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AN APPROXIMATE METHOD FOR DETERMINATION OF EIGENVALUES
AND EIGENVECTORS OF SELF-ADJOINT OPERATORS

Joser KoLomy, Praha

(Received February 26, 1979)

1. The method (1) for the determination of eigenvalues and eigenvectors of linear
self-adjoint operator A is investigated. The error estimates are derived in the following
two cases: (i) 4, is only an extreme value of the spectrum o(A4) of 4, (ii) 4, is an iso-
lated point of 6(A4). Moreover, it is shown that the method (1) can be used for the
determination of an arbitrary eigenvalue of 4 and the corresponding eigenvector.

Let X be a real Hilbert space, A : X — X a linear self-adjoint and positive opera-
tor on X. By positivity of A we mean that {Au, u) > 0 for each u e X, u + 0 and
{Au,u) = 0 implies u = 0. Let m, A, be the exact spectral bounds of the spectrum
a(A) of A. Denote by 6,(4), 6(A) the point spectrum and the continuous spectrum,
respectively. The symbol {E,} stands for the spectral resolution of identity cor-
responding to the self-adjoint operator A. We shall deal with the following procedure

(1) Hnv1 = <Aum un> . “unH -2 s Uppr = ﬂr:i}iAun

for finding the eigenvalues and eigenvectors of A. In (1) it is assumed that the initial
approximation u, € X is different from zero. Our hypotheses on 4 imply that y, > 0
and p, =+ 0 for each n. In the sequel we assume that (u,), (4,) are defined by (1),
and w, = u,|u,| " for each n. For the recent results concerning the procedure (1),
its variants, relations and for the bibliography see [1]—[3]. We refer the reader
for instance to [4]—[11] for further methods.

2. We start with the following

Theorem 1. Let X be a real Hilbert space, A : X — X a linear self-adjoint and
positive operator. Assume that the starting approximation u, of (1) is such that
E,uy # uqg for each A < ;.

Then |Aw,| 7 A; as n — 0. Moreover,

”Azw"” N Awa] T = [ AWas| = ll;-:yllc,,”Aw,,” )
where
en = |lta] - Jtnss] P S 1, (n=0,1,2,..).
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Proof. First of all, y,4, < ||4w,| and p, < p,4, for each n ([1], Lemma 1).
Since A is positive and self-adjoint, |Au||? < | 4| (Au, u), u € X. Indeed, assuming
that | A| = 1, thjs inequality follows from

[Aul|> = CAu, uy — {<A(u — Au), u — Au) +
+ |Au|? — <4%u, Aud},
the fact that A is positive and the inequality
(A%u, Auy < |Au|?*, ueX.

Furthermore, 1, = ||| and

05 JAw]? = s = AW, ]2 = CAw,, w32 <

< || A] <AW wa> = AWy, w2 = AW, W) (24 — {AW,, w,>) = 0
as n — oo for p,,, = {Aw,, w,> » A; by Theorem 1 [1]. Hence
0<% = 4w, = (4 = w) + |2 — [[Aw,[?] - 0

as n — 0. We shall prove that (|| 4w,|)Z,; is monotone. It follows from (1) that

Wni1 = Hnp1CuAw,, where ¢, = [u,]/|un+1] S 1 for each n = 0. Hence

[ = et ] = ity Ll Bneal oy

a4

By our hypotheses u, % 0, Au, + 0, A%u, =0, (n =0,1,2,...). In view of (1) we
obtain

[l -l 42w, =
CA%uy, uy)

ol Jtwsal g =y Bl = g

= ] Ju]

Hence || Aw,| < |AWw,+ 1| for each n and we have that |Aw,| » A; as n > .

]|AWn+1" = ﬂn_+11l‘5

Put z, = A%w,, then

"Awn+1”2 = ﬂn.+21Ci<A2Wm Z,) =
_ O\ M
= Ups+ lc }' d<E;_W,,, zn> = ) Cp d<E).Wm Z,,> =
m Hnt1 m

2 2
=( 2 ) W 23> = (—“ ) ¢ w1
Hn+1 Pnt1/
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On the other hand,

[l = sl - Jimesll ™ - 42w,
=ty Lz = Az A
/‘n+1"A“n“

for each n (n = 0, 1, 2, ...), which completes the proof.

Remark 1. In addition to the assumptions of Theorem 1 assume that A is positive
definite (i.e. m > 0). Then

MCylins'y ”Awn” = ”AW,.H" < iyl "Awn”
for each n.

