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-

CHARACTERIZATIONS OF THE SPHERE IN E* BY MEANS
OF THE PSEUDOPARALLEL MEAN CURVATURE VECTOR FIELD

KAREL SvoBODA, Brno

(Received December 12, 1977)

In [2], we have characterized the 2-dimensional sphere in E* using the notion of
the parallelness of the mean curvature normal field. In the present paper, we are
going to introduce the concept of the pseudoparallelness of the mean curvature vector
field and to apply it to some characterizations of the sphere in E*,

1. Let M be a surface in the 4-dimensional Euclidean space E* and M its bounda-
ry. Let {U,} be an open covering of M such that in each domain U, there is an ortho-
normal frame {M; vy, v,, vs, v,} With vy, v, € T(M), v3, v, € N(M). where T(M),N(M)
denote the tangent and the normal bundle of M, respectively. Then we have

(1) dM =  o'v, + &?v,,
dv, = wlv, + wlvy + olv,,
dv, = —wlv, + w3v; + o3v,,
dv; = —wiv, — @W3v, + wiv, ,
dvy, = —wiv, — ofv, — wlvs;

) do' = o* A @, dol =o' A of,

ol +0i=0, @®=0*=0 (i,j,k=1,234).

The well-known prolongation procedure implies further the existence of real-valued
functions a;, by, ¢; (i =1,2), &, B, 7:,6; (i =1,2) and 4, B, ..., E; (i = 1,2) in
each U, such that

(3) 0} = a,0' + biw?, @} = bo! + c,0?,
: o} = a,0' + b,0?, o} = b0' + c,0%;
(4 da; — 2b,0} — a,0% = a,0' + 0%,

db; + (a; — ¢y) o} — b0} = pio' + 07,
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de; + 2b,07 — c,0% = y,0! + 8,07,
da, — 2b,0? + a,03 = 0! + B,0?,
db, + (az —¢3) o} + byo} = po' + y,0°,

ch + 2b2(l)21 + Cla)g = 'Yzwl + 52(})2 5

) do; — 38,0} — a0} = A;0' + (B, — b,K — }a,k) 0?,

dBy + (2 — 2yy) @ — B3 = (By + b,K + }ask) o' +
+ (Cy + a,K — 1bk) 0?,

dy, + 2By — 6,) 0} — y,0% = (Cy + ¢,K + 3bk) o' +
+ (Dl + blK - %Czk) wz )

dd, + 3y,07 — 6,05 = (D, — bK + }ck) 0 + E 0,

do, — 3,0} + @03 = A,0' + (B, — b,K + }a,k) 0?,

dp, + (a, — 2y,) @} + Byws = (B, + bK — }a,k) o' +
+ (C; + a,K + }bsk) 0,

dy, + (2B, — 8,) w0} + 7,03 = (C, + ¢,K — }bk) o' +
+ (D, + byK + }cik) 0, .

dé, + 3y,07 + 6,03 = (D, — b,K — }c,k) o' + E,0?

where
(6) K=alc1‘—b§+azcz—b§, k=(a1'—cl)b2"‘(a2—cZ)bl,

the function K being the Gauss curvature of M.
Denote by

(7 H = (a; + ¢)® + (a, + ¢3)?
the mean curvature of M and by
(8) é = (al + Cl) 1)3 + (a2 + Cz) 04

the mean curvature vector field in N(M). In the following suppose that ¢ # 0, and
thus H & 0 on M. A

Let P(M) be the vector bundle on M such that P,(M) is the union of T,,(M) and &,
for each point m € M. The vector field ¢ is said to be pseudoparallel in P(M) if
t¢ € P(M) for each vector field t € T(M).

From (8) we see that

d¢ = [(ay +=7y) @' + (By + 8;) @*] v3 + [(az + 72) @' + (B + ;) @?] v,

(mod vy, v;)
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and thus ¢ is pseudoparallel if and only if
) (a0 + 1) (02 + 72) = (@2 + ) (4 + 71) =0,
(al + Cl) (ﬁz + 62) - (02 + Cz) (ﬁl + 61) =0.

Let us remark that, according to (9),

(10) (g + y1) (B2 + 62) — (By + 85) (a2 + 72) = 0.

Now, we have the following

-

Lemma 1. Let the mean curvature vector field & be pseudoparallel in P(M). Then

k=0
on M.

