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ON A FUNDAMENTAL THEOREM
OF THE LAPLACE TRANSFORM THEORY

MIROSLAV SovA, Praha

(Received November 23, 1978)

In this note we deal with an important theorem which plays a decisive role in
Widder’s theory of representability for the Laplace transform. This theorem was
discovered by D. V. Widder and is to be found under the name ‘“general
representation theorem” in his classical book: The Laplace transform, 1946. Its
main idea is, roughly speaking, that Laplace transforms of the so called Post-Widder
approximations constructed for a given function and defined on the positive halfaxis,
tend to this function if it has certain properties which are always fulfilled for Laplace
images.

In the sequel we present a proof of a theorem of this type not only for numerically
valued but also for vector-valued functions. Our assumptions are a little stronger
than those of Widder but they are sufficient in all necessary cases.

The present proof is new, simple, elementary and, moreover, independent of the
inversion theorem. Its technique differs considerably from that of Widder and is
similar to that used by the author under more special assumptions in § 4 of his
paper: Linear differential equations in Banach spaces, Rozpravy Ceskoslovenské
akademie véd, fada mat. a pfir. véd, 85 (1975), No 6.

We shall denote: (1) R — the real number field, (2) (0, o0) — the set of all positive
numbers, (3) M; —» M, — the set of all mappings of the whole set M, into the set M.

Further, E will denote an arbitrary Banach space over R with the norm ” H We
shall need only the most elementary properties of Banach spaces and of functions
with values in a Banach space.

1
1. Lemma. e < — forevery nel{,2,..}.
n! 2/n

Proof. We have clearly

1 - S S ¥
() ("'*' ) ("*‘)(;':—!e ") =¢ 1(1 +%> foreveryne{1,2,---}-

(n+ 1)
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Now we prove that
(2 et (1 + 1> < e M4 forevery ne{l,2,...}.
n

Indeed, the inequality (2) is equivalent to e~ (/M *+(/4™) (| 4 1/n) < 1 for every
ne {1, 2, }, and to verify this last inequality it suffices to show that
e ***/4(1 + a) < 1 for every 0 < « < 1. But the function e™***/%(1 + a) has the
value 1 at the point 0 and is clearly nonincreasing for 0 < o < 1.

It follows from (1) and (2) that

( ) (" + 1) =+ < e—1/4n"_"

e " forevery neil,?2,...}.
(n+ 1) - n! ynel }

Further we prove

(4) e~ < 1 for every ne{1,2,...}.

D

Indeed, (4) is equivalent to 2/[(n + 1)[n] < e'/*", ie. to 1 + (1/n) < e'/" for
every n e {1, 2,...}. But the last inequality is clearly true.
The desired inequality can now be proved by induction on n.

Indeed, it is true for n = 1. If it is true for a fixed n e {l, 2, }, we obtain from
(3) and (4) that

+1
(n + 1) o=+l < o=1/4n 1 n e < el _—_ 1

1
(n + 1) = n “/n J(n +1)

which proves the induction step.
The proof is complete.

2. Proposition. Let F € (0, ) —» E. If

() the function F is twice continuously differentiable on (0, o),

1 ©
(B) Jf”‘llF""(é)ll dc < o, J‘ ETHFOQ)| dE < oo for every je {0, 1,2},
0

1

then

(a) the function e™*~! F(1]t) is integrable over (0, ) for every A > 0 and
qe{0,1,...},

q+1
(b) ((q + 1) /1) J. e~ @+ Dirg-1 F( )dr oo ),F(/l) for every A > Q.
q! 0 T

232



Proof. Let us first observe that the assumption (B) is equivalent to

F(j) 1
T

0 [l e [

for every pu > 0 and je{0,1,2}.