Theorem 2. Let X be a real Hilbert space, A : X — X a linear positive and self-
adjoint operator on X. Assume that ), is an eigenvalue of A and that the initial
approximation u, of the procedure (u,) is not orthogonal to ker (A — AI).

Then ||Aw,| » 4, as n — o.

Proof. Use Theorem 3 [2] and the arguments of the proof of Theorem 1.

Theorem 3. In addition to the assumptions of Theorem 1 suppose that (w,,) contains
a subsequence converging weakly to an element we X, w %+ 0.
Then A, is an eigenvalue of A and w is the corresponding eigenvector of A.

Proof. According to Theorem 1 [1] p, » A; and by Theorem 2 we have that
[Aw,| ~ A,. Hence

"AW"HZ - <AW", wn>2 = "Awn - ”’n+1wn“2 -0

as n — oo. Without loss of generality one can assume that w, - w weakly, where
weX, w=+ 0. Therefore Aw, — p,+ 1w, > Aw — A,w weakly and Aw = A,w,
which concludes the proof.

Corollary. In addition to the assumptions of Theorem 1 assume that the sequence
(w,,) contains a subsequence converging to an element w € X.
Then A, is an eigenvalues of A and w is the corresponding eigenvector of A.

Theorem 4. Let X be a real Hilbertspace, B:X —+ X, C:X — X linear self-
adjoint operators on X. Assume that A, is an eigenvalue of B, e, € ker (B — Aol),
leoll = 1 and that Aq ¢ o(C). Let A* be an eigenvalue of C such that A* is nearest
to Ay from the both sides. If dim ker (C — A*I) = 1 and e, ¢ ker (C — A*I)*,
then

4% = 20| 5 1(C = Zal) m] S 1(C = Zal) moes] < B - €]
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for each n (n=1,2,...), where w, is defined by (1) with A = ol — (C — A,I)?,
uo = e, and o is an arbitrary constant such that « > ||(C — AoI)?|.

Proof. Since the operators B, C are linear self-adjoint and defined on X, B, C are
both bounded by the closed-graph theorem. Put A = al — (C — Aol)?, where
© > |(C — AoI)?||. Then A is linear self-adjoint bounded and positive definite with
the greatest eigenvalue 1, = o — (A* — A5)%. Put C; = C — Aol, A = A* — J,,
C, = C — A*I. We show that ker (C{ — 2%I) = ker C,. Suppose that u € ker Cy;
this condition is equivalent to C,u = Au. But Ciu = C,(Au) = A*u. Hence u e
e ker (C} — 2*I) and ker C, < ker (C} — 42I). Assume that there exists an element
i € X such that @ e ker (C} — 42I) and i ¢ ker C,, i.e. Cyii + Adl, which contradicts
the fact that ii e ker (C; — A3I). Hence ker (C; — A}I) = ker C, and this implies
ker (4 — A,I) = ker (C — A*I). According to our hypothesis <uy, w) * 0 for each
weker (C — A*I). Hence (u,, wy #+ 0 for each weker(4 — A,I) and therefore
uq ¢ ker (A4 — 4,I)*. Thus all the assumptions of Theorem 3 [2] are satisfied. Ac-
cording to this theorem p,,, = {Aw,, w,> /A = a — (A* — A,)?, where w, =
= u,[|u,]| and (u,) is defined by u,.; = p,i';Au,. Hence {(C — AoI) w,, w,> N
N (A* — 4)* as n — oo. This conclusion implies that

|'1* - /10[ < {(C = AI)? wp, w2 = ”(C = Jol) w,,“ s

S UC = Aol) Woe 1, Wae D2 = ||(C = 2D) Wy || £
2 1€ = Aol woll = (€ = do) eo=]
I(C = B)eo| = |[C = B [leo] = [C - B[,

IIA

I

because e, € ker (B — A,I), |leo] = 1 and w, = e,. The theorem is proved.

Remark 2. The estimate |[1* — Ao| £ |C — B| for completely continuous linear
operators C, B was derived by H. Weyl [10]. This estimate can be obtained in a more
general setting also in the following way. Compare also [7], [11].

Proposition 1. Let X be a real Hilbert space, B: X —» X, C : X — X linear self-
adjoint operators. Assume that 6 (C) = 0 and that A, ¢ o(C) is an eigenvalue
of B. If A* is an eigenvalue of C such that A* is nearest to Ay from the both sides,
then [A* — Ao| < |B - C].

