence of closed curves. 
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= {(j/u ..., xj/r} containing only curves ^ equal either to the curves toA, or to the 
reversely oriented curves — coA. This implies 

(29) 

for each closed curve <p in Q with a finite length, if Al9...9 As are properly chosen 
bounded components of S - Q and ny properly chosen integers (= ± ind^ CA> where 
CA e A). Further, it follows that for each single-valued branch 4>* of & in U(z0, n) 

the difference #* — 0 is of the form £ d^.fty. 
/ = i 

Let 
s 

(30) B = {Im V dAny9 Al9 ..., As are bounded component of S — Q, n;- integers}. 
1 = 1 

As we see, 

(31) condition (18) holds for some branch #*, iff B contains at least one number c 
with 0 < \c\ = 8. 

We are interested in the situation when for any S > 0 sufficiently small no such 
branch exists. This is equivalent to the statement that 

(32) zero is an isolated point of the set B. 

Thus we are led to the following number-theoretical problem: 

(33) Given real non-zero numbers cl9 cl9 ... (a finite or infinite sequence), under 
s 

what conditions zero is an isolated point of the set C = { ]T cyny n} integers}? 
j = i 

We will prove that 

(34) under the assumptions from (33), zero is an isolated point of the set C, iff 
there is a number c > 0 and integers pj9 q} such that Cj = Pjc/qj for all I, where 
the sequence ql9 q2, ... is bounded. 

Sufficiency: Let e, be of the form given above and let q be a positive integer 
such that \qj\ S q for all f. As is easily seen, the inequality dist (0, C - {0}) = c\q\ 
holds then. 

Necess i ty : Let us suppose that either (a) no c > 0 exists with all Cj = Pjcjqj for 
appropriately chosen integers pj9 qj9 or (b) all Cj are of the form Pjc\qj9 but for any 
such choice of integers pp qj the sequence {q}) is unbounded. 

Condition non (a) is equivalent to the statement that all quotients Cj\cx are rational 
numbers. If condition (a) holds, then, for instance, c2\cx = d is irrational. It is well 
known that then there are rational numbers of the form r\s (r, s integers, s > 0) 
with s arbitrarily large, such that \d — r\s\ < l/s2. Given an arbitrary 5 > 0, choose 
r, s so that |ds - r\ < s"""1 < 8; but c^ds - r) e C, cx(ds - r) 4= 0. Zero is, as 
a consequence, an accumulation point of the set C. 
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If condition (b) holds, we may suppose that Cj = Pjcjqj, where c > 0, the greatest 
common divisor (pj9 q^) = 1, and qj -> oo. Then ocjPj + pjqj = 1 for appropriately 
chosen integers -a,-, pj. It follows that 

p&jCj + qipjci = - ^ (a,.]?,. + ^ q y ) = - ^ ; 

hence, the limit of the sequence of non-zero numbers Px&jCj + qiPjc1 e C is equal 
to 0. Again, zero is an accumulation point of the set C. 

Thus, we have proved the following 

Theorem 3. Let all assumptions of Theorem 1 hold; use the above notation. Let Q 
be a region with S — Q = {oo} \J AX\J A2\J ... (a finite or infinite sequence), 
where Al9 Al9 ... are disjoint bounded non-empty continua satisfying (26). 

For each set Aj let ojj by a Jordan curve in Q with a finite length for which 

(35) (S - Q)nlntcoj = Aj 

holds. For each set Aj let 

(36) cj = Im j F . 
J COj 

Then the condition 

(37) there is a positive number c, integers pj and a bounded set of integers qj 
such that Cj = pjcjqjfor all j 

is equivalent to the following condition: 

(38) for each sufficiently small S > 0 there are no single-valued branches 0* 
of £F in U(z0, rj) satisfying (18). 

Remark 3. If the complement S — Q of a region Q has at least 2 distinct bounded 
components Al9 A2, it may be proved that there are two Jordan curves col9 co2 in Q 
with finite lengths such that 

Aj CZ Int o)j for j = 1, 2 
and 

A± c Ext a>2 , A2 cz Ext Ojx . 

Fix points Cj e Aj (1 = 1, 2) and set 

(39) -^-)'-4(/-£T+ ' 
2TT \Z - Ci 2. - C: 

where c is a fixed irrational number. Then the corresponding field f = (Re F, — Im F) 
does not satisfy condition (37), and, consequently, nor the condition (38). 

Thus we see that the second condition of Theorem 2 is an essential one. 
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Remark 4. It is clear now that we may expect a "simple" local structure of poten­
tial and stream levels (3'), (4') at any of their point z0 (i.e. the connectivity of the sets 
Zd nX, Zdn Y for each sufficiently small d > 0) only in two simple cases: 1. the 
field f has a potential or a stream function on the whole region Q. 2. S — Q has at 
most 2 components (i.e., at most one bounded component). 

In other cases it is "most probable" that the real or the imaginary parts of two inte­
grals of the type occuring in (36) will have an irrational ratio, and, as a consequence, 
the sets Z5 nX9Z5n Ywill be disconnected (and will have infinitely many components) 
for any 5 > 0 (at any point z0 of the corresponding level). 

References 

[1] S. Saks - A. Zygmund: Аnаlytic Functions. Wаrszаwа—Wrocłаw 1952. 
[2] /. Čern : Fundаments of Аnаlysis in the Complex Domаin (Czech), Prаhа 1967. 

Autћoťs address: 118 00 Prаhа 1, Mаlostrаnsкé nám. 25 (MFF UK), Prаhа 1967. 

289 


		webmaster@dml.cz
	2012-05-12T11:11:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