We see easily that (1) implies (a).
Let us now fixa A > 0.
For the sake of brevity we denote

o2
([ 3@
Qe A0

+ (L +2)[FA| + 2+ 2) [F@)-

o))

dt < @

()]4)-

It follows from the assumption (o) and from (1) and (2) that

o [oo()-+r0] - [2() - 5 o(H)
NGOl =L G )

w

+AZF() + 2 F’(l)] do] <

+Lp
g

()~

oo Qe o a1 Qe

| de + 22[F()] + vufwn] <

[l

<K 1—1 foreveryr>1,
y A

|
LI G2 Q)
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7o) =2l = [ () - 50(5)

=I oo @)el -1 GrC) e 2 () -
L) el
L Gr) @) ()
coro s [ G1Q) 1)

+ ()] se + 2O + #1F )] 0o <

<[ ClQI3 O]«
et ol [ 3B Of-

o Qo [ o e

L | 1 1
gKJ —zda=K(—— )forevery0<1<1.

: O T

We need the following auxiliary identities which are well known or easy to prove:

g .
(5) J' e idr = 2 for every ¢q e{O, 1, } s

1 1 d
6 e“““)“‘r“ =)= — e—(q+1)).r,tq+l
(6) ( ,1> (q+1)Adr[ ]

forevery >0 and ge{0,1,...},
—qat 1 1d —qir,
(7) em¥%t(= — A1) =- —[e"¥] forevery ge{L,2,...}.
T qdr . )
Now, we obtain from (3), (4), (5), (6) and (7) that

6)) '((QJMXEJ' —(q+i>zfrq-1 F (%) dr — 4 F(}.)“ =

0
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=
Jo T \T

= o A1
§K((~q—+—l—)—M J e (@t Dirga t—1>dr+ e (@t Dira 1-,1 dr |
q! | Ja-t A 0 T

q+1[ oo A1
§KML e @t Diczg [ _ 1) dt + e 41 1 —Aldtl =
q! L J a1 A 0 T

[ o) )

=K((‘1 + 1) 3-)q+1 _ 1 J‘w g(e—(q+l)/1ttq+l) dr +
q! (@ + 1)A);-1de
A1 q+1 —(g+1) -
1T ey e @+ [ L e FLL
q), dr q! (@ + 1)4 29+t q M
_gla+ 1)q“e‘<"“’[} IEZTN P
(g + 1) | q

q+1 ,—(q+1)
§K[1 + 2e (g + 1) e for every ge{1,2,...}.
A (¢ + 1)

Using Lemma 1 we see easily that (8) implies (b).
The proof is complete.
3. Lemma. Let F e (0, ) — E. If
(o) the function F is infinitely differentiable on (0, o),
1 ©
(B) J EPFHFP(E)| dé < oo, J. e FP(E)| dé < oo for every pe{0,1,...}.
]

1
then

(a) the functions et~ P*DF®(1[t), e™#tPFPY(1[t) and e™*¢~P*DFP+D(1[y)
are integrable over (0, o) for every p > 0 and pe {0, 1,...},

(b) jwe“""-c'("”’F(’“)G) dr = —ﬂjxe‘“’t‘”F(”) (1) dr —
0 T 0 T

@
- pJ e Hg~ PHDFP <1> dt for every p >0 and pe{0,1,...}.
0 T

Proof. By a simple substitution we see from () and (B) that

! (p+1) (p) 1

1 TP F? (-
( ) .[o <T>

2) o+ | o (1

1 T

dt < oo forevery pe{0,1,...},

dt < oo forevery pe {0, 1,...}.

235



Now the statement (a) is an easy consequence of (1) and (2).
To prove (b) we need some auxiliary observations.
First we prove that

(3) for every pe{0,1,...}, there exists a sequence &, ke{l,2,...}, such that
0 <o < 1foreveryke{1,2,...},0, - 0 (k - o) and a; PF?(1]o,) — 0 (k - o0).

Indeed, suppose that (3) does not hold. Consequently, there exist 0 < d <1
and & > 0 so that t™7|[F®(1/t)|| = ¢ for every 0 < v < 5. This implies that
fo T ®*V|F®(1/7)| dr = co which contradicts (1).

Analogously we prove that

(4) forevery pe {0, 1,...}, there exists a sequence By, k € {1, 2, ...}, such that f; > 1
for every ke {1,2,...}, B = o (k > ) and B ? *F®(1/B,) » 0 (k = ).

If the property (4) did not hold, then there would exist 6 = 1 and ¢ > 0 so that
1= @+ FP(1[7)| Z & for every T > 8. Consequently |7 ¢~ ®*3|FP(1/c) dr = oo,
which would contradict (2).