Proof. Differentiating (9) and using (4), (5) and (10), we obtain
(11) (ay + ¢y) (4, + C; + ;K — 3b1k) —
— (ay + ¢;) (A4 + Cy + ¢,K + 3bk) =0,
(ay + ¢y)[B2 + D, + ¥ay + ¢;) k] —
—(ay + ¢;)[By + Dy — ¥(a; + ¢,) k] =0,
(ay + ¢y)[B, + D, — ¥ay + ¢;) k] —
— (ay + ¢;)[By + Dy + ¥a, + ¢;) k] =0,
(ay + ¢1)(C;2 + E; + a,K + 3bsk) —
—(az + ¢;)(Cy + E; + a,K — 3b,k) =0,

These equations yield immediately the assertion.

2. In the theorems proved in this paper, we use the 1-form

(12) T =1,0' + 1,0% =
= [(ay = ¢;) By + (a2 = ¢3) B2 — by(x; — 71) = by(x; — 72)] @' +
+ [(ay = ¢1) v1 + (a2 — ¢3)y2 — by(By — 8,) — by(B, — 8,)] w?.

By exterior differentiation of T we get

(13) dt = —[27 + (H - 4K) K — 2%*] o' A o?

where -

(14) J = Bi(Br = 8;) + 71(v1 — 1) + Ba(B2 — 82) + 122 — @)
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In this section we examine the dependence of the form 7 and the function J on the
choice of tangent frames of M. For this reason, consider another field of frames
{M; b, D,, U3, s} given, in each U,, by

(15) v, =8 €C0SQ.0; —sin 9.0,, V3 =2¢,C080.0; — sin 7.7,,

I

v, =¢sing@.0; +cosg.v,, v, =¢,8in0.0; + COSO.D,;
(e =¢=1)
and denote by a bar all functions and formulas related to {M; By, 7, 73, D4}.

Lemma 2. On M, it is

T=g1, J=J.

Proof. From (1) and dM = @'%;, db; = @i7; we obtain

(16) o' = g(cos ¢ . 0! + sin ¢ . 0?),
@* = —sin g . w' 4+ cosg.w?;
(17) o7 = 81(‘19 + a’f) >
@3 = &)(do + 3);

(18) @; = &,¢,(cos gcos 6. w} + singcos . w) +
+ cosgsino.wf + singsino. w}),
—3 _ . 3 3
@3 = &(—singcos . wj + cosgcos o . w3 -
— singsino .o + cosgsine . 03),
—4 3 3 : : 3
o7 = &(—cos gsino. w} — singsino. w3 +
+ cos g cos ¢ . wj + sin g cos ¢ . W3),
—4 - . 3 . 3
@3 = singsing.w] — cosgsing.w; —

— sin @ cos 0 . w{ + cos @ cOs G . W3 .
Thus from (16), (18) using (3) and (3) we get

(19) d, = &(R, cos ¢ + R,sino),
by = &,8,(S; cos ¢ + S, sino),
¢, =¢&(Tycoso + Tysinoa),
a, = —(Rysine — R, cos ),
b, = &(S;sine — S, cos o),

¢, = —(Tysino — T, cos o)
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where

(20) R, = Ry(ay,.by, ¢;) = a, cos? ¢ + 2b, sin g cos ¢ + ¢, sin’ g,
S; = Sy(ay, by, ¢;) = a, singcos ¢ + b,(sin? ¢ — cos? @) — ¢, singcos g,
T, = Ty(ay, by, ¢;) = a, sin® ¢ — 2b, sin g cos ¢ + ¢, cos® g,

and R, = Ry(ay, by, ¢;), S; = Sy(az, by, ¢;), T, = Ty(a,, by, ¢;) have the same

meaning. Further, from (17), (19) according to (5) and (5) we have

(21) & = &&,cos o(R} cos ¢ + Rfsin @) + &,¢, sin o(R3 cos ¢ + R} sin o),
B, = —e, cos o(R] sin o — R cos @) — &, sin o(R sin ¢ — RS cos o) =

= —¢, cos o(S] cos ¢ + S sin @) — &, sin (S5 cos ¢ + S4 sin g),
J1 = &€, cos o(S]sing — S} cos g) + &,¢, sin o(S3 sing — S5 cos ) =