Proof. First of all, B, C are bounded by the closed-graph theorem. Since 4, ¢ 6(C),
there exists a bounded linear operator R;, = (C — AoI)™! and R, is defined on
the whole space X. Moreover, R, is self-adjoint. Since the function f(4) = 1/|2 — |
is continuous on the compact set a(C), the spectral mapping theorem implies that

[Rsl = max ——— = max L
ea(C) Il - lol eap(C) IA - lol ll"‘ - lo|



Let eq € ker (B — Aol),

leo| = 1. As 4 ¢ o(C), we have [[(C — A]) eo| > 0 and
L (- dat)es]

[Rsoll (€ = 2oI) o]

1= o] = [Ri(C = Zol) €o] = [[Rso]| - I(C = Ao) o -

From the above relations we conclude that |2* — Ao| £ [(C — Ao) eo||. Since

= 4ol =

eo e ker (B — Aol) and o] = 1, we have
|4 = o] = [[Ceo = Beo| = [[C = B] [eo]l = [IC — B]

as required.

Theorem 5. Let X be a real Hilbert space, B : X — X a linear self-adjoint opera-
tor, A* an eigenvalue of B. Let Ay be a real number, 1, ¢ o(B), and A* be nearest to
Ao from the both sides. Suppose that the initial approximation uy of (u,), where
(uy) is defined by (1) with A = ol — (B — A,1)%, a > |[(B — 4,I)?| is not orthogonal
to ker (B — A*I).

Then ||(B — Aol) || N |2* = 4g

;|

u, — Neol| > 0, |w, — €] > 0 as n - oo,
where

N = sup ||u,|, ejeker(B — A*I), |eof =1.
n

Proof. Put A = af — (B — Aol)?, where o is an arbitrary positive number such
that o« > |[(B — Al)?||. Then A is a linear positive definite self-adjoint operator
with the greatest eigenvalue A, = a — (A* — 1,)?, while ker (4 — A,]I) =
= ker (B — A*I). Since u, ¢ ker (B — A*I)*, we have u, ¢ ker (4 — ,I)*. According
to Theorem 3[2] we have (Aw,, w,> 7 A, and |u, — Ne,| = 0 as n — oo, where
eoeker (A — ), |eo] =1, N =sup |ju,| < 0. Hence [(B — Aol) w,|

N A% = Jol, [[wa — o] = 0 as n > oo, while ey € ker (B — A*1), [leof = 1.
Indeed, since (u,) is bounded monotone increasing ([1]), |lu,| > N as n >
and u, + 0, we have the

I = o] = e =l <

< Juol™* (lun — Neo|| + [Neo — [ ualleo]) > 0

as n — oo, which concludes the proof.

Theorem 6. In addition to the assumptions of Theorem 2 assume that A, is an
isolated point of the spectrum o(A) of A (i.e. there exists a constant M > 0 such
that o(A) — {44} = [m, M]).
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Then there exists an integer ny such that

Pney S A S Ppyy + ("Awn“2 - l‘:ﬂ)”z
holds for each n = n,.

Proof. Since 1, is an isolated point of o(A4), then 4, is an eigenvalue of A. By
Theorem 3 [2] and Theorem 2 we have that g, » 1, and ||Aw,|> — p2,; —» 0 as
n — oo. Furthermore,

Ay
[ w2 = CAPw, w,> = f 32 ACE W,
A1
Hne1 = <AW,,, W,,> = j A d<Elwm W,,) s

A1
[wa? = f ACE iy Wy -
Hence

A1
”AW,,”Z - u3+1 = ”AW,' - ﬂn+1wn”2 =J A2 d”Elwnnz -

A1 Al Ay
s [ AdlEmI + i [ B = [[6 = mr dizampe.

Since 4, is an isolated point of ¢(A) and p, 7 A4, there exists an integer n, such that
pn € [$(M + A,), A,] for each n = n,. Hence we have for each fixed n 2 n,

Ay .
”AW,,”Z - ﬂ:+1 =-[ (A - un+1)2 d<Elwm Wn> 2

m

Ay
= inf Il - #"+1|'2 d<E4W,,, Wn> =
Aea(A) m

=inf |4 — peeq]* 2
Aea(A)

= inf{(}q - Hn+1)2, IM “'ﬂn+1|2} = (’11 - ﬂn+1)2 .

