
Časopis pro pěstování matematiky

Elena Wisztová
Paths in powers of graph

Časopis pro pěstování matematiky, Vol. 105 (1980), No. 3, 292--301

Persistent URL: http://dml.cz/dmlcz/118072

Terms of use:
© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118072
http://project.dml.cz


Časopis pro pěstování matematiky, roč. 105 (1980), Praha 

PATHS IN POWERS OF GRAPH 

ELENA WISZTOVA, 2ilina 

(Received February 7, 1978) 

1. Introduction. By a graph we shall mean a finite undirected graph with no loop 
of multiple edge (i.e. a graph in the sense of monographs [1] or [2]). If G is a graph, 
then we denote by V(G), Vi(G), and E(G) the vertex set of G, the set of vertices of 
degree one in G, and the edge set of G, respectively. The distance between vertices u 
and v of G will be denoted by d(u, v, G). By the n-th power Gn of G (where n ^ 1) 
we mean the graph with the properties that V(Gn) = V(G) and that vertices u and v 
are adjacent in GH if and only if 1 = d(u, v, G) ^ n. If n _ 1 and u is a vertex of G, 
then we denote by G(u, n) the set of vertices which are adjacent to u in Gn. 

If Gx and G2 are graphs, then we denote by Gx u G2 the graph with V(GX u G2) = 
= V(GX) u V(G2) and E(GX u G2) = £(GX) u E(G2). 

Let G be a graph. A path connecting vertices u and v in G is referred to as a u — v 
path in G. In the present paper a path in G will be regarded as a subgraph of G. 
A path P in G is called hamiltonian if V(P) = V(G). We say that G is hamiltonian 
if it contains a hamiltonian path. 

Let G be a nontrivial graph. We say that it is hamiltonian-conneceted if for every 
pair of distinct vertices u and v of G, there exists a hamiltonian u — v path in G. 
Hamiltonian properties of powers of graphs, especially of the second and third 
powers, were studied very intensively: see, for example, SEKANINA and CHARTRAND-

KAPOOR. Some further references can be found in LESNIAK [7]. 
In the present paper we shall study a certain general modification of hamiltonian 

connectedness for higher powers of graphs. . 
Let G be a graph. For every positive integer i, we denote by Sit(G) the set of all 

ordered pairs (Uu U2) with the properties that Ux and U2 are disjoint subsets of V(G), 
and \Ut\ ==' \U2\ = i. Denote, 

9(G) = V9£G). 
;=i 

Let (Ux, U2)e2i(G). We shall say that a set & of paths in G is a (Ux, U2)-path 
system in G, if 

(i) given P e ^ , then one end-vertex of P belongs to Ul9 and the other belongs 
to l/2, 
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(iii) every vertex of G belongs to at most one path in 9. We shall say that 9 is 

a (UD £I2/-path system on G, if it is a (Ul9 U2)-path system in G, and every vertex 
of G belongs to at least one path in 9. Let G be a tree, and let 9 be a (Ul5 U2)-path 
system in (on) Gn, where n ^ 1. We shall say that ^ is n-good for G if for every 
Pe9 and every pair of distinct vertices v and w of P it holds that if d(v, w, G) ^ n 
and no u e V(P - v - w) belongs to the v - w path in G, then vw e E(P). 

Let G be a graph, and let i be a positive integer. We shall say that G is f-traceable 
if \V(G)\ ^ 2/ and for every (Ul9 U2)ESI/G), there exists a (£7^ l/2)-path system 
on G. It is obvious that a nontrivial graph is 1-traceable if and only if it is hamiltonian-
connected. In the present paper we shall prove that if G is a connected graph with at 
least 2i vertices, where i ^ 3, then Gi+l is Mraceable. We recall four theorems 
which will be very useful for this purpose. 

Theorem A (J.-L. JOLIVET [3]). If G is a connected graph with at least n ^ 1 
vertices, then Gn is n-connected. 