= &, cos o(T} cos ¢ + T sin @) + &,¢, sin o(T5 cos ¢ + T¥ sin ),

8, = —¢g;cos o(Tfsin g — Tf cos @) — &, sin o(T5 sin ¢ — T% cos @),
&, = —e&; sin (R} cos ¢ + Rf sin g) + &, cos o(R3 cos ¢ + R sing),
B, = sino(R]sine — R cos @) — cos o(R} sin ¢ — Rj cos g) =

= sin o(S] cos ¢ + Sf sin g) — cos o(S5 cos ¢ + S5 sin g),
7, = —&, sin o(S] sin ¢ — S cos @) + &, cos o(S3 sing — S5 cos @) =
= —e¢ sin o(T cos @ + T/ sin @) + &, cos o(T5 cos ¢ + Tf sin @),
5, = sing(Tysing — Tf cos @) — cos o(T5 sin ¢ — T4 cos )
where
(22)  RY = R, Bi,v:), ST =Sdoi, B i), T = Ti(o, Bir i) »
R = R{Bi 71> 94) » St = S{B: vss 8, T! = T(B:, v 5i) (i=12).
In virtue of (19) and (21) we get
(23) a; — ¢y = &Ry — Ty)coso + &(R, — Ty)sino,
a, — & = —(R, — Ty)sine + (R, — Ty)cos o,
& — 7, = &€ cosof(Rf — Tf)cos g +‘(Rf — T)sin o] +
+ &8, sin &Ii(R; — T3)cos ¢ + (RS — Tf)sin¢],
— &, coso[(Rf — T})sing — (R} — Tf)cos o] —
— ¢, sin o[(R} — T3)sing — (R} — T5)cos o],

R
|
o~
]
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& — 7, = — g cos o[ (R} — Tf)cos o + (R — Tf)sing] +

+ &, sin o[(R5 — T3)cos ¢ + (RS — T%)sin o],
sin o[ (R — T7)sing — (R{ — Tf) cos ¢] —

— cos o[ (R; — T3)sing — (RS — Tf) cos ¢] .

B: — 4,

]

Using (19), (21) and (23), we obtain
7, = (Ui + Uj)cose + (Uf + Uj)sine,
7, = —& (U} + U3)sing + &(Uf + Uf)cos o
where .
Ui = S(Rf — T¥) - Si(R: — T),
Ul = SR - T/~ SR~ T) (i=12).
However, direct calculation yields
Ui = (ay — ¢y) By — by(ay — 74),
Uf = (a, - Cl) Y1 — bx(ﬂl - 51)
and analogous relations for U3, U5. Thus
T, = 1,C08Q + T,sing,
T, = —gTy8ing +'zr:11:2 cos @

which proves, together with (16), the first identity of our lemma.
To prove the other one, introduce the symbols V;, V, by the relation

Vi=—SYRI — Tf) + SHR: = T7) (i =1,2).

Using (21), (23), we get
j = V] + Vz .

On the other hand, according to (20) and (22) we have
Vi = Bi(B1 — 61) + 71(vs — o)

and analogously for V,. This and the equation (14) complete the proof.

3. The main tool used in the proofs of the theorems contained in this paper is the
Stokes theorem asserting

(24) J = j &

for any 1-form t on M. Assuming that 0M consists of umbilical points (@, — ¢; = 0,
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a, — ¢; = 0,b; =0, b, = 0), we have T = 0 on dM and, according to (24) and (13),

(25) J"[z(J—k2)+(H_4K)K]w1 Aw?=0,

Now, we are going to prove the first theorem characterizing the sphere among
surfaces in E*:

Theorem 1. Let M be a surface in E* and OM its boundary. Let
(i) K > 0 on M;
(ii) & be pseudoparallel in P(M);
(iii) H = const. % 0 on M;
(iv) dM consist of umbilical points.
Then M is a part of a 2-dimensional sphere in E*,