The desired inequalities follow at once from the fact that u, ~ A, and the last relation.
The theorem is proved.

Proposition 2. Let X be a real Hilbert space, A : X — X a linear positive definite
and self-adjoint operator. Assume that the starting approximation ug of (1) is such
that E;uy + uq for each 1 < A,. If € is such that 0 < ¢ < 1, — m, then

A gmmﬂi‘*—"‘i—‘—“ =1,2....

(A uy?
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Moreover, there exists an integer ny such that
n
ll < agzm_2n<Aun1 un> H .ui
k=1

holds for each n = n,, where ag = |uo|> — |[Ex,-.uo|* > 0.

Proof. Assume that 0 < & < A; — m. Then according to our hypothesis
E;,_ o * uo. Applying the projector E;, _, to the equality (1) we obtain that

nEll—eunHz = u;ZHEM-eAun—lllz = ”'n—ZHAE}.;—aun—IHZ .
Since
”AE}.,-sun-—lnz = <A2E/h-eun—l’ un—1> =
A1
= J. A2 d<E}.E}.1—sun—-1’ Uy 1) =

m

A1 —¢
- j 22 d|Egty |2 2 m2| Byt

we obtain that

m
(2) I]Eh_su,,” = }T ”Elx—zun—ln .
1

On the other hand,
(3) ”Eh_eun” é ”u"n é m—1/2<Aum u">1/2 )
The relations (2), (3) immediately yield the first assertion.

We prove the second estimate in our theorem. Let R(E,, _,) be the range of E;, _,,
where 0 < ¢ < 4, — m. Since E,,_, is a continuous projector, R(E;, _,) is a closed
subspace of X. Denote by R(E,,-,)* the orthogonal complement to R(E;,_,). Put
P,=1-E, _,ie P,=E; —E, _, w, = u,[|u,|. We shall show that

@ Ay S Aty up) [Pty 72 + &

for sufficiently large n and a fixed ¢ satisfying the inequality 0 < ¢ < 4; — m. Each

element w, of the sequence (w,) can be uniquely expressed in the form w, = a®g, +

+ b{"%,, where g, € R(E;,_.)", Z,€ R(E;,-.) and ||g,|| = [|Z.] = 1, (a“’)2 + (bP)? =
= 1. Then Pw, = aPg, and |Pw,|* = (a{”)* and

AL Z py = (AW, W) = (a7)? {Ag,, gu) + (b)) <42, Z,) 2
2 (aP) CAGy gny Z |Pewa|* (A — €).
(See the proof of Theorem 6 [2].) Moreover, it has been shown [2] that 11m (b“))"

= 0 for each fixed ¢, 0 < ¢ < A; — m. Therefore (a{”)* = |Pw,|* - s n - o
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and therefore there exists an integer n, such that |Pw,| > 0 for each n = n,.
Hence (4) is valid for each n = n,.
Now we estimate ||P,u,|. By the definition of P, we have

[Panal* = lluw = syt = Juta* = [ Bz -t

By (1) we get |u,|* = p, *| Au,_,|* and

(5) “Elx—zunnz = ”;leAEll—aun—luz .
Now
(6) ”AEM—Eun“lnz = <A2Elg—cun—1’ un-1> =

A1~ &
=J 12 d<E).un—1’ un—1> .

m

Hence
“unnz - ”Elx—sunllz = #;2(<A2un—19 un—1> - <A2E}.1—eun—-1’ un-1>) =

A1
= un_ZJ‘ '12 d<EJ.un—17 un—l> g
;.1—2
Z (1 = &) s “(Jun-1* = |Esi-atta=s]?) > m?us*| Pat—y[? -
Therefore
[Patall? > mPpy 2| Pty ||* > ... > m® " 2p 2 oo ? | Pao|® =

= w2 = By i 114> = (ol = [Esp-atol) T > 0,

for |[(I — E;,—,) uo| > 0. This inequality together with the relation (4) give our
estimate.