Theorem B (see Theorem 5.14 in HARARY [1]). A graph with at least 2n vertices 
(n ^ 1) is n-connected if and only if for every (Uu U2) e ®n(G), there exists a (Ut, 
U2)-path system in G. 

Theorem C (M. SEKANINA [5]). / / G is a nontrivial connected graph, then G3 is 
hamiltonian-connected. 

Theorem D (M. Sekanina [6]). Let a, b, c and be distinct vertices of a connected 
graph G. Then there exist a a — b path P1 in G4 and ac — d path P2 in G4 such that 

- {pi> pz} is a ({a, c}, {b, d})-path system on G4. 

Corollary 1. Let G be a connected graph. If \V(G)\ ^ 2, then G3 is 1-traceable; 
if\V(G)\ ^ 4, then G4 is 2-traceable. 

2. Results. We first prove five lemmas. 

Lemma 1. Let G be a connected graph with p ^ 2 vertices. Then for an arbitrary 
pair of distinct vertices x and y of G there exists a hamiltonian x — y path P in G3 

with the property that there exists s e G(x, 2) such that xs e E(P). 

Proof. We prove the lemma by using induction on p. If p -= 2, the result is obvious. 
Assume that p ^ 3, and that the result is proved for every nontrivial connected 
graph with at most p — 1 vertices. Let x and y be distinct vertices of G. Since G is 
connected, there exists a spanning tree Tof G. There exists exactly one vertex r of G 
such that ry e E(T), and that r belongs to the x — y path in T. Clearly, T — ry 
consists of two components, say Tx and Ty, where x e V(TX) and y e V(Ty). Obviously, 
at least one of the trees Tx and Ty is nontrivial. 
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First, let Tx be trivial. Then there exists s e V(Ty) such that sy e E(Ty). According 
to Theorem C there exists a hamiltonian s — y path Py in (Ty)

3. If we denote by P 
the path Py + xs, then we get the result of the lemma. 

Next, let Tx be nontrivial. Then there exists t e V(TX - x) such that t e T(y, 2). 
By the induction assumption there exists a hamiltonian x — t path Px in (Tx)

3 

with the property that there exists s e Tx(x, 2) such that xs e £(PX). If Ty is trivial 
and we denote by P the path P^ -f ty, then we get the result. Assume that Ty is non-
trivial, and consider z e V(Ty) such that yz e E(Ty). According to Theorem C there 
exists a hamiltonian z — y path Py in (Ty)

2. Obviously, d(t, z, T) ^ 3. If we denote 
by P the path (Px u Py) -F tz, then we get the result of the lemma, which completes 
the proof. 

Corollary 2. Let G be a connected graph with at least three vertices, and let 
u e V(G). Then there exist vertices xu and yu of G — u such that xu e G(u, 1), yu e 
e G(u, 2), and that there exists a hamiltonian xu — yu path in G3 — u. 

Corollary 2 immediately implies the following result, which is due to Chartrand 
and Kapoor [4]: If G is a connected graph with at least four vertices and u e V(G)9 

then G3 — u is hamiltonian. 

Lemma 2. Let T be a tree with at least 2i vertices, where i ^ 1, and let (Ul9 U2) e 
e 9{(T). Then there exists a (Ul9 U2)-path system in T which is i-good for T. 

Proof. According to Theorem A, T' is i-connected. From Theorem B it follows 
that there exists a (Ul9 l/2)-path system in T. 

Consider a (Ul9 l/2)-path system 9 in T which has the following property: if 
Pe&9 then there exists no path P' such that V(F) c V(P), |V(P ')| < [V(P)|, and 
that (0> - {P}) u {P'} is a path system in T. We shall show that 0> is i-good for T. 