As an immediate consequence of (3) and (4) we have

(5) for every pe{0,1,...}, there exist two sequences o, f, k € {1, 2, ...} such that
0<a <1, f>1 for every ke{l,2,...}, %, =0, B, —> oo (k— o) and
e *q  PFP)(1)oy) > 0 and e **B PF@)(1/B,) - 0 (k — o0) for every 4> 0.

On the other hand, we see immediately from () that

d 1 1 1
6) —FP ()= — Z F®*YU () forevery t > 0 and pe{0,1,...}.
©) dt (t> 2 <t> Y pei )

Using (5) and (6) and integrating by parts we get for A > 0 and pe {0, 1, ...}

aoe_ut.t—(P+2)F(P+l) _1 dr = — ® e_,"r._pg (F(p) )) dr =
o T ’ 0 dz T
Bx d
i)
k= o0 ax 'dr T
= — lim | e *#*B; PF® i) — e Mg PF(P) l) — fe d = (e t7P) F® (l) ] -
ke B A w 4T T

Br 1 Br
= — lim [”J e M~ PF(P) (_) dt + p e Mg (p+1)F(p)< )dt =
k— o0 ax ) T ax T
© . 1 ©
= _“J‘ e Hi—PR(P) (_) dr — pj ekt -(p+1)F(p)( )dr
0 . T 0 T

which is the desired result (b).
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4. Proposition. Let F € (0, o) — E. If the assumptions (o) and () of Lemma 1
are fulfilled, then

() the functions e™*'t™?~1F®)(1]t) and e~ *t*~1F(1]t) are integrable over (0, )
for every p > 0and pe{0,1,...},

(b) J e~ (2 1) (D) (1) de = (_l)pﬂpJ‘ e—urrp—1F<1) dr
0 T 0 T

for every p> 0 and pe{0,1,...}.

Proof. The statement (a) is an immediate consequence of the corresponding state-
ment of Lemma 3.
To prove the statement (b), we conclude first from (a) that

(1) (—1p*t J.:e_‘"t”F (%) dr = (=1) d% U:e'uw'lF G) dt:l

for every > 0 and pe {0, 1,...}.
Now we proceed by induction on p.
The case p = 0 is evident.
Consequently, we now suppose that (b) holds for a fixed pe{0,1,...} and all
u > 0 and we prove it for p + 1 and all ¢ > 0. '
Under these circumstances, we obtain from (b) with regard to (1) that

(2) (_ 1)p+1 Ilp+1J~ e HPF <_1_) dr = (_l)p ﬂp+1 i [J\ e HP 1R <1) dr} =
’ 0 T dullo T
— 'up+1 i [u-p(_l)-pupj' e—llt,rp_‘lF <1) d‘t] =
d/l. 0 T
= ”p+1 g T4 me—urr—(pﬂ)F(p) 1 dt| =
du 0 T

—,uf e H g~ PF® (% dr — pJ. e H(PTDE®) <l> dt for every u > 0.

0 T, 0 T

Il

Using Lemma 3 we get from (2) that

(=1t llp“fwe"”‘c"F <1) dr = J.we“"r(p+2)p(p+ 1) (1) dr
0 T 0 ] T

for every u > 0 which proves the induction step.
The proof is complete.

5. Theorem. Let F e (0, ) — E. If
(«) the function F is infinitely differentiable on (0, o),
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1 o0
(B) J{"“”F‘”({)” dé < o, f EPHFPYE)| dE < oo for every pe{0,1....],
0 1

-

then

(a) the functions e™*((q + 1)[t)**! F@((q + 1)/t) are integrable over (0, ) for
every 2 > 0 and q€{0,1,...},

—1)2 (® q+1
(b) (——:-)—J. e—z:(ﬁl_‘_";l) F““(E——l—) dt —,., F(A) for every A > 0.
q: Jo

T T

Proof. The first statement (a) is an immediate consequence of the corresponding
statement of Proposition 4.
By the statement (a) we have in particular that

(1) the function e~*/(1/t) F(1/t) is integrable over (0, o).
Further, it follows from (o) that
(2) the function (1/t) F(1/¢) is continuous on (0, c0).