Remark 3. Let us point out that the asymptotic estimates corresponding to that
of Proposition 2 are not efficient. Under the conditions of Proposition 2 the estimate

mx+1/2nw < i

<Aum' un>
is valid for each n (n = 0, 1, 2, ...). Indeed, (2) implies that

m n
R e L
44 At
Hence the last inequalities and (3) give the desired result. Moreover, there exists an
integer ny such that |E; _ 4| £ |Ez, -] for each n = n,. Indeed, from (6)
we have that

[AEz, - ttnss| < (4,-¢) |Esy-ata] , n=10,1,2,....
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According to (5),

A
”EA;"‘cun+1” é ¢ ”Ell_eu””

n+1
for each n (n = 0, 1,2,...). By Theorem 1 [1], u, ~ ;. Therefore there exists an
integer n, such that (A, —e)p, ' < 1 for each n = n,. Hence ||E;j_ tt,q| <
< |E;, - sun|| for each n = n,.

To establish further estimates we use Lemma 1 [2] which reads if the initial ap-
proximation u, of (1) is not orthogonal to ker (4 — 4,I) # (0), then each element u,
of the sequence (u,) defined by (1) is of the form u, = a,e, + z,, where z,¢€
eker (A — AJJ)* and a,>0 for each n (n=0,1,2,...), egeker(4 — A,I),
leol = 1.

Theorem 7. Let X be a real Hilbert space, A : X — X a linear positive and self-
adjoint operator such that A, is an isolated point of o(A) (i.e. there exists a constant
M > 0 such that o(4) — {A;} = [m, M]). Assume that the starting approximation
uq of the procedure (1) is not orthogonal to ker (4 — A,I).

Then

®) (1 = M) mpp, 37 2= > S Ay = tars S aqoiy oo ag(Ry — m) |20 *uo] 72,

) ”Wn+1 = {Wpty, €09 eo“ < Oplly—q «-e o‘oHWo — Wy, €o) eo”

for each n, where
2 1/2
an - [1 - an (1 N M)] ’
ua? Ay

O<a,<a,_y <..<o0y<1,a,,z, are elements from the representation of u,,
eo € ker (4 =1and a, < [1 — (1 — (M[g,)*) (1 — M[2))]"* for suf-
ficiently large n.

Proof. First of all we derive (9). Since 4, is an isolated point of a(A4), 4, is an eigen-
value of 4. According to Lemma 1 [2] each element u, defined by (1) can be re-
presented in the form u, = a,e, + z,, where |, = 1, egeker (4 — 4I), z,€
e ker (4 — A,J)* and the constants a, are positive. Put

Uy = e [ua] -

’

Uy = Zn/“un

Then w, = c,eq + Uy, tuy1 = {4AW,, w,» and
uly = i1 Aw, = pyti(Agcae0 + Avy) .

Set Bt = tnt1Ats Pury = tni1Av, Then uly = B, c.e0 + hyyy and a,,, =
= Bus1Calltn]> Zus1 = |tu] Bys1- Since ¢ =1 = |v,]|?, we have

Bnyy = Cfll + <AU,,, Un> = '11 ~Tn>»
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where r, = (4] — A)v,, vy, (n=0,1,2,...). Hence B,.; =44 — )",
Bysy = (A4 — 1)~ ! Av, for each n (n = 0, 1, 2, ...). We shall estimate the quantity

(10) J = ,“__Mz_ =1 "usll+)1"2 "vn"2 - "hn+1"2
u

D2 o2 N T .

where [|u?y||* = B2s162 + ||hus1)? Using again ¢; = 1 — ||v,||* and simple calcula-
tions, we get that

_ bu+1C:
(ﬁ:iv-l — b, 1) ”";-“2 '
where byyy = Boyi|va]® = ||Bns+s]*>. On the other hand, 4, = |4, [4v,|? <

(11) J=1

< A,{4v,, v,» imply that

1
bpyy = m(ﬁ“"n“z - [4v,|?) 2
1 n
)~1 X‘lrn
2———Ad = A)v,,0,) = ———.
Z (ﬂ,l _ 1‘")2 <( II )vn D> (}.1 _ rn)z

By our hypothesis 4, is an isolated point of ¢(4). Therefore the segment (M, 1,)
belongs to the resolvent set of A and thus the spectral family {E,} is constant on
(M, 4). Hence

re = (A — A) v, v, =J‘M(,11 — A) dE,v,, v,y =

M
=J ('11 - j') d<E}.Un’ Un) z ('11 - M) "v"llz *

Furthermore, 2, — b,+; < A4(4; — r,)”! and hence

(12) ﬁfﬂb’flbnﬂ i A 1_ Ty 7 }»L: = lll—;l]w [l
Hence according to (10), (11), (12) and
w feandl _ Ll
lasall " o
H%:_:—ll“- = I|Wn+1 = Wn41, €0 eo" >