Proof. From (4) and (7) we have
dH = 2[(ay + ¢;) (2 + 71) + (a2 + ¢5) (@2 + 75)] @' +
+ 2[(ay + 1) (By + 85) + (a2 + ¢;) (B + 8,)] w2
and according to (ii), (iii) we obtain (9) and
(ay + eq) (@0 +71) + (a2 + &) (0 +7,) =0,
(@ +c)(By +6) + (a2 +¢))(B, + 8,)=0.
As H # 0, this system of equations has the only solution
(26) a +7y, =0, Bi+ 46, =0,
a+7,=0, Pp2+5,=0.
Then the relation (14) has the form
J =28 + 9+ B + 7).
Thus we have, according to Lemma 1, k = 0.and J = 0 on M.
Further, from (6), (7) we get
H — 4K = (a; — ¢;)* + (a2 = ¢,)? + 4b? + 4b2
and hence H — 4K = 0 on M. Thus, according to (i),
2J +(H - 4K)K > 0.
on M. By the Stokes theorem we have

j [2J + (H - 4K) K] ot A ? =0
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which implies H — 4K = 0 on M, so that each point of M is umbilical.
Remark. Using (4), the equations (26) imply

d(a; + ¢;) —(a, + ;) @3 =0,
d(az + Cz) + (al + cl) (D; = 0 .
Thus we have also proved that under the assumptions (ii), (iii) of Theorem 1 the
mean curvature vector field ¢ is parallel.
In the preceding theorem, we have given a modification of the H-theorem con-
cerning ovaloids in E3 to the case of surfaces in E*. Now, we are going to prove a
generalization of this result.

Consider the mean curvature H of M and its covariant derivatives defined, ac-
cording to [1], p. 16, by

dH = Ho' + H,0?,
dHl - sz% = H“Col + lewz ’ dH2 + le% = le(.l)l + szwz.

Using (4), (5), (7), we have

(27) 1H, = (a; + ¢y) (g + 71) + (a2 + ¢;) (22 + 72),
$H, = (a, + ¢;) (B + 8y) + (a2 + ¢2) (B2 + 02) 5
(28)  3H,, = (a; + ¢;,) (4, + C; + ¢;K + }b,k) +
+ (a, + ¢;)(A; + Cy + ;K — 3bik) + (o + y1)* + (2 + 72)%,
3H,, = (a; + ¢;)(By + Dy) + (a, + ¢;) (B, + D,) +
+ (g + 71) (By + 8y) + (o2 + 72) (B2 + 92),
1H,, = (a; + ¢,)(Cy + E; + a;K — }b,k) +
+ (a3 + ¢2)(Cy + E; + a,K + 3byk) + (By + 8)* + (B2 + 8,)°.
It is easy to prove that
(29 H? + H2 = H} + H:.

Now, we prove

Theorem 2. Let M be a surface in E* and 0M its boundary. Let
(i) K> 0 on M;

(ii) & be pseudoparallel in P(M);

(iii) 16(H — 4K) HK = H; + H3 > 0 on M;

(iv) OM consist of umbilical points.
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Then M is a part of a 2-dimensional sphere in E*,

Proof. We use the integral formula
J Io* A 0* =0
M

and, first of all we prove that I = 0 where
(30) I=2J-kK)+(H-4K)K

and J is the invariant introduced by (14).

The assumption (ii) is expressed by the system of equations (9) and, according to
Lemma 1, implies k = 0 on M. As H # 0, the system (9), (27) has the only solution

3)  ay+7y,=%a, +c)H 'H;, B+, =%a, +c,)H 'H,,
a, + 7, =%a,+c;)H'H,, B, +6, =4(a, + ¢;) H 'H,.
Hence in virtue of (31), the equation (30) has the form
I=—(a, +¢,)H Y(H,B, + Hy,) — (a, + ¢;) H*(H,B, + Hyy,) +
+ 4B + v + B3 +v3) + (H — 4K)K
and consequently
I=1[28, — ¥a, + ¢;) H'H,]* + [2y, — Hay + ¢;) H'H,J* +
+ [2B, — Hay + ¢) H'H,* + [2y, — Ha, + ¢;) H'H,]* —
— 1gH '(H} + H3) + (H — 4K)K .
The condition (iii) thus yields I = 0 so that I = 0 on M. This implies
By = ¥ay + ¢,)H 'H,, y,=1Hay +c))H 'Hy,

ﬁl =%(a2 +C2)H_1H29 Y2 =%(a2 +CZ)H_1H1
and '

(32) 16(H — 4K) HK = H? + H3.
According to (31), we have further
ay =3a, + ¢ )H 'Hy, 6, =4%(a; +c,)H 'H,,
a, = ¥az + ¢3) H._lHl , 8, =1%a, +c;)H 'H,
and hence

(33) al = 3?1 N 61 = 3ﬁ1 N az = 372 3 _62 = 3ﬁ2 .
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We prove further that a surface M satisfying (32) and (33) is a 2-dimensional
sphere in E*,