On the contrary, we assume that ^ is not i-good for T. From the definition of an 
i-good path system it follows that there exists P0 e ^ such that there exist distinct 
v,we V(Po) with the properties that vw $ E(P0), d(v, w, T) ^ i, and that no u e 
e F(P0 — v — w) belongs to the v — w path in T. Since v and w are distinct vertices 
of P0, we have that there exists a v - w path Q in T which is a subgraph of P0. 
Since t;w££(P0), we have |V(£>)| ^ 3. We denote by F the path P0 - V(Q - v - w). 
Since F and P0 have the same end vertices, we have that (0 - {P0}) u {P'} is 
a (Ul9 t/2)-path system in T, which is a contradiction. Hence the lemma follows. 

Let Tbe a nontrivial tree, and let (Ul9 U2) e 2(f). We denote by T(Ul9 U2) the 
minimum subtree T of T with the property that Ut u U2 c V(T). Obviously, 
Vi(T(Ul9 U2)) s Ut u t/2. 

We shall say that T is (Ul9 t/2)-primitive if there exists no v e V(T(Ul9 U2)) -
~ (t/j u U2) with the property that each component T0 of T - v satisfies (V(T0) n 
^ i > F ( T 0 ) n t / 2 ) 6 ^ ( T 0 ) . It is obvious that if T is (Ul9 l/2>primitive, then 
T(Ul9 U2) is also (Ul9 t/2)-primitive. 
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Lemma 3. Let Tbe a tree with at least 2i vertices, where i = 1, and let (Ul9 U2) e 
e @i(T). Assume that Tis identical with T(Ul9 U2), and that T is (Ul9 U2)-primitive. 
Then there exists a (Ul9 U2)-path system on Tl which is i-good for T 

Proof. According to Lemma 2, there exists a (Ul9 U2)-path system 0O in Tl 

which is i-good for T 
If J is a (Ul9 U2)-path system in T\ then we denote 

V(&) = fl V(Q). 
Qe2 

Assume that 0 is a (Ul9 U2)-path system in Tl which is i-good for T, and that 
there exists a vertex ve V(T) — V(0). Since T is (Ul9 U2)-primitive, there exists 
a component Tx of T - v such that (V(TX) n Ul9 V(TY) n U2) £ 9(TX). Therefore, 
^ ( T ^ n U i l =f= I V ^ n U ^ . Since \UX\ = |U2| there exists a component T2 of 
T- v such that T2 is different from Tx and |V(T2) n Ut| 4= |V(T2) n U2|. This 
implies that there exists a path P e ^ with the property that there exists vl9 v2 e V(P) 
such that v1v2 e E(P)9 and that v belongs to the vx — v2 path in T. We denote by P' 
the path obtained from P — vxv2 by adding the vertex v and the edges vtv and vv2. 
It is easy to see that (0 — {P}) u {F} is a(U1? U2)-path system in T1 which is 
i-good for T, and that V(0 - {P}) u {P'} = V(0) u {v}. 

If V(0O) = V(T), then 0O is a (Ul9 U2)-path system on V. Assume that V(^0) 4= 
+ V(T); if we reiterate the above procedure, then from 0O we can construct a (Ul9 

U2)-path system on Tl which is i-good for T 
Hence the lemma follows. 
Let T be a nontrivial tree, and let (Ul9 U2) e ®(T). If v e V(T(Ul9 U2))9 then we 

denote by T(v, Ul9 U2) the component of T— E(T(Ul9 U2)) which contains v. 
Further, we denote by m(T9 Ul9 U2) the number of vertices v e V(T(Ul9 U2)) — 
- Vx(T(Ul9 U2)) with the property that T(v, Ul9 U2) is nontrivial. 

Lemma 4. Let Tbe a tree with at least 2i vertices, where i = 3, and let (Ul9 U2) e 
e9i(T). Assume that T is (Ul9 U2)-primitive and that m(T9 Ul9 U2) = 0. Then 
there exists a (Ul9 U2)-path system on TI+1. 