we obtain (9) with o = [1 = (afjue]™)* (1 = MATY)]** for each k (k =
=0,1,2,...,n). Clearly, 0 < o4 < 1 for |z < [lus| and M < A;. We have that
lzis s/l sl < [zel/Jue]] and moreover, cf + f[og|* = césy + [Jopss|* = 1 for
each k. Hence af,,/|ux+,]> > ai/|w]* and therefore ., < o < 1foreach k,
for ai = [u]* — [z
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We shall prove (8). Again, one can express each element u, of (u,) in the form
u, = a,e, + z,, Where e, € ker (4 — A,1), |leo| = 1, z, e ker (4 — A,I)* and a, > 0.
We have
(14) '11 — HUp+1 = (/11”14"“2 - <Aum un>) "un”_2 =

= (lzl® = <Azp 23) [ua]| 72 = KT = 4) 2,0 2> Jua] 72 -
Now
(15) ((111 — A) Zyy Zpy = (/11 — M) ”z,,”2 .

Moreover, the orthogonal projection of u,,; = p,+1Au, onto ker (4 — A I)* is
equal to z,,,, where z,,, = u,!,Az,. Then

(16) “le+ll|2 = Aun_+21<Azzm Zn> =
2 (M, m \? (M m \? 5
= wt j 1 dCE,zy 2> z( ) f dCE, 2, 2 =< ) 2.
m Hp+1 m Hns1

Now (14), (15), (16) give the first estimate in (8). Since (4,1 — A) lies on the segment
[1, — M, 2, — m] we have that

j‘l ~ Hn+1 é (}'1 - m) ”zn”Z J ”un“_z .
Using (13) we obtain the other part of (8). The estimate of «, follows at once from

the expression for «, and the inequality a, = (1 — (M/u,)?) |u,||%, which holds for
sufficiently large n [3]. The theorem is proved.

Remark 4. The estimates (8), (9) show that the convergence of y, to A; and the
so called directional convergence of w, to e, are better than the rate of convergence
of the geometric sequence with quotient «, < 1. Let us point out that under more
general conditions on A and X, quite different estimates for (1) have been obtained
by Marek [5] and Petryshyn [6].

Now assume that 4 : X — X is self-adjoint and positive definite. Put

A1
u® ='[ A"42dE,u, = A~?u,

m

(¢ =0, £1, +2,...) and substitute A*u{” for u, in (1). Then we obtain the pro-
cedures

(17) N o Ve
Wy = (42,7 Auf?,

0 (0
(ugl) :%: 0’ ufx ) = um I‘ln-l-)l = ﬂn_+1) s

where n =0,1,2,...; a =0, +1, +£2,.... For these procedures one can derive
results similar to those of Theorems 1, 2, 3 [2], [1].
Put
@ _ Uy
el
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where & = 0, +1, +2,..., n =0,1,2, ..., u® = u,, w, = W, u® = A%y, and
(u,) is defined by (1). Then

’ A, @y = A U
(18) CAwR™, Wn'™) TN

(e=10,%1,£2,..,n=0,1,2,...).

Theorem 9. Let X be a real Hilbert space, A :X — X a linear positive definite
and self-adjoint operator on X. Assume that A, (not necessarily an isolated point
of o(A) with finite multiplicity) is an eigenvalue of A and that the starting ap-
proximation u§’ of (17) is not orthogonal to ker (4 — A).

Then (AW, w®) — 1. If A, is an isolated point of o(A), then wa,") — el =0
as n — oo, where ey e ker (4 — A1), |eo| =1, « =0, £1, £2, ...

Proof. The first part of our theorem follows at once from (18) and Theorem 3
[2]. Furthermore, by Theorem 3 [2] we have that [[u, — Neo| — 0 as n — oo,
where N = sup ||u,| < +c0.

Since

Ay
A2, =J A"*2 dEze, = A7 %e,

m

and A~%? is bounded, we obtain
[ul — NAT*2eq| = |A™*%u, — NA™*¢,| <
< [ 42| Jun — Neo| -0

asn — oo. By Lemma 1, 2 [1] the sequence (||u,]|),<; is bounded monotone increasing
with uy + 0. Hence (“A’“‘/2 o[)s2: is bounded and ||A 2y, z mm|u,| =
= m~*?||uy|| > 0 for each n. From u{” = A~*/?u, - NA™*%¢, = 2] —a/2 Neg, n = 00
we get that |u{®| - NA7¥? and |[ul®| e, — lf“/zNeo as n — oo.