Suppose that there is a point m € M which is not umbilical. In a convenient neigh-
bourhood U of m we can choose, according to (19) and the relation k = 0, a field
of orthonormal frames of M in such a way that

(34) a,—¢;*0, by=0, a,—¢; =0, b,=0.
The equations (4) thus have the form
(35) da; — a,0f = 3y,0' + B10?, da, + a,0? = 3p,0' + 0?,
(al - Cl) C()f = ﬂlml + '}’1(,02 Y 0 = ﬂzwl '+' ')’2(02 )
de, — a,03 = y0' + 3f,0%, da; + c,0f = y0! + 34,0%,

because of (33). From (35) we have immediately 8, = 0, y, = 0 and, because of (33),
@, = 0, 8, = 0. Consequently, it is w§ = 0. As H} + H? #+ 0, it follows from (27)
that a, + ¢, = 0 and this, together with (34), implies a, = 0, ¢, = 0. Thus (35) is
reduced to

(36) da; = 3y,0' + B0?,
(ay = ¢) o] = B0’ + 3,07,
de, = y,0" + 3,0
and (32) has the form
(37) (H — 4K)K = 4(} + 7?).

By exterior differentiation of (36) and using Cartan’s lemma we get the existence of
a function ¢ in U such that

dB; + 7107 = (¢ — a;c}) 0?,
dy; — Byt = (e — afcl)w‘ .
Repeated exterior differentiation yields the relation
de = 3¢y, 0" + 3aif0’
and hence, differentiating this equation and using again Cartan’s lemma, we obtain
(01 - C1) Biy1 =0.

Now suppose f, =0, y, + 0, the case f; + 0, y; = 0 being symmetric. The
relation (37) then yields

(‘11 - c1)2 a;¢; = 4?%
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and thus, by successive differentiations of this equation, we get
- a} + 13aic, — 9a,c? + 3c} = 8¢,
11a? + 30a,¢, — 21c; =0,
2a; + ¢, =0,
7}’1 = 0 .

The last relation contradicts our supposition.

Thus we have B; = 0, y; = 0, and (34), (36) yield w} = 0. However, exterior dif-
ferentiation of this equation yields Ko' A w? = 0 and hence K = 0 in U. This
being a contradiction to (i), m € M must be an umbilical point of M.

To be able to introduce some consequences of Theorem 2, we define normal vector
fields

&y = (Vxé)N » G2 = (sz)N s

¢ being the mean curvature vector field in N(M), V;, V, € T(M) orthonormal vector
fields on M and (X) the normal component of the vector field X.

Corollary 1. Let M be a surface in E* satisfying the conditions (i), (ii) and (iv)
of Theorem 2. Let

(iii) 4(H — 4K) HK = (&, &)% + (&, E,02 > 0 on M.
Then M is a part of a 2-dimensional sphere in E*.

Proof. In each m € M choose orthonormal frames of M in such a way that V; =
= v, ¥, = v,. It follows from (8) that

d¢ = [(or + 71) 03 + (22 + y2) va] @' + [(By + 81) v5 + (B2 + 6,) v] @
(mod vy, v,)
and thus, by the definition,

(38) &= (g +71) 03 + (22 + 72) 04,
&, =(By + 8,)vs + (B2 + 85) v4.
Then, because of (8), (27) and (38), we have
K& &) =(ag + cy) (o + 71) + (a; + ;) (o + ?2) =4$H,,
&, &) = (al + C1) (ﬂl + 51) + (a; + ¢,) (ﬁz + 52) = 1H,

and hence

K& ED? + (& &)% = H(HE + H3).

This equation and the condition (iii) together with the assertion of Theorem 2
conclude the proof.
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Corollary 2. Let M be a surface in E* with the properties (i), (ii) and (iv) of Theo-
rem 2. Let

(iil) 4(H — 4K) K 2 (&1, &) + &3, 6,) > 0 on M.
Then M is a part of a 2-dimensional sphere in E*.

Proof. Choose again a field of orthonormal frames of M in such a way that
Vy = vy, V, = v,. Then (27) and (38) imply
¢ = (“1 + '}’1)2 + (“2 + ?2)2 = }H—le s

&y =By +6,) + (B + 52)2 = }H 'H;
and hence

&) + (o &) = $H™H? + H3).

Thus (iii) and Theorem 2 prove our assertion.
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