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BOUNDARY VALUE PROBLEMS
FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
IN ANISOTROPIC SOBOLEV SPACES

Avrois KUFNER, Jiki RAkosNfk, Praha

(Received May 14, 1979)

0. INTRODUCTION

The theory of weak solutions of (generally nonlinear) partial differential equations
deals with differential operators of the type

(0.1) (Au) (x) = l Y. (=) D%a,(x; 6, u(x)), xeQ,

x| Sk

where Q is a domain in RY, a is an N-dimensional multiindex (i.e., « € N§) and d,u
is the so-called generalized gradient of the k-th order:

S = {DPu; || < k}.
If the functions a,(x; £) have a “polynomial growth”, i.e. if, e.g.,
|a(x; &)| = (1 +|ﬂlzk|£ﬂ‘p—1) , p>1,

for a.e. x € Q, then one can seek a weak solution of the given boundary value problem
for the operator A from (0.1) in the Sobolev space

wh(Q).

This paper concerns the possibility of modifying the results known for operators
of the type (0.1) to the case of more general operators of the form

(0.2) (4u) (x) = Y. (= 1) D*a,(x; 6z u(x)), xeQ,
acE

where E is a certain fixed set-of N-dimensional multiindices and

(0.3) ‘ Sgu = {D*u; BeE}.

1. FORMULATION OF THE BOUNDARY VALUE PROBLEM

1.1. Let E be a fixed finite subset of the set NY of all N-dimensional multiindices
and let us denote by
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(1.1) wEI(Q), p>1,
the set of all functions u = u(x), x € Q, such that
DueI?(Q) forevery acE.
Let 6 = (0,0, ..., 0) and suppose that
(1.2) beE.
Then WE?(Q) is a separable reflexive Banach space if equipped with the norm

(13 Jull = 3 10,

where ||, denotes the norm in I7(Q). Further, let us introduce the space
(14) wer(@)

as the closure of the set C3(Q) of infinitely differentiable functions with compact
supports in Q with respect to the norm (1.3).

1.2. Let M be the number of elements of the set E.

1.3. Consider the operator 4 from (0.2) and suppose that

(i) the functions a,(x; ) are defined for a.e. x € 2 and all ¢ e RM,
(ii) they fulfil the Carathéodory conditions,
(iii) they fulfil the following growth conditions:

for a.e. x € Q and for all £ e RM, it is

(1.5) |aa(x; é)l S gux) + ¢ Y |§‘,|""l , p>1,
peE

where g, € I4(Q) with ¢ = p/(p — 1) and ¢, 2 0.

1.4. Under the assumptions mentioned in Section 1.3, the operator & defined by
the formula

(1.6) {Au, vy = z‘; a,(x; 6g u(x)) D*v(x) dx
aE. 9]
maps the space WEP?(Q) into its dual space (WE2(Q))*. *)
1.5. (i) Let V be a Banach space such that

*) For X a Banach space, the symbol ., .) denotes the duality pairing between X and
its dual space X*.
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WeP(Q) = Ve WEX(Q);

the space V is equipped again with the norm (1.3).

(ii) Let Q be a Banach space of functions defined on Q and such that the set C3(2)
is dense in Q and that
(1.7) VQ Q. ¥

(iii) Let a function ¢ be given,

0 e WE(Q).
(iv) Let a functional f be given,
feQ@*.
(v) Let a functional g be given,
gevs,
such that
(1.8) {g,v) =0 forevery veCy(Q).

The spaces WE"’(Q), V, Q, the function ¢, the functionals f, g and the operator A
from (0.2) (i.e., its “coefficients” a,(x; &)) are together called the data of the boundary
value problem (4, V, Q).

1.6. Definition. The function u € WE”’(Q) is called a weak solution of the b.v.p.
(4,7, Q), if

Hu—-9geV;
(i) for every ve V, itis
(1.9) <du’ U) = <f3 U> + <g’ U> .

1.7. Remarks. (i) If E = {« € N§; |o| < k} with k € N, then W5?(Q) is the “usual”
Sobolev space W*?(Q) and the b.v.p. (4, ¥, Q) is the “usual” boundary value problem
for the operator A from (0.1). There is a number of results concerning the existence
of weak solutions of such b.v.p. — via variational methods, the theory of monotone
operators etc. (see e.g. [2], [3]). Since the b.v.p. (4, V, Q) for a general set E is a
direct analogue of the “‘usual” b.v.p., we are concerned with the modification of
these results to the general case.