Now we get by Proposition 4 with p = g and p = A(q + 1) after a simple substitu-
tion that

—1) (™ g+l
(3 & j e <—~q hs 1) F© <—-—q ha 1) dr =
q! Jo T T

(=1 B 1
==L+ 1)J. o= Ma+ Deg=(a+ DE@ (_) dr =
q: 0

T

_ M(q + 1)2t! on e_.uq+1):rq—1F(l> dr =

q! 0 T
_ -ia+ Ayt Jwe—'<q+1>zrfq—1F<l> dr
q! 0 U

for every A > 0 and g€{0, 1,...}.

The statement (b) is now an immediate consequence of (3) by virtue of Proposi-
tion 2.
The proof is complete.

6. Lemma. For every t > 0 and p > 0, l(e"“‘ - )u + t| < juts

Proof.

—ut __ t t t rT 2

¢ 1+t=t—je"‘"d‘c=j(l—e"‘)dr=yJ‘Je"”“dadr§&.
U 0 0 . oJo 2
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7. Theorem. Let F € (0, o) —» E. If the assumptions (o) and (B) of Theorem 5
are fulfilled, then

(a) the functions e™*t*((q + 1)[t)*** F9((q + 1)[t) are integrable over (0, o)
for every A >0 and p,qe{0,1, ...},

ptq qt1
(r) 1) j e #7? (q ks 1) F® <_—q + 1) dt =, FO(2)
0 T

T
for every 4. > 0 and pe{0,1,...}.

Proof. The statement (a) follows immediately from (a) of Theorem 5.
To prove the statement (b), we proceed by induction on p.
For the sake of simplicity we shall occasionally write

£ = U <q+l>q“F@><q—t—l> for t>0 and qe{0,1,...}.
q!

t t
The case p = 0 follows from Theorem 5.
We now prove the induction step, i.e., we suppose that for a fixed pe {O, 1, },
0 .
(1) (—l)pj e 1Pf (1) dt >, F®(2) for every 1 > 0,
0

and we prove that (1) implies

() (—1)”“J. e ¥t f (1) dt > ., F®H V(1) for every 4 > 0.
0
To this aim we need some auxiliary observations. First we recall that clearly
(3) F(p)( A+ #) — F(p)( l) .
u

~0, FP*1(3) for every 4 > 0.

©
gj
0

< EJ. e *t?*2||f,(v)| dt for every 2 >0, p > 0 and q€{0, 1,...}.
0

Further we get by Lemma 6 that

© e—'(2.+u) - e—lr
4) J. [~—-— + e"“t:]  f(t)dt
0 H

e H —

+7

e~ or|f,(0)|de =

2

Finally it follows from (1) which is supposed to be valid that

~(r+p) _

) (- 1)vj _#"_ o f2) dt -

(p) — F)
_FO(G+ ) = FO()
u

w0 forevery 4 > 0 and p > 0.
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On the other hand, a routine verification shows that we can write
(6) ( )p+lJ e~ it p+1f(r) de — F(p+1)(,1)
0
r o —=(Atp) _ -4t (p) — F(p)
= (_l)pJ. e~ T-e 2 f(c) dr — FP(2 +p) — F (’1)] +

0 u u

[~ © e—(}.+u) - c—).t

+ (-1)?“[ (———-———~ + e'“t) 7 £,(%) dt] -
R 0 H

'F(p)(;_ + #) —_ F(")().)

+

- F"’“’(}.)] forevery 2> 0,u > 0 and qe{0, 1,...}.
Let now ¢ > 0 and A > 0 be fixed.
By (3) and (4) we can find a fixed p, > 0 such that

- ‘ FO(L + uo) = FP() _ por 1)(/1)” < %

forevery g€{0,1,...}.
Further it follows from (5) that there exists a g, € {0, 1, ...} such that

) “( 1)PJ- __(H"_’io_‘ii o £(c) de — FP(3 + u:()) - F(p)(/l)“

IIA
w o

for every q = qo.

Summing up (6)—(9) we see that
.l(—l)”“ J’ e P+l () dr — F(”’”(A)'l <e
0

for every g = g, which proves (2).
This verifies the induction step and therefore the statement (b) is valid.
The proof is complete.