Proof. We denote the tree T(Ul9 U2) by S.Ifve Vt(S)9 then we denote T(v, Ul9 U2) 
by T(v). Moreover, we denote 

W = {w e Vi(S); T(w) is nontrivial} . 

Corollary 2 implies that for every w e W there exist xW9 yw e V(T(w) — w) such that 
xw e T(w, 1), yw e T(w9 2), and that there exists a hamiltonian xw — yw path in 
(T(w))3 — w, say a hamiltonian path P(w). According to Lemma 3, there exists 
a (Ul9 U2)-path system on S1 which is i-good for S, say a (Ul9 U2)-path system 0. 

We distinguish two cases: 
1. There exists no P0 e 0 with the following properties: 
(i) P0 contains only two vertices, say a and b; 
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(ii) a,beW; and 
(iii) d(a, b, T) = i. 
2. There exists Poe0 with the properties (i)—(iii). 

Case 1. Let P be an arbitrary path in 0, and let u and v be the end vertices of P. 
There exist vertices u' and v' such that uu', vv' e E(P). Obviously, P is a path in T*. 
If u e W, then (P u P(w)) - uu' + uyu + xuu' is a path in Ti+1. Let u,veW; then 
either \V(P)\ ^ 3 or d(u, v, T) < i; this means that (P u P(u) u P(v)) - uu' -
— vv' + uyu + xuu' + v'xv + yvv is a path in Ti+1. This observation yields that the 
paths of 0 can be extended to a (Ul9 U2)-path system on Ti+i. 

Case 2. Without loss of generality we assume that a e Ux and b eU2. We denote 
by Z the set of all vertices of the a — b path in T which do not belong to Ux u U2. 
Since S is (Ul9 l/2)-primitive, we have that there exists no x e V(S — a — b) — 
— ((U! — {a}) u (l/2 — {b})) — Z such that every component S0 of S — a — fr~ x 
satisfies (F(S0) n l/lf F(S0) n U2) e -^(S0). Consider an arbitrary vertex ceZ. 
We denote by Sa or S6 the component of S — c which contains a or b9 respectively. 
Assume that c has the following properties: 

(1) Every component S0 =# Sa, Sb of S — c satisfies 

(V(S0) n Ul9 V(S0) n U2) e 9(S0) 
(2) either 

\V(S)nU1\ = \V{S)nU1\ + \9 

\V{Sh)nV1\^\V{Sb)nV1\^\ 
or 

\V{Sm)nV1\ = \V{S)nU2\-\9 

\V(Sb) nU,\ = \V(Sb) nU2\ + \ . 

Then every component S0 of S — a — b — c satisfies 

(V(Si) n Ul9 V(S'0) n U2) e 9(S'0) . 

We denote by Z' the set of all c e Z which have the properties (1) and (2). Moreover, 
we denote Z0 = Z' u {a, b}. Then every component S' of S — Z0 satisfies 

(UxnV(Sf), U2nV(S'))e®(S')9 

S' is (Ut n V(S')9 U2 n F(S'))-primitive 

and S' is identical with S'(Ut n V(S')9 U2 n V(S')) . 

According to Lemma 3, for each component S' of S — Z0 there exists a (11! n V(S')9 

U2 n V(S'))-path system 0S. on (Sj'1 which is (i - l)-good for S'. Denote 

0O = [)0S,, over all components S' of S — Z0 . 

Subcase 2.1. Let |Z0| j£ 3. Then there exists a n a - i path P0 in T1*"1 such that 
V(P0) =- Z0 and that 0O u {P0} is a (t/j, t/2)-path system on S1'""1 which is (i - 1)-
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good for S. If we denote 9 = &0 u {P0}, we have a (Ul9 l/2)-path system on S' 
which is i-good for S and which fulfils the condition of Case 1. 