(ii) In accordance with the usual terminology, we shall call the b.v.p. (4, ¥, Q)
~ the Dirichlet problem (for the operator A from (0.2)) if

V= Ws(Q) .

*) For X, Y two Banach spaces, the symbol X (Q) Y means that there exists a constant ¢ > 0
such that ||u||y < c|u| x for every u € X.
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It is not necessary to prescribe the functional g in this case since — in view of the
density of C(',"(Q) in V — it is (g, v) = 0 for every ve V and the term {g, v) does
not occur in (1.9).

(iif) Let us mention that S. M. Nikol’skii [4] has investigated the Dirichlet problem
for the linear case of the operator A:

(4u) (x) = ﬁZE(— 1)l D*(a,4(x) DPu(x)), x e Q,
a,fe
and has proved existence theorems for weak solutions from the space
wE(Q).
2. FURTHER ASSUMPTIONS AND AUXILIARY ASSERTIONS

In order to be able to prove the existence theorem for the b.v.p. (4, ¥, Q), it is
necessary to know the structure of the spaces W*?(Q) in more detail. These spaces
are investigated in [6], [7] and we shall mention some of the results.

2.1. The domain Q. We shall suppose that the domain Q = R¥ is bounded and that
its boundary 0Q can be locally described by functions satisfying the Lipschitz con-
dition. We shall write this fact by

(2.1) Qe€™';
for a more detailed description see e.g. [1].
2.2, The set E. We shall suppose that

(i) E is convex, i.e.
chEnN) =E

(ch E denotes the convex hull of E);
(i) if e E and pe N§, B < a (e, B; < a; for i = 1,...,N), then

BeE.

A set B c E is called a complete basis of E if
(@) ch(Bu {8})n N§ = E;
(ii) to every a € E — B, there exist multiindices $? e B (i = 1,...,N) such that

« < BP and a; < B,
In [6], the following assertions are proved:

2.3. Theorem. Under the assumptions of Sections 2.1 and 2.2, the norm

llullz.o = % [D%ully + [u],
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is equivalent to the norm ||u|g,, from (1.3).

2.4. Theorem. Under the assumptions of Sections 2.1 and 2.2, it is

22 wEHQ) CC WHH(Q) *)
where
@.3) F=(E-B)ul6}.

2.5. Using some known theorems on Nemyckii operators (see e.g. [8]), we conclude
from the growth conditions (1.5) that the operator H,:

( H,(u) (x) = a,(x; 05 u(x))
is a continuous mapping from W5?(Q) into I%Q), ¢ = p/(p — 1). Using Hélder’s
inequality, we derive easily the estimate

(2.4) f aa(x; Og u(x)) D“v(x) dx

Q

=

= fnlga(x) D*(x)| dx + ¢, ¥ | DPu(x)|P~* | D*o(x)| dx =

BeEJ 0
< [\9a]q [ D], + cagElID“ulli“ D], =

< (lgalls + &lulls") o]z, -

It follows that the operator & defined in (1.6) is a bounded continuous mapping from
WEP(Q) into (WEP(Q))*.

3. EXISTENCE THEOREM

The theorem on existence of a weak solution of the b.v.p. (4, ¥, Q) is based on
the following theorem of Leray and Lions (see e.g. [2]):

3.1. Theorem. Let X be a reflexive Banach space. Let T be an operator from X
into X* and let the following conditions be fulfilled:

(i) the operator T is bounded,
(ii) the operator T is demicontinuous;
(iii) the operator T is coercive, i.e.

nm" {Tu, u) _
lulx~wo |ux

+ o0 ;

(.1)

*) For X, Y two Banach spaces, the symbol X (Q(Q Y means that the imbedding operator
of X Y is compact.
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(iv) there exists a bounded mapping @ from X x X into X* such that
(3.2) B(u, u) = Tu;

(v) for every u, w, he X and any real sequence {t,} such that t, - 0, it is
(3.3) d(w, u + t,h) — D(w, u);

(vi) for every u,weX, u & w itis

(34 {P(u, u) — D(u,w), u —w)>0;
(vii) if u, ~ u and
(3.5) (B(tty, Uy) — B(thy, )y 1, — u) = 0
for n — oo, then for every we X
(3.6) . D(u,, w) = D(u, w) ;
(viii) if we X, u, = u and
(3.7) L D(uy, W)z
for n — oo, then
(3.8) (D(un, W), ) = {2z, u) . ' :
Then T(X) = X*, i.e. the equation
Tu=f

has for every f € X* at least one solution u € X.