8. Proposition. Let F € (0, ) - E. If
(o) the function F is infinitely differentiable on (0, o),
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(B) the functions A*** F\P() are bounded on (0, ) for every pe{0,1,...},

then

J‘lé"“HF(”)(C)H dé < o and fwﬁp"1||F(’)(é)|l dé < oo for every pe{0,1,...}.
0

1

Proof is easy.

9. Proposition. Let F e (0, ) — E. If
(«) the function F is infinitely differentiable on (0, o),
([3) F(/l) -0 (/1 - OO),

(v) there exists a 9 > 1 such thatJ' p* 32| FO(u)||* du < oo for every
0

pef{l,2,..},
then

J1§P+1||F(”)(§)!| d¢ < oo, jw§””1[|F(”’(é)\l d¢ < oo for every pe{0,1,...}.
0

1 .

Proof. Let us first consider pe{1,2,...}.
By virtue of Holder’s inequality we get from (y) that

[ ac = [omer-emprogpa;

1 (9—-1)/9 1 1/8
é [:j‘ 62/(3—1)} I:j §3p+9—2“F(p)(€)HS dé]
0 0

1 (3—1)/% © 1/8
< [J‘ 62/(9_1) df:' [J‘ u3p+9—2”F(p)(#)n8 du] <,

Q 0

IIA

IIA

[Temtmm ae = [Teaeve prremprog)
1 1

s[[Feae] [ et ] s

1

© 1/9
<[ [Tresro o] < o

0

It remains to deal with the case p = 0.
To this aim we first deduce from (B) that F(¢) = [¢ F'(u) dp for every & > 0.
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Now we get by Holder’s inequality for & > 0 that

|WM§fwwwwﬁ?~wwwwwwwmwg

o0 (8—1)/8 0 1/8 0 1/8
< U u‘zdﬂ] U [Tae du] < é“‘“"’”’“U u”‘ZF’(u)sdu] .
4 14 0

The desired inequalities with p = 0 follow immediately from this estimate and from
(y) with p = 1.

10. Proposition. Let F € (0, 0) - E. If
(«) the function F is infinitely differentiable on (0, o),
(B) F(4)— 0 (2 » o),

»

=)
() | | FP(u)| du < o for every pe{l,2,...},

JO

then

el < o, [ FO@) 68 < o for every pefo.,..,
1

JO

Proof. The case p = {1,2,...} is immediately clear from (y).

We have only to deal with the case p = 0.

First, by (B) we get F(¢&) = [ F'(u) du for every & > 0.

This identity implies |F(&)| < |2 |F'(w)] du £ §§ |F'(u)|| dr < o which at
once gives [ &P F(¢)] d¢ < o.

On the other hand, it follows from [§ |F'(x)|| du < oo that there exists a sequence
A >0, kel,2,..., such that 4, » oo (k- o) and F'(4)— 0 (k —» ). Since
I3 #|F'(w)] de < oo (cf. (y)) implies that [? |[F"(u)|| dp < oo for every & > 0,
we obtain that F'(¢) = [? F"(u)du for every ¢ > 0. Consequently we can write
1EF@] = [ §& (1p) p F'(w) du|| = @ u|F'(w)] dus for every ¢ > 0. By virtue
of (y) this implies & F'(¢) — 0. Using this fact and integrating by parts we obtain
easily ¢ F(&)] = [|f© F'(w)du — [& p F'(w) du| < [ [F ()] dp + 5 | F'(w)] -
.du for every ¢ > 0. The above results now give |F(¢)| = |[@ F'(u) du| =
= |J# (1) n F'p) duf| = §¢ (1w) |1 F()]| du < (1) [[5 |F'(0)] du +
+ & u|F"(u)| du] for every & > 0. Consequently [ &™*||F(&)]| d¢ £ (f¥ &2 d¢).

8 [F @) dp + §5 u|F'(W)] du] = §§ |F'@)] de + & w|F(w)] du which
proves the last desired inequality, by virtue of (7).

The proof is complete.

Author’s address: 115 67 Praha 1, Zitna 25 (Matematicky ustav CSAV).
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