Subcase 2.2. Let |Z0| < 3. Then Z0 = {a, b). We denote by P0 the graph with 
V(P0) = {a, b) and F(P0) = {ab}. It is clear that S — a — b has exactly one com­
ponent. This implies that 90 is a (Ut — {a}, U2 — {^})-path system on (S — a — 
— b)1'1 which is (i - l)-good for S - a — b (and therefore for S). Denote 9' = 
= ^ 0 u {P0}. 

Subcase 2.2.1. Assume that there exists Px e 9' — {P0} with the property that 
at least two vertices of Pl9 say vertices v and w, belong to the a — b path in S. We 
can assume that d(a, v, S) < d(a, w, S); for an illustration see Fig. 1. Obviously, 

Jt JL r ^ ^ %y. 

ya xa * v w b xb yk 

Fig. 1. 

d(v, w, S) ^ i — 2. Since 90 is (i — l)-good for S, we have that vw e E(Pt). Let r 
and s be the end vertices of Px. There exist vertices r' and s' such that rr' and ss' 
are edges of Pt. Without loss of generality we assume that if s e W, then r e W. We 
denote by P0 the path 

(P0 u P(a)) + aya + xab 
and by Px the path 

(Pt u P(fc)) + vxb + >>bw , if r,s$W, 

(P! u P(fe) u P(r)) + vx6 + y6w + ryr + x rr', if reW, s$W9 

(Pi u P(b) u P(r) u P(s)) + vxb + ydw + x/ + ry, + sy5 + xss', if r, s 6 JV. 

It is easy to see that both P0 and Pi are paths in Ti + 1. If we continue for the paths 
in 9' - {P0, PJ as in Case 1, we can extend & to a (Ul9 U2)-path system, say 9, 
on r ' + 1 such that P0, Pi eW. 

Subcase 2.2.2. Assume that for every Pe9' - {P0} at most one vertex of P 
belongs to the a — b path in S. Since d(a, b, S) = i, we have that for every P e # ' -
— {P0} exactly one vertex of P belongs to the a - b path in S. Since \V(S)\ = 2i, 
there exists v e V(S) which is adjacent to a vertex on the a — 6 path in S, say a vertex z. 
Since a, fc e Vt(S), we have that a 4= z #= ft. There exists Pte0>' - {P0} such that 
t; G V(Pi). Obviously, there exists exactly one vertex w e V(Pi) which belongs to the 
a — b path in S. Without loss of generality we assume that d(a, z, S) S d(a9 w, S). 
We have that d(v, w, S) g i - 1. Since ^ 0 is (i - l)-good for S, we have that vw e 
e £(Pi). Obviously, 2 = d(a, t?, S) = i and d(ya, w, S) =" t + 1. Assume that t; e JV 
(see Fig. 2). 
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If d(a9 v, S) < i, then d(xa, xV9 S) ^ i + 1. 
If d(a9 v9 S) = i, then z = w9 and therefore d(xV9 xb9 S) = 4 S i + 1 and 

d(w, yb9 S) = 3. ' 
•X 

*ь У* 

Fig. 2. 

Let r and s be the end vertices of Pv The above observation shows that there exist 
an a - b path P*. in T i + 1 and a r - s path P* in T i + 1 such that V(P£) n V(P*) = 0 
and 

V(P*) u V(P*) = V(P0 u V(T(a)) u V(T(b)) u V(T)r)) u V(T(s)). 

If we continue for the paths in &*' — {P0, Px} as in Case 1, we can extend &' to 
a (Ul9 U2)-path system, say ^*, on T + x such that P*, P* e <̂ *. 

If T is a tree with at least six vertices, then we denote 

®*(T) = U ®i(T) . 
» = 3 

Lemma 5. Let T be a tree with at least six vertices, and let (Ul9 U2) e @*(T). 
Assume that T is (Ul9 U2)-primitive. Then there exists a (Ul9 U2)-path system on 
T i+1, where i = [jJ^. 