3.2. For E = NJ, B a complete basis of E, we introduce the following notation:
Ogu = (6¢-pu, 6pu)
and — in accordance with this notation — we write for & € RM
(39) E=(mn), (={(psBecE~B}, n={n;veB}.

Now, we are able to formulate the main theorem:

3.3. Theorem. Let Q = RY and E < NY fulfil the assumptions of Sections 2.1
and 2.2, respectively. Let A be the differential operator from (0.2) and suppose
that the functions a,(x;&) = a/(x;{,n) fulfil the growth conditions (1.5) and
satisfy the following conditions:

(1) for every & = ((,n), & = ((, 7) e RM;  + A, and for a.e. xe Q, it is
(3'10) ye2‘:![‘11("; ¢ '7) - av(X; G ﬁ)] ('77 - ﬁv) >0;
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(I1) there exist constants ¢y >0, ¢; >0, c; = 0 such that for every ¢éeRM
and a.e.xe Q it is

(3.11) : ZEa,(x; &z Z;|¢y|v + ColEgfP = 53
ae ye
(1) for a.e. xe€ Q, it is
2. a(x: 8 n)n,

im o
= |n| + [n]7"*

(3.12)

uniformly with respect to bounded subsets of {.
Then there exists at least one weak solution u € WE?(Q) of the b.v.p. (4, V, Q)
Jfrom Sections 1.6, 1.5.

Proof. Let V be the space from 1.5(i) and let us define an operator T on V by the
formula

(3.13) {Tw,v) =a§ naz(X; Se(w(x) + o(x))) D*y(x) dx ,

where ¢ is the function from 1.5(jii). The growth conditions (1.5) guarantee that T
maps V into V*; a comparison with (1.6) implies immediately that
Tw = S(w + ¢).
Hence, if # € V is such that
(Ta,v) = {f,v) + {g,v) forevery veV
(/. g being the functionals from 1.5(iv), (v)), then the element
=id+¢
is a weak solution of the b.v.p. (4, ¥, Q).

Consequently, it remains to show that the operator T from (3.13) satisfies the
assumptions (i)—(viii) of Theorem 3.1 with X = V.

Conditions (i) and (ii) are direct consequences of the results of Section 2.5.

Ad (iii): Taking & = &z u(x) in (3.11) and then integrating over @, we obtain the
inequality

(Tu, ud 2 cqll|ul| 2,,— c3 meas Q;

hence the coerciveness of T follows by Theorem 2.3.
Ad (iv): For u, v, we ¥, we take
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(@i, W) o) = 3 s Fm-p(ulx) + 9(x)) 35(wx) + o(x)) Do(x) dx,

(P,(u), v> =ﬂeEZ_BJ‘na,(x; 6E(;c(x) + @(x))) DPu(x) dx

and define
&(u, w) = &,(u, w) + D,(u).

Obviously, ®(u, u) = Tu; the boundedness of the mapping @ follows from the esti-
mate (2.4).

Condition (V) is again a direct consequence of the results of Section 2.5.

Ad (vi): Taking { = 8z_g(u(x) + o(x)), n = d(u(x) + o(x)), f = ds(w(x) +
+ ¢(x)) in (3.10), we have

(Py(u, u) — ®y(u,w), u —w) >0,

and this implies that (3.4) is fulfilled since {®,(u) — ®,(4), u — w) = 0.

Ad (vii): Let us denote, for u, — u in ¥,

(3.14) Fi(x) = X Lo 8- s(ua(x) + 0(); oa(tn(x) + 0(x)) =

= a)(x; 35— 5(ua(x) + ¢(x)s Sp(u(x) + @(x)))] D'(u,(x) — u(x)).