Since
o 1 = el
i = el = [ty = o] = el <

< w2 || (U = NAT*2eo|| + [NAT2eo — [u®] eo])

[We — eo]| — 0 as desired.

We shall show that the ‘rate of convergence of the sequences (<Aw®, w(®)),2
(x= -1, ...) is not worse than the convergence of ({Aw,, w,»);= ;. Indeed, the
generahzed Schwarz mequahty gives

(A" %u,, u,,) = (AA™ Yy, A=@D"1y N2 <
< CAA™ 2y 47520,y CAA™GID" 1y, A=oI2"1y ) =
= <A1_aum un> <A_’_lun’_ un> .

254



Dividing this inequality by (A~ "u,, u,» (A~*"'u,, u,», we obtain that
(AW D Wit Dy < (Awd, wi)
for each n and « (« = 0, +1, £2,...). Hence

A== AW, WDy

-1 -1
= AW, Wiy 2
>

2
= (Aw,, W) = CAWD, Wiy = AW, wiy > L.

Let us remark that the assumption of the positive definiteness of 4 in Theorem 8
is not essential. Indeed, if 4 : X — X is in general a self-adjoint operator on X,
then B = al + A, where a is a constant such that a > || 4|, is positive definite and
self-adjoint on X. Using the above results one can obtain the extreme value 4, of 6(A4)
and the eigenvectors corresponding to A4, of course provided A, is an eigenvalue
of A). If in general A is only linear and bounded, then the derived theorems can be
applied to the operator T = A*A, which is self-adjoint and nonnegative, i.e. T = 0.

Acknowledgement. The author thanks the referee for pointing out the reference
[7] and for his comments. '

References

[1] J. Kolomy: Approximate dstermination of eigenvalues and eigenvectors of self-adjoint
operators. Ann. Pol. Math. 38 (1980), 153—158.
[2] J. Kolomy: On determination of eigenvalues and eigenvectors of self-adjoint operators
Apl. mat. 26 (1981), 161—170.
[3] J. Kolomy: Determination of eigenvalues and eigenvectors of self-adjoint operators. Mathe-
matica 22 (1980), 53—58.
[4] M. A. Kpacnoceavckuii u npyrue: IlpuGnkeHHOe pellleHWe ONepaTOpHBIX ypaBHeHwmii. M3nm.
Hayka, Mocksa, 1969.
[5] 1. Marek: Iterations of linear bounded operators in nonself-adjoint eigenvalue problems and
Kellog’s iteration process. Czech. Math. J. 12 (1962), 536—554.
[6] W. V. Petryshyn: On the eigenvalue problem 7T'(z) — A S(x) = 0 with unbounded and sym-
mestric operators T and S. Phil. Trans. Royal Soc. London Ser. A, Math. Phys. Sci., No 1130,
Vol. 262 (1968), 413—458.
[7]1 V. Pték - J. Zemdnek: Continuité Lipschitzienne du spectre comme function d’un opérateur
normal. Comment. Math. Univ. Carolinae 17 (1976), 507—512.
[8] B. II. ITyzaues: O nByx npuéMax NpHOJIHKEHHOTO BBIYHMCIIEHHSI COOCTBEHHBIX 3HaYe€HHUM U co0-
CTBEeHHBIX BekTOpoB. JIoki. akax. CCCP, 110 (1956), 334—337.
[91 b. II. Ilyzauyes: WccnemoBaHue OOHOTO METOAA NPHUOIIMIKEHHOTO BBIYHCIICHHS COOCTBEHHBIX
4Yyces1 ¥ BeKTOpoB. Tpynsl ceM. no ¢ysku. anan. Boponex, T. 4 (1960), 81—97.
[10] F. Riesz, B. Sz.-Nagy: Lesons d’analyse fonctionnelle, Ac. Sci. de Hongrif, Budapest, 1953.
[11] Wang Jin-ru: A gradient method for finding the eigenvalues and eigenvectors of a self-adjoint

operator. Acta Math. Sinica 13 (1963), 23—28 (Chinese Math. Acta 4 (1963), 24—30).
[12] K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965.

Author’s address: 186 00 Praha 8, Sokolovska 83 (Matematicko-fyzikalni fakulta KU).

255



		webmaster@dml.cz
	2012-05-12T11:09:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