Proof. If m(T9 Ul9 U2) = 0, then the result follows immediately from Lemma 4. 
Let m(T9 Ul9 U2) ^ 1. We shall assume that for every tree T with at least six vertices 
and for every (U'l9 U'2)e9*(T) such that T is (U'l9 C72)-primitive and that m(T9 

U'l9U'2) < m(T9Ul9U2) there exists a (U'l9 U2)-path system on (T')r+1
9 where 

V - |U1|. 
Since m(T, Uu U2) = 1, there exists u e V(T(Ul9 U2)) - Vx(T(Ul9 U2)) with the 

property that T(u, Ul9 U2) is nontrivial. We denote by S the graph T - V(T(u9 

Ul9 U2) - u). Obviously, S is a tree, (Ul9 U2) e ®*(S)9 and S is (Ul9 U2)-primitive. 
Since m(S9 Ul9 U2) = m'T9 Ul9 U2) — 1, the induction assumption implies that there 
exists a (Ul9 C/2)-path system, say J, on Si+1. Let Q0 be the path in Si with the proper­
ty that u belongs to Q0. We distinguish the following two cases: 

1. There exists g e i - {Q0} with the property that there exist distinct v9 we 
e V(Q) such that vw e E(Q) arid u belongs to the v — w path in S. 

2. There exists no Q e £t — Q0 with the above property. 
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Case 1. Corollary 2 implies that there exist xu9 yu e V(T(u9 Ul9 U2) - u) such that 
xu e T(u9 1), yu G T(u9 2), and that there exists a hamiltonian xu — yu path, say P, 
in (T(u9 Ul9 U2) - u)3. Since d(v, w, S) = i + 1 and Q 4= Q0 we have that 
d(v, u, S) ^ i and d(w, xu, S) = i + 1. 

If d(v, u, S) < i, then d(v, ytt, S) ^ i + 1, and we denote by Q' the path 
((Q - vw) u P) + vyu + wxu. If d(v, u, S) = z, then uw e E(S), d(v, xu, S) = i + 1 
and d(yu, w, S) ^ 3 = i, and we denote by Q' the path ((Q — vw) u P) + vxu + 
+ WJV 

It is clear that Q' is a path in T i+1. Therefore, (SI - {Q}) u {Q'} is a (t/lf U2)-
path system on T i+1. 

Case 2. We denote by ux and u2 the end vertices of Q0 such that Uj e Ux and 
u2 e U2. Divide the tree S into two nontrivial trees S1 and S2 such that 

(i) S is identical with Sxu S2, 

(ii) V(S,) n V(S2) = {u}, 

(iii) u e V^Sj, and 

(iv) Ui G V(SX) and u2 G V(S2). 

We denote by Tx the tree S1 u T(u, U1? U2). Clearly, Tis identical with Tj u S2. 
Since there exists no path Q G Si — {Q0} with the property defined in Case 1, we 
conclude that for every Q e i - {Q0} either V(g) c V(TX) or V(Q) c V(S2). 
Denote: 

V11^U1nV(T1)9 

U12 = (U2 n V(T,)) u {u} , 

U21 = (U, n V(S2)) u {u} , 

U22 = U2 n V(S2) . 

Obviously, ( l / u , 1 7 1 2 ) G ^ ( T 1 ) and (U21, U22)e9(S2). It is easy to see that Tx is 
(Ull5 l/12)-primitive, S2 is (U21, l/22)-primitive. 

Since u G V^U^, U12)) n V(S2(U21, U22)), we have that m(Tl9 Ull9 U12) < 
< m(T9 Ul9 U2) and m(S2, U2l9 U22) < m(T9 Ul9 U2). 