In view of the condition (3.10) it is F,(x) = 0 for a.e. x € Q. Since (®,(1,) — P,(u,),
u, — u) = 0, condition (3.5) means that

(3.15) I F(x)dx—>0 for n— .
Q2

Since u, = u in V, it follows from Theorem 2.4 and from the reflexivity of V' that

(3.16) u, > u in WFPQ)

with F given by (2.3).
Now, there exist a set N = @, meas N = 0, and a subsequence {#,,} of {u,} such
that

(3.17) F,(x)>0, Dfu,(x)> D’u(x), |g.x)] <o for xeQ—-N
(x€E, BeF) as a consequence of (3.15), (3.16) and of the fact that g,(x)e Q)

(see (1.5)). Using the second and the third relation in (3.17) for a fixed xe Q — N,
we derive the estimate

(3.18)  Fo(x) 2 3. 0,(x; 0p-5(un(x) + 0(x)) s 35(un(x) + ¢(x)) D7 un(x) —

yeB

= Z|6h0ss O s(un(x) + 9(3) » Sa(tn(x) + @(x)))] - |27 u(x)| =
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- 7é;’la,(x; dg- s(Un (%) + @(x)), 65u(x) + o(x)))| - [ D"(un(x) — u(x))| =
2 ;L;aa(x; S5-p(un(x) + 0(x)), dp(u,(x) + ¢(x))) D? u,(x) —
-1+ ,ZB |D7 u, (x)P~" + 723 |D7 u,, () -

Assuming that |5 u,(x)| - o, we conclude from (3.18) and from the condition
(3.12) that F, (x) — oo, which contradicts the first relation in (3.17). Consequently,
if 4 is a limit point of the sequence {Jj u,,(x)}, then necessarily |fj| < co. Letting
m, - o in F, (x), we have — in view of (3.17) and of the continuity of a,(x; &) with
respect to £ — the identity

2 [a,(x3 85-5(u(x) + @(x)). 7 + 05 o(x)) -
YED,
— a)(x; 35-p(u(x) + ¢(x)), 35(u(x) + @(x)))] . [, — D" u(x)] = 0.
However, this means that
_ ij = 8 u(x)

as a consequence of (3.10) and thus we have

D'u,(x) > D’u(x), yeB, xeQ —N.
This together with the second relation in (3.17) implies that

dpu,(x) = g u(x) forae xeQ

and consequently,

(3.19) ay(x; 65(un (%) + @(x))) = a.(x; d5(u(x) + ¢(x)))
forae. xeQ.

Since u, — u in V, the sequence {u,,} is bounded and consequently, the sequence
{au(x; 05(us(x) + @(x)))} is bounded in I%(2). Then it follows from the Lebesgue
Dominated Convergence Theorem that

(3.20) - ay(x; 65(thn, + @) = a,(x; 65(u + @)) in L(Q).

Now, one can show by the usual procedure that (3.20) holds not only for {u,,} but
for the whole sequence {u,}, and this implies the relation (3.6).
Ad (viii): It is .

(3.21) (D W), Uy = {D(thy, W) — D, W), u, — u) +
+ (!P(u, W),: u, — u) + <¢(um. W), u> .
Since u, — u, we have '

{(D(u,w), u, —u> >0
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and in virtue of the assumption (3.7)
{D(u,, ), uy = {z,u).
Further, (3.16) holds and hence in view of the results of Section 2.5,
ag(x; 85— p(un + @), 55(W + @)) = a(x; Sp—p(u + @), 55(w + @)
in I4(Q), ie.
B(u,, w) > D(u, w).
Since the sequence {u, — u} is bounded, we have
(D(u,, w) — D(u, w), u, — u) >0
and finally, (3.21) yields

(P(uy W), gy = <z, u),
which is (3.8).
Thus the assumptions of Theorem 3.1 are verified and consequently, Theorem 3.3
is proved.

3.4. Remark. Under the notation of Section 1.5, let us define a functional @ on V
by the formula

B(v) = 1(2 J.Qaa(x; 165 v(x) + o ¢(x)) D*v(x) dx) dt — {f,v) — {g,v) .

o \a€E

Let us assume that the assumptions of Theorem 3.3 are fulfilled and that, moreover,
(i) the derivatives da,/0&, exist for all a, B € E and fulfil the symmetry conditions

—, O, ﬂ € E ’
(ii) the functions

bos(x; &) = 5«99—“(x; &), a,BeE,
0y

fulfil again the growth conditions (1.5). .
Then one can prove that there exists an element uy € V which realizes the mini-
mum of the functional ®. The element

uo+ @

is then a weak solution of the b.v.p. (4, V, Q).
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4. A MORE GENERAL BOUNDARY VALUE PROBLEM

In applications, differential operators occur which not only need not involve some
of the derivatives (Which is expressed by the presence of D* with & € E only), but
various derivatives are also allowed to have various degrees of growth (which can
be expressed by the fact that we consider not a single exponent p > 1 but an M-tuple

(1) p={psacE}, p.>1).

We shall now deal with b.v.p.’s with such more general differential operators.

4.1. The space W=7(Q). Let E = Nj be the set from Section 2.1, p given by (4.1),
and assume

(4.2) p.=p for a2 p.
The set
(4.3) WEP(Q) = {u = u(x); D'ue [’(Q) for «eE}

is a reflexive Banach space if equipped with the norm

@4) Jullss = X [0%ul..
Again we set
wsH(@) = C5(Q),

the closure being taken in the norm (4.4).

4.2. The domain Q. We shall say that
Qe 9(H,9)

with H > 0, 6 > 0, if Q is a bounded domain in RY such that for every x € Q there
exists a closed cube C with edges of the length H parallel to the coordinate axes
and with one vertex at the origin, such that for y e @, |y — x| < 8, we have

y+CcQ.
It can be shown (see [7]) that
(H, ) = €°1.

Now, we shall mention some results which are proved in [6] and [7]:

4.3. Theorem. Let Qe 9(H, 5),. E, ={xeNg; |o| <1}, 7= (0o Prs .o Pa)s
po=pi21,i=1,..,N. Then

wE(@) G ()
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with

1_ Y1

- Z - - for Y —>1,

‘1 i=1 p; i=1p;
Yo

q =1 arbitrary for Y —=<1.
i=1 D
For1=Sr<gqitis
WE(Q) QQ (@) -

4.4. The space C°#(Q). Let i = (uy, ..., puy) With 0 < p; £ 1. The set C**(Q)
of functions continuous on @ and such that

4.5) lulloz = sup |u(x)| +xs:s;:) (l) - u()|}) < ®
Xy x; =yt

is a Banach space under the norm (4.5).

4.5. Theorem. Let Qe P(H,5), E; = {aeNy; |o| =1}, p = (po P1s--» PN)s
Po=p;>N,i=1,..,N. Then
WEH(Q) G COHQ)
with i = (i o uN),
N N -1

(4.6) —1- —[ -3 = ] .

D ji=1 p; D
If V= (vl’ AR VN) with 0 < Vv < U i=1,..,N, then

WER(Q) QG C°¥(@).

4.6. Notation. (i) The set E, considered in Sections 4.3 and 4.5 is very special.
But using Theorems 4.3 and 4.5 repeatedly for u € W=?(Q) (and for certain derivatives
of u) with E a general subset of NY satisfying the assumptions of Section 2.2, one can
derive imbedding theorems also for general spaces W?(Q). Let us denote by g,
(for e E — B, B being a complete basis of E, 0 ¢ B) the exponent for which the
operator

D : WE(Q) - 19(Q)

is continuous (in virtue of Theorem 4.3). Thus we have defined g, for e E — B;
for y e B we take r, = p,.

(i) If rp, < g for all Be F = E — B, then the second assertion of Theorem 4.3
implies compactness of the imbedding

4.7) WERQ) QQ WH(Q),
where 7 = {r;; B e F}.
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(iii) Let us denote by G the subset of all multiindices § € F such that the ope-

rator
D? . W”(Q) - C°(§)

is — in virtue of Theorem 4.5 — continuous.

4.7. Growth conditions. The direct analogue of the growth conditions (1.5) has
the following form: there exist constants ¢, > 0 and functions g, € I?<'(Q) with
Ps = P.J(p. — 1) such that for a.e. x €  and for all £ e RY, it is

(4.8) |au(x; )| < g.(x) + c,ﬂ%lé,,l"’“"‘ .

These conditions can be further generalized using the imbeddings mentioned above:
Let us take

(4.9 se =1 | for xeG,

S, = Ta for a€eE—-G

(for G, r, see 4.6 (i)— (iii)); then the generalized growth conditions have the following
form: for a.e. x € Q and for all £ e RY, it is

(4'10) |aa(X; é)l § ca( Z Igﬁl) [ga(x) + Z léﬂlrﬁls’]
PeG BeE-G
where g, e I*(Q) and ¢, is a continuous nonnegative function defined on [0, o).