Obviously, max (4, | [7n | + 1, |U2i| + 1) ;= i + 1. Combining the induction 
assumption and Corollary 2, we get that there exists a (Ull9 l/12)-path system ^ x 

on (7\) l+1 and a (U2l9 U22)-path system &>2 on (S2) i+1. Let Px G &1 and P2 G ^ 2 

be the paths with the property that u G V(P0 n V)P2). Since T is identical with 
Ti u S2 and V(T2) n V(S2) = {u}, we have that 

(^i - {^i}) u (^2 - {P2}) u {(P, u P2)} 

is a (l/j, U2)-path system on T i+1, which completes the proof. 
Now, we can state the main result of the present paper. 
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Theorem 1. Let i ^ 3 and let G be a connected graph with at least 2i vertices. 
Then Gi+1 is i-traceable. 

Proof. Since G is connected, it is spanned a tree T. Let (Ul9 U2) e @t(T). It is suf­
ficient to prove that there exists a (Ul9 U2)-path system o n f + 1 . 

It is easy to see that there exist vertex-disjoint subtrees Tl9..., Tk of T, where 
fc = 1, such that V(T) = V(TX) u ... u V(Tk) and, for every ; == 1,..., fc, 

(V(Tj) n Ul9 V(Tj) n U2) e ®(T,) and 

Tj is (V(Tj) n Ul9 V(Tj) n U2)-primitive . 

Since i _t 3, we have that 

• max (4, \V(TX) n Ux\ + 1,..., |V(Tk) n ^ + l j ^ i + l . 

Combining Corollary 2 and Lemma 5, we get that for every j = 1,..., fc there exists 
a (V(Tj) n Ul9 V(Tj) n CI2)-path system, say &>j9 on (Tj)i+1. This means that 9^ u ... 
... u ^ k is a (Ul9 U2)-path system on T i+1. Hence the theorem follows. 

Remark 1. G i+1 in Theorem 1 cannot be replaced by G\ For example, if G is the 
graph in Fig. 3 and U1 and U2 are the sets of vertices denoted by 1 and 2, respectively, 
then there exists no (Ul9 U2)-path system on G\ 

Fig. 3. 

Remark 2. According to Corollary 2, if G is a connected graph with at least four 
vertices, then G4 is 2-traceable. This power cannot be decreased. For example, if G 
is the graph in Fig. 4 and Ux and U2 are the sets of vertices denoted by 1 and 2, 
respectively, then there exists no (Ul9 LI2)-path system on G3. 

In the end of the present paper we shall prove two results concerning 2-traceable 
graphs. 

Fig. 4. 

Theorem 2. Let G be a 2-traceable graph with at least five vertices. Then G is 
3-connected. 

Proof. On the contrary, we assume that G is not 3-connected. Since |V(G)| > 3, 
there exists a set Ut of two vertices of G such that G — Ux is disconnected. Let G' 
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be a component of G — Ut with the minimum number of vertices. Since |V(G)| ^ 5, 

we have that | V(G) - Ut — V(G')| ^ 2. Consider an arbitrary two-element subset U2 

of V(G) — Uj — V(G'). Let v 6 V(G'). It is obvious that in G the vertex v is separated 

from U2 by Ux. This implies that there exists no (Ul9 U2)-path system on G, which 

is a contradiction. Hence the theorem follows. 

Theorem 3. Let G be a 2-traceable graph with at least five vertices. Then G is 

hamiltonian-connected. 

Proof. According to Theorem 2, G is 3-connected. Let u and v be distinct vertices 

of G. Since G — u — v is connected, there exist distinct vertices a and b of G — w — v 

such that ab e E(G). Since G is 2-traceable, there exists a ({w, v}, {a, b})-path system 

on G. Without loss of generality we assume that there exist a u — a path Px and 

a v - b path P2 such that V(PX) n V(P2) = 0 and V(PX) u V(P2) = V(G). This 

means that (Pi u P2) + ab is a hamiltonian u — v path in G. Hence the theorem 

follows. 

R e m a r k 3. The cycle with exactly four vertices is 2-traceable but not hamiltonian-

connected. 
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