4.8. Analogously as in Section 2.5, it follows from the growth conditions (4.8)
or (4.10) that the operator H,:

Hi(w) (x)-= ai(x; g u(x))

is a continuous mapping from W®?(Q) into I*'(Q) or L*(R), respectively, and
estimates analogous to (2.4) can be derived. So we have — for the case of conditions
(4.10) —

J. a,(x; 6g u(x)) D*u(x) dx| <
Q

sup c (Z |DPu(x)]) (. s + Z | DPu|); for a€G,
sip eS| o + 3 Dl e, for weE G,

and it follows that the operator & defined in (1.6) is a bounded continuous mapping
from WE¥(Q) into (WE?(Q))*.
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Consequently, using the spaces WZ?(Q) and the growth conditions (4.8) or (4.10), we
are able to define the weak solution of the b.v.p. (4, ¥, Q) analogously as in Section 1.6,
writing always p instead of p. The analogue of Theorem 3.3 reads then as follows:

4.9. Theorem. Let Q € 2(H, d), let E NY fulfil the assumptions of Section 2.2.
Let A be the differential operator from (0.2) and suppose that the functions a,(x; &) =
= a,(x; {, n) fulfil the conditions 1.3(i), (ii), the growth conditions (4.8) or (4.10),
the condition (3.10), the condition (3.12) with p = max p, and the coerciveness
condition : veB
(4.11) im Y [ aux; 6:(u(x) + o(x)) Du(x) = 0 .

hulese [ullep b J o
Finally, let the compact imbedding (4.7) hold.
Then there exists at least one weak solution u € WE%(Q) of the b.v.p. (4, V, Q).

The proof of Theorem 4.9 is a more complicated analogue of the proof of Theorem
3.3. Let us mention that in the case of the growth conditions (4.8), the coerciveness
condition (4.11) is satisfied if there exist constants ¢; > 0, ¢, > 0, ¢3 = 0 such that
for every ¢ e RM and a.e. xe Q it is

Yoa(x;8)éz e ) lfylp” + Czlfalpa —C3.
acE yeB

5. AN INTERPRETATION OF THE WEAK SOLUTION

5.1. The “usual” Sobolev spaces W§?(Q) can be characterized by the conditions
Dlulpg =0 for |f| k-1,

where w|(,9 is the trace of the function w on the boundary 0Q of Q. The anisotropic
spaces W¢'?() can be characterized again in a similar manner: the difference consists
in the fact that traces of only certain specially chosen derivatives in special coordi-
nate directions can be considered (for details see [5], [7]). For example, if 2 = R?
has the form indicated in Fig. 1 with 0Q = I'y U I'; U I'; and if

(5.1) E ={(0,0) (1,0). (0, 1), (2,0), (1, 1)},

then Wg'?(Q) may be characterized as follows:

(52) WE? (@) = {u e WEHQ); ulp = 2] = - o},
0xlsa  O¥|rors
. . Vs du
i.e. without any condition on —
ay ) P
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5.2, For 2 = R? from Fig. 1, let us consider the differential operator 4 from 0.2)
with the set E given by (5.1) (e.g., one can consider the operator

“n2 p1A2, 1 2 2 2, s 2
(Au)(x,y):i— Ou sgna-—u +2 9 aulsgnau — du,
ox? ox? ax dy \|ox dy| dx dy

ox?
for which p = (2, 2, 2, r, 5)). Let u € WE?(Q) be the weak solution of the Dirichlet
problem with ¢ = 0 and f given by
vy = f £(% 7)o y) dx dy.

2

Then u € V = W§'P(Q); if this weak solution u is smooth enough, one can show that
u solves the.“classical” b.v.p.

Au=f on Q,

“|an= s ?ﬁ = 0,

an ryurs

Y
I,
f;
A
A
A
X
Fig.1

Here, the difference between the isotropic and anisotropic case is demonstrated:
if we considered the set £ = {o e Nj; |a| < 2} which differs from our set E only
by the multiindex (0, 2) and for which W&?(Q) is the “‘usual” Sobolev space W>7(Q),
the boundary conditions would assume the form

ula!):o, ?1" =0,
. on)an

i.e. including conditions for the normal derivative on I',.

¢